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Abstract: Structural characteristics representation and their fine variations are crucial for the recognition of different
types of aircrafts in remote sensing images. Aircraft type classification across different sensor remote sensing
images by spectral and spatial resolutions of objects in an image involves variable length spatial pattern iden-
tification. In our proposed approach, we explore dynamic kernels to deal with variable length spatial patterns
of aircrafts in remote sensing images. A Gaussian mixture model (GMM), namely, structure model (SM)
is trained over aircraft scenes to implicitly learn the local structures using the spatial scale-invariant feature
transform (SIFT) features. The statistics of SM are used to design dynamic kernel, namely, mean interval
kernel (MIK) to deal with the spatial changes globally in the identical scene and preserve the similarities in
local spatial structures. The efficacy of the proposed method is demonstrated on the multi-type aircraft remote
sensing images (MTARSI) benchmark dataset (20 distinct kinds of aircraft) using MIK. Also, we compare
the performance of the proposed approach with other dynamic kernels, such as supervector kernel (SVK) and
intermediate matching kernel (IMK).

1 INTRODUCTION

With the current earth observation abilities at pixel
level, the fine details of the ground are illustrated and
the spatial content is gathered from high resolution
remote sensing images. Along with their sub-parts,
these details facilitate the computer vision community
in exploring even the small man made objects. The
inherent fine variations within their sub-parts reveal
unique characteristics, which are helpful for object
recognition tasks. In remote sensing images, aircraft
type recognition is one such task that distinct char-
acteristics in deciding an aircraft type. Aircraft type
recognition includes various applications such as sta-
tus monitoring (Zhong et al., 2018) , airport surveil-
lance analysis (Chen et al., 2014), and aircraft iden-
tification (He et al., 2018), (Chen et al., 2014). In
particular, an aircraft type and its dynamics remark-
ably help in examining the battlefields thereby to for-
mulate rapid strategic military decisions (Liu et al.,
2012), (Zhong et al., 2018).

Typically, the background pixel occupancy of an
aircraft is high in a remote sensing aircraft scene when
compared to the existence of an aircraft in the im-

age. The fine variations among different types of air-
crafts such as nose, empennage, fuselage, wings, en-
gines, etc., have challenges in perceptibility due to
their fewer pixel occupancy in the images resulting
in low classification performance. So, the different
aircraft types with identical backgrounds as shown in
Fig. 1 cause low inter-class variation. Also, the var-
ious types of aircrafts such as B-52 & C-135, KC-10
& Boeing, and A-26 & P63, etc., are similar to each
other visually. Along with distinct background of an
aircraft, acquisition image factors such as spatial reso-
lution, manifest shadows caused by illumination con-
dition, variations in scale, view-angle, occlusion of
sub-parts, also cause high intra-class variations (the
aircraft of type Boeing, P-63, C-5, C-135, etc. from
Fig. 1).

In addition to the remote sensing image character-
istics, any equipment for ground handling, e.g., refu-
elers, aircraft service stairs, dollies, aero bridges, and
ground power units that are near the aircraft disrupt an
aircraft structure. Moreover, such equipment presents
an additional or a change in the existing structure of
an aircraft. These changes in the structure further
pose the challenges in demonstrating the fine varia-
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tions among the different aircraft types.

C-5 Boeing C-135 P-63
(a) Intra-class diversity

(b) Inter-class variation

KC-10 vs. Boeing 

P-63 vs. A-26 

Boeing vs. U-2 

C-135 vs. B-52 

Figure 1: Typical characteristics of multi-type aircraft re-
mote sensing images (MTARSI) benchmark dataset (Wu
et al., 2020). (a) Intra-class diversity: First, second, third,
and fourth column represent aircraft types, such as C-5,
Boeing, C-135, and P-63, respectively. (b) Inter-class simi-
larity: First row shows the similarity of Boeing vs. U-2 and
KC-10 vs. Boeing; Second row: C-135 vs. B-52; and P-63
vs. A-26 (best viewed in color).

In literature, for recognition of an aircraft type
in the remote sensing images, the methods based on
hand engineered features (Cheng et al., 2017) are not
vigorous as their features are designed specific to the
attributes of an image. The template matching-based
methods (Wu et al., 2014) (Xu and Duan, 2010) (Liu
et al., 2012) have some predefined templates which
are applied in the recognition process. These methods
have certain limitations on generalizing the process of
recognition for the similar type of aircrafts but with
different sizes, if they are not incorporated in the tem-
plates. Though the high level features from the data
are automatically learned by CNN (Zhao et al., 2017),
they do not focus on the finer variations in different
aircrafts. Hence, the performance of CNN-based ap-
proaches are not satisfactory in recognising various
types of aircrafts in remote sensing images.

