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Abstract: Change-level defect prediction which is also known as just-in-time defect prediction, will not only improve
the software quality and reduce costs, but also give more accurate and earlier feedback to developers than tra-
ditional file-level defect prediction. To build just-in-time defect prediction models, most existing approaches
focused on using manually traditional features (metrics of code change), and exploited different machine
learning. However, those approaches fail to capture the semantic differences between code changes and the
dependency information within programs; and consequently do not cover all types of bugs. Such information
has an important role to play in improving the accuracy of the defect prediction model. In this paper, to bridge
this research gap, we propose an end to end deep learning framework that extracts features from the code
change automatically. To this purpose, we present the code change by code property sub-graphs (CP-SG)
extracted from code property graphs (CPG) that merges existing concepts of classic program analysis, namely
abstract syntax tree (AST), control flow graphs (CFG) and program dependence graphs (PDG). Then, we apply
a deep graph convolutional neural network (DGCNN) that takes as input the selected features. The experi-
mental results prove that our approach can significantly improve the baseline method DBN-based features by
an average of 20.86 percentage points for within-project and 32.85 percentage points for cross-project.

1 INTRODUCTION

The inspection of the entire code source of software
applications is often challenging, and testing all units
is not practical. To ensure high software quality and
reduce costs, early prediction of defects is very nec-
essary. Software defect prediction is used to predict
whether a source code artifact contains defects or not
in the early stages of development.Just-in-time soft-
ware defect prediction (JIT-SDP) is practical as it re-
duces the risk of introducing new defects during the
commit and the code can be expected by developers
with limited effort.

Machine learning algorithms have been widely
used by the researchers to improve the accuracy of the
JIT-defect prediction models. They use as input tra-
ditional features captured manually from the source
code. Almost all existing works use process metrics
such as code entropy (D’Ambros et al., 2012), change
entropy (D’Ambros et al., 2010), etc. to quantify
many aspects of historical development archived in
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software repositories (version control and bug track-
ing systems).

However, all the above-mentioned metrics do not
reveal the syntax and semantics of code change. Pre-
vious researches on the file-level defect prediction
have demonstrated that the syntax and the semantics
of the programs represented either by abstract syn-
tax tree (AST) or control flow graph (CFG) are use-
ful for characterizing defects (Shippey et al., 2019;
Dam et al., 2018). A recent study on file-level, proved
that syntax and semantics are not enough to cover
several types of bugs, specifically the bugs related to
the dependencies (Meilong et al., 2020). They sug-
gested combining semantic and structural features to
improve the prediction accuracy.

Code change files with different dependencies be-
tween data can have the same semantics and syn-
tax. For example, we consider the motivating ex-
ample in figure 1. It is about an implementation of
a simple functionality in a human resources context
whose purpose is to compute the salary increase per-
centage. The value of the raise variable should be as-
signed to the display function. However, it is missing
in file1.java. Thus, it will never be displayed on the
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users’ screen. This is obviously a logical bug, which
can happen in real cases just as it did at McDonald’s1.
From a technical point of view, the raise variable’s
value is assigned but never used, making it a dead as-
signment. Figure 1 depicts two Java files file1.java
and file2.java, both of them have the same syntax and
semantic. Thus, using traditional features to represent
these two code snippets such as metrics or AST have
identical feature vectors. However, dependency in-
formation is different. Features that can discriminate
such structural differences should have a great impact
on the improvement of prediction accuracy. Taking
the example in figure 1, features that ensure that any
variable assigned in the program has a dependency
relationship, and so it is used by another instruction
should meaningful. It is therefore important to high-
light the dependencies of data or of control in the pro-
gram. Such information may help to select expressive
features for defect prediction.

Deep learning is one of the most meaningful sub-
field of machine learning. It proved its efficiency in
developing more accurate defect prediction models by
leveraging selected expressive features automatically
generated from the source code and then these fea-
tures are used to train and construct the defect predic-
tion models (Hoang et al., 2019; Wang et al., 2018).
Specifically, we use a deep graph convolutional neu-
ral network (DGCNN) to learn defect features ex-
tracted from the code change. To use DGCNN, we
extract meaningful features by representing the code
change by a suitable representation called code prop-
erty graph (see details in the next section) that com-
bines the three classic program representations AST,
CFG, and PDG.

In this paper, we examine our deep semantic
and structural features learning based on graphs for
change-level defect prediction tasks. This work en-
ables us to compare our proposed approach with ex-
isting JIT-DP techniques.

Prior defect prediction studies are carried out in
one or two settings, i.e. cross-project defect predic-
tion (Xia et al., 2016a; Nam et al., 2013) and within-
project defect prediction (Jiang et al., 2013; Xia et al.,
2016b). Therefore, we analyze the effectiveness of
our approach using different evaluation measures un-
der different evaluation scenarios in the two settings
as well. We first apply the non-effort-aware evalua-
tion scenario using Precision, Recall, and F1 metrics
that are commonly used in numerous studies (Nam
et al., 2013; Wang et al., 2016). Also, we conduct
an effort-aware evaluation scenario to examine the
practical aspect of our approach by applying PofB20
(Mende and Koschke, 2010).