In this work, we propose an approach to obtain an
efficient representation for the classification of differ-
ent types of aircrafts in remote sensing images. We
employ scale-invariant feature transform (SIFT) (Ha

and Moon, 2011) to capture the local structures such
as nose, empennage, fuselage, wings, engines, etc., of
aircrafts in remote sensing images. To encode these
variable length local SIFT features, a single Gaussian
mixture model (GMM) also known as structure model
(SM) is trained. The statistics of SM are employed
to estimate the likeness between any two images by
computing the distance between them. A better sepa-
rability is achieved by kernel methods for various im-
age classes by mapping distances to different space
(Smola and Schölkopf, 2004). Although, most of the
approaches are suited to deal with specified length
patterns, these are limited when compared to variable
number of local features between two images. So, to
handle the patterns of variable length we use dynamic
kernels to select the best local features or projecting
into fixed-length patterns.

In dynamic kernels, the use of base kernels is help-
ful in measuring the likeness among two images by
computing the distance between their local features.
In kernels which are based on probability, the base
kernel is computed using the posterior probability of
GMM. Whereas, in matching based kernels, the local
features that are alike to GMM means are included in
the kernel computation. This helps in retaining key
local structures including the spatial patterns during
the computation of base kernel. Some of the scenes
in the images, such as rounded road connectedness in
collateral images, row houses in dense residential, are
considered as the significant spatial patterns. Hence,
dynamic kernels become suitable option in order to
represent the likeness among the images.

The contributions done by this paper can be sum-
marized as:

• The similarities in the spatial patterns of local
structures of the aircraft are retained by training
structure model (SM).

• To deal with variable length spatial features of im-
ages, dynamic kernels are explored to retain the
local structures and capture the global variations
in an image

• The efficacy of our approach is demonstrated on a
large aircraft recognition dataset: multi-type air-
craft remote sensing images (MTARSI), a bench-
mark dataset consisting of 20 different types of
aircrafts.

2 RELATED WORK

The existing approaches related to the image classifi-
cation in remote sensing images are discussed in this
section. Also, we summarize the techniques that han-
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dle the variable length patterns based on the dynamic
kernels.

The low-level, mid-level, and high-level features
are explored in the existing methods for classification
of different objects in remote sensing images (Cheng
et al., 2017) (Azam et al., 2021) (Lin et al., 2018).
The representations encoded on the low-level features
relying heavily on the hand-crafted features primar-
ily focuses on the precise attributes of the images. In
their design, the most prevalent spatial features used
are: shape, color, structural details, spatial and tex-
ture, etc. However, due to the remote sensing image
characteristics, these spatial feature combinations are
usually difficult to achieve. Some global attributes
like texture descriptors and color histograms are used
in object classification tasks (Cheng et al., 2017)– (Li
et al., 2018). But, for encoding the local properties,
we need an extra mechanism to describe an entire im-
age. Hence, the mid-level features are used by trans-
forming the local features into the global features to
describe an image completely. In locality constrained
linear coding (LLC) methods, the combination of
BOVW and spatial pyramid matching (SPM) (Cheng
et al., 2017), (Yang and Newsam, 2008), and bag-
of visual-words (BOVW) with scale-invariant fea-
ture transform (SIFT) features (Lowe, 2004), of re-
mote sensing images are used in image classifica-
tion. To obtain effective sparselets (Cheng et al.,
2015a)– (Cheng et al., 2015b), part detectors are ex-
plored by employing feature descriptors of histogram
of oriented gradients (HOG) for image classification.
A consolidated framework for joint super resolution
and aircraft recognition (Joint-SRARNet) is proposed
by Tang, Wei, et al.(Tang et al., 2020), that tries
to enhance the recognition performance by generat-
ing discriminative, high-resolution aircraft from low-
resolution remote sensing images. Technically, this
network integrates super resolution and recognition
tasks into the generative adversarial network (GAN)
framework through a joint loss function.

The methods employing convolutional features
have demonstrated better classification performance
when compared to mid-level or hand-crafted feature
based methods. This is because the convolutional fea-
tures are able to provide good discrimination along
with better generalization. Also, the effectiveness
of fine-tuned and pre-trained versions of GoogLeNet,
VGGNet16, and AlexNet, (Cheng et al., 2018), (Wu
et al., 2020), (He et al., 2018) in the classification of
objects in remote sensing images were demonstrated.
The ensemble of CNNs is utilized to improve the clas-
sification performance over pre-trained CNN models
(Zhao et al., 2017), (Chang and Lin, 2011). The
object classification performance is further improved

by accumulating, integrating, or fusing numerous at-
tributes of CNN (Zhong et al., 2018)–(Chaib et al.,
2017). In (Sitaula et al., 2020), the combination of
object-based and scene-based attributes from both re-
gion level as well as scene level are used for image
depiction. To address the problem of inter and intra
class dissimilarities in object classification, an objec-
tive function is augmented along with the features of
CNN (Cheng et al., 2018).

Later, a key filter bank based CNN (KFBNet) (Li
et al., 2020) is used from the key locations of each im-
age by assimilating the class-specific features in order
to preserve global information for image classifica-
tion. Another approach (Zhao et al., 2017) is explored
to model the unrevealed ontological formation by us-
ing the multi-granularity canonical appearance pool-
ing from the remote sensing images. A siamese net-
work is explored to obtain CNN attributes and to de-
termine the structure at its granule level. By calculat-
ing the second order statistics from the obtained CNN
attributes, Gaussian covariance matrices are derived.
The better classification performance is obtained by
suitable normalization of the covariance matrices dur-
ing training.

The combination of hidden markov model
(HMM) and Gaussian mixture model (GMM) for the
variable length pattern representation is explored in
various application domains such as, image, speech,
video, and music analysis. Dynamic kernels (Dileep
and Sekhar, 2013) (Perveen et al., 2020) (Boumed-
dane et al., 2019) are important for obtaining a fixed
length feature vector from patterns of variable length.
To construct a probabilistic sequence kernel (PSK),
instead of generative features which produce discrim-
inative features, Lee et al. (Lee et al., 2007) estimated
the Gaussian densities. Bhattacharyya distance-based
calculation is employed between the GMM mixtures
to incorporate both the first and the second-order
GMM statistics (You et al., 2009) in order to boost
the computational performance of PSK. A single uni-
versal background model (UBM) is constructed to
model the features from multiple speakers to be mod-
eled. From the covariances and mean of UBM ob-
tained in mean interval supervectors, the covariances
and means are adjusted for each speaker. The ker-
nel resulting from a supervector is specified as the
Gaussian mean interval kernel for categorization us-
ing support vector machine (SVM). Rather than mean
or covariance transformation, intermediate matching
kernels (IMK) (Boughorbel et al., 2005) uses virtual
feature vector sets based on GMM mixtures for the
nearest local feature vectors to be selected from each
image. As the selected features acquired from a clip
are lesser than the local features (Dileep and Sekhar,
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2013) from the probabilistic sequence kernel (PSK)
and the Gaussian mean interval kernel, IMK is com-
putationally more efficient. Also, by the virtual fea-
tures optimal selection, it was demonstrated that fur-
ther depletion in computation time is possible.

3 PROPOSED METHOD

A dynamic kernel, namely, mean interval kernel
(MIK) for aircraft type recognition in remote sensing
images is discussed in this section. Figure 2 gives the
proposed approach which consists of three modules,
namely, feature extraction, structure model (SM), and
construction of dynamic kernels for classification in
better kernel space.

3.1 Feature Extraction

The scale-invariant feature transform (SIFT) (Lowe,
2004) features are extracted to represent the local
structural information such as engines, wings, nose,
etc. For this, the key points are sampled in linear scale
space to recognise the locations that are invariant to
occlusion, view-point, and scale. A 16×16 region is
extracted around these key locations to compute the
magnitude and angle of the gradient. This region is
again divided into 4×4 sub-regions resulting in com-
puting 8 orientation histograms of 128 feature dimen-
sions. The features N× 128 around these key points
N describe the information of local structures for dis-
criminating different aircrafts. These SIFT features
from all the remote sensing aircraft scenes are used to
construct the structure model, which is explained in
the next sub-section.

3.2 Structure Model (SM)

The structure model (SM) is a Gaussian mixture
model (GMM) that encodes the SIFT features in order
to capture the local structures responsible for differ-
entiating the types of aircrafts. These local structures,
also known as attributes like nose, engine, fuselage,
etc., collectively form an aircraft. The SM is trained
on SIFT features of all aircraft remote sensing im-
ages to model these local structures of aircrafts. The
SM with weights wq, means µq, and covariances σq is
given by

p(xk|(wq,µq,Σq)) =
Q

∑
q=1

wqN (xk|µq,Σq), (1)

The SM is trained on SIFT feature descriptor, xk us-
ing expectation maximization (EM) algorithm. We

assume that each GMM component captures an at-
tribute of the aircraft and the variance of each mixture
determines the variations of spatial patterns in differ-
ent aircrafts. The parameters of SM are adapted using
maximum a posterior (MAP) adaptation to enhance
the contribution of each component. These parame-
ters of SM are computed by

nq(x) =
K

∑
k=1

p(q|xk), (2)

Fq(x) =
1

nq(x)

K

∑
k=1

p(q|xk)xk, (3)

and

Sq(x) =
1

nq(x)

K

∑
k=1

p(q|xk)x2
k . (4)

where p(q|xk) =
wq p(xk|q)

∑
Q
q=1 wq p(xk|q)

is the posterior prob-

ability of SM component q and p(xk|q) is the like-
lihood of feature vector xk. These SM parameters
are used to obtain a compact representation for han-
dling variable-length patterns using various dynamic
kernels.

3.3 SM-Mean Interval Kernel
(SM-MIK)

Dynamic kernels are kernel functions that map the
variable length spatial features to either constant
length feature vectors ( kernels based on probabil-
ity) or choosing the optimal features (matching based
kernels). SM-MIK is a probaility based kernel that
incorporates the additional information captured by
second-order statistics, along with means of SM. The
adapted means and covariances is given by

ŵq = αnq(x)/K +(1−α)wq, (5)

µ̂q(x) = αFq(x)+(1−α)µq, (6)

Σ̂q(x) = αSq(x)+(1−α)(Σq +µ2
q)− µ̂2

q. (7)
The mean supervector using the adapted means and
covariances is given by

ϕq(x) =

(
Σ̂q(x)+Σq

2

)− 1
2

(µ̂q(x)−µq). (8)

Later, the SM-MIK is calculated to measure the simi-
larity between two remote sensing image xm & xn by

Kmv(xm,xn) = Φmv(xm)
T

Φmv(xn). (9)

Computational time of SM-MIK is O(QL+Q(K2
l +

Kl)+K2
s ). The time complexity of SM-MIK is high

due to calculation of first & second order statistics of
SM.
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Figure 2: Block diagram of the proposed method for aircraft type recognition.

3.4 SM-Supervector Kernel (SM-SVK)

The SM-SVK kernels computes the similarity be-
tween two aircraft scenes by measuring the adapted
means of each image w.r.t the means of SM. The
adapted means is given by

ŵq = αnq(x)/K +(1−α)wq, (10)

µ̂q(x) = αFq(x)+(1−α)µq, (11)

The SM supervector ϕq(x) = [
√wqΣ

− 1
2

q µ̂q(x)]T is ob-
tained by concatenating the adapted means of all mix-
tures of SM. The SM-SVK constructed using the
ϕq(x) is given by

Ksv(xm,xn) = Φsv(xm)
T

Φsv(xn). (12)

The computation time of SM-SVK is O(QL+QK2
l +

K2
s ). Where, Q is number of mixtures in SM, L repre-

sents the number of local feature. Kl gives the dimen-
sion of SIFT feature vector and Ks denotes supervec-
tor dimension.

3.5 Intermediate Matching Kernel
(IMK)

The IMK is a matching based kernel that calculates
the similarity by choosing the nearest local features.
The IMK matches the local features from xm and xn

with a virtual features set V = {v1,v2, ....vQ} by cal-
culating

x∗mq = argminx∈xmD(x,vq), (13)

and

x∗nq = argminx∈xnD(x,vq), (14)

Here, the D(.) is the similarity function that finds the
spatial patterns in local features similar to patterns
learnt from the particular SM mixture. The virtual
features represented with the posterior probability can
effectively incorporate information about component
coefficients, means, and covariances. It is given by

x∗mq = argmaxx∈xm p(q|xk), (15)

and

x∗nq = argmaxx∈xn p(q|xk). (16)

The computational time of IMK is O(QL). The com-
plexity is lower than other dynamic kernels due to the
selection of best feature vectors.

4 EXPERIMENTAL RESULTS

The effectiveness of the proposed SM-MIK based
method is evaluated on multi-type aircraft remote
sensing images (MTARSI) dataset. We also compare
SM-MIK with other dynamic kernels, namely, SM-
SVK and IMK in this section.
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4.0.1 Dataset

We consider a challenging dataset, multi-type aircraft
remote sensing images (MTARSI) (Wu et al., 2020)
in recognizing the different aircraft types to demon-
strate the effectiveness of the proposed method. From
Google Earth satellite imagery constituting 20 differ-
ent aircraft types, this dataset consists of 9,385 air-
craft scenes. Each of the aircraft scenes contains ex-
actly one aircraft and the number of aircraft scenes
vary with different types of aircraft 230 to 846. From
different airports around the world with spatial resolu-
tion between 0.3 m and 1.0 m, the scenes of a specific
aircraft type are obtained. In addition to high within
class variation and inter-class similarity, this dataset
illustrates rich image variations. For each class in the
experimental settings, this dataset is randomly split-
ted into 80%-20% training-testing ratio.

For training of GMM, the feature vectors of SIFT,
which describes both global and local semantics are
extracted from each image. A single GMM is trained
for 5 different mixtures on MTARSI dataset.

4.0.2 Evaluation of Dynamic Kernels

In Table 1, the performance of various kernels are
presented on MTARSI dataset, by formulating ker-
nel based SVM classifiers using LibSVM (Chang and
Lin, 2011). The dynamic kernel performance is im-
proved with the SIFT features and it is examined that
beyond 128 the SM components do not participate in
the advancement of classification achievement. Also,
it is noticed that SM-SVK and SM-MIK provide im-
proved classification performance than IMK. This is
due to the incorporation of SM statistics (1st & 2nd-
order) in SM-MIK and SM-SVK which can effi-
ciently model the crucial information across the spa-
tial patterns of variable length entities. Though the
MIK is not efficient computationally than IMK, we
can select the suitable kernel based on the use-case.

Table 1: Comparison of classification performance for vari-
ous dynamic kernels with structural information model mix-
tures of {2`}9

`=5 on MTARSI benchmark dataset.

SM mixtures SM-SVK SM-MIK IMK
32 75.32 88.64 73.59
64 83.54 89.79 82.13

128 89.52 90.87 89.79
256 86.89 90.54 85.76
512 86.21 89.32 84.43

4.0.3 Comparison with State-of-the Art Methods

The Table 2 gives the comparison of the existing
approaches with the proposed method on MTARSI

Table 2: Comparison of the proposed method with existing
approaches on MTARSI benchmark dataset.

Method Accuracy(%)
SIFT (Ha and Moon, 2011)+BOVW 59.02
HOG (Dalal and Triggs, 2005)+SVM 61.34

ScSPM (Yang et al., 2009) 60.61
LLC (Yu et al., 2009) 64.93

AlexNet (Krizhevsky et al., 2012) 85.61
GoogleNet (Szegedy et al., 2015) 85.61

VGG (Simonyan and Zisserman, 2014) 87.56
ResNet (He et al., 2016) 89.61

DenseNet (Huang et al., 2017) 89.15
EfficientNet (Tan and Le, 2019) 89.79

SM-SVK 89.52
IMK 89.79

SM-MIK 90.87

dataset. The proposed SM-MIK based approach
outperforms the current state-of-the-art methods on
MTARSI data. Also, the performance of SM-MIK
on MTARSI dataset is 90.87%. This is because SM-
MIK can capture global dissimilarities efficiently by
modelling the variable length spatial patterns of air-
crafts in the images and conserving local formations.
This shows that SM-MIK is able to apprehend global
dissimilarities successfully. Thus, using the mean and
covariances of SM, we are able to capture the global
spatial features for the aircraft type recognition more
efficiently than the local spatial features modelled by
SIFT.

5 CONCLUSION

In this paper, a mean interval kernel (SM-MIK)
based-method is presented to obtain an effective rep-
resentation for recognizing different aircraft types
from remote sensing images. To model varying length
spatial features of the aircrafts while capturing global
variations, we construct SM-MIK over the trained
Gaussian mixture model. To deal with the varying
length spatial features of objects in scenes of remote
sensing images, the SM-MIK has demonstrated to be
better than the other kernels. In the calculation of SM-
MIK, the utilization of first-order and second-order
statistics of the Gaussian mixture model contributes
useful information for the aircraft type classification
task. Though IMK are not much discriminative in
comparison to SM-MIK, the IMK have better com-
putational time complexity. The effectiveness of the
proposed approach is demonstrated on the challeng-
ing large-scale MTARSI benchmark dataset for air-
craft type recognition.
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