1https://bit.ly/32NzILG

In summary, the main contributions of this paper
are:

• Exploring deeply the code change by proposing a
suitable representation called code property graph
(CPG) inspired from a recent work (Yamaguchi
et al., 2014). CPG is used to detect vulnerabil-
ities in source code in (Yamaguchi et al., 2014)
but in this work, it allows expressing patterns
linked to defective code including syntax, seman-
tic, and dependency information. Experimentally,
exploiting code property graphs in the field of de-
fect prediction proves its effectiveness in develop-
ing high-performance classifiers.

• Demonstrating the inability of the traditional fea-
tures in automatically extracting different types of
bugs and especially those which are related to the
dependencies from source code changes.

• Proposing an end-to-end prediction model on
change- level to automatically learn graph-based
expressive features that are fed to the multi-view
multi-layer convolutional network

• An extensive evaluation under both the non-effort-
aware and effort-aware scenarios; performed on
four open source java projects demonstrates the
empirical strengths of our model for defect pre-
diction and shows that our approach achieves a
significant improvement for within- project defect
prediction and cross-project defect prediction.

The remainder of this paper is structured as fol-
lows: Section background reviews the representation
of code ’Code Property Graph’. Section III repre-
sents the related work. Then we provide details of our
proposed step-by-step approach in section IV. Section
V analyses the experimental results and evaluates the
performance of our approach. Section VI represents
threats to our work. We conclude the paper and sum-
marize the future outlines in section VII.

2 BACKGROUND

2.1 Code Property Graph

Software defects are deeply hidden in programs’ se-
mantics. It is therefore required to exploit the source
code and devise a suitable representation of the code
that allows us to mine large amounts of code and ex-
press patterns linked to defective code. As a solution,
we propose a powerful representation of code in by
leveraging a joint representation of a program’s syn-
tax, control flow, and data flow called code property
graph (CPG). The key insight underlying this repre-
sentation is to explore deeply the programs and reveal
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Figure 1: A motivating example. The variable increase corresponds to the difference between the new salary and the old
salary. The raise percentage which is defined by the variable raise is computed in line 4 in both file1.java and file2.java.

several types of bugs in the source code. CPG is a
single representation that merges the three basic con-
cepts of program analysis including abstract syntax
tree (AST), control flow graph (CFG), and program
dependency graph (PDG). Such a structure combines
the strengths of each representation and includes sev-
eral kinds of information at once. Hence, ASTs clar-
ify the structural information of the program, but nei-
ther captures the control flow of programs nor the
intra-procedural dependencies. Therefore, they may
not determine many types of defects in programs.
CFGs addresses AST constraints, however, they fail
to clarify the dependencies among different program
entities within each method, even though the fact that
many bugs are directly related to the data flow in-
formation and the relationship between executed in-
structions. Many researchers established a clear link
between the dependencies and appearances of several
bugs (Zimmermann and Nagappan, 2008; Li et al.,
2019). PDGs provide indications of the connectiv-
ity inside each method of the software. They clar-
ify data and control dependence between instructions
in a program. Without such interactions, software
will not be able to perform its required tasks and this
can eventually be a major contributor to the appear-
ance of bugs and to the difficulty in maintaining the
software. To sum up, CPG highlights different as-
pects of the program involving the syntactic, seman-
tic, and dependency information, by combining three
helpful program analysis and none can fully replace
the others. To achieve this, we drew inspiration from
a recent work (Yamaguchi et al., 2014) and use the
concept of property graph. The authors of the pa-
per (Yamaguchi et al., 2014) combine the three rep-

resentations for vulnerability detection in source code
which is different from ours, we combine those dif-
ferent in order to maximize the detection of differ-
ent types of defect features directly from the source
code.As the AST is the only one of the three represen-
tations which includes additional nodes, statements
and expressions serve therefore as transition points
from one representation to another. We can thus in-
corporate CFG and PDG into AST through the state-
ments and expressions. Each node is assigned by a
property key and its corresponding set of property val-
ues such as the key code and its property values (for-
statement, while-statement, if-statement, etc.) and the
key-property line and the corresponding property val-
ues (line-number, etc.) that indicates where the code
can be found. For example to link the AST and CFG
we get the property of each node of CFG and we
search in AST the nodes that have the same property
value as well as the same line number of code. Then,
we add the edges of CFG in AST between the two
nodes (source node and target node). Figure 2 repre-
sents a sample code and its corresponding AST, CFG,
PDG, and CPG. The property values of the node cor-
responding to the statement if (amount ¿ 0) are IF-
Statement and 3. In the AST, we add the edges (in-
coming edges and out-going edges) of CFG and PDG.
Same process to merge the AST and PDG to construct
the code property graph detailed in the figure2. We re-
fer to the paper (Yamaguchi et al., 2014) for more de-
tails how to model the three graphs as property graphs
and construct the code property graph by using the
same contextual-properties.
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3 RELATED WORK

3.1 Just-in-Time Defect Prediction

Most of the existing studies represent the code by
designing traditional metrics (process metrics, code
metrics,etc.) to extract code properties and build the
predictive model by applying machine learning algo-
rithms. Kim et al. used text-based metrics accumu-
lated from change logs, file names, and the identifiers
in deleted and added source code; then applied sup-
port vector machine SVM to predict whether a change
contains bugs or not (Kim et al., 2008).

Kamei et al (Kamei et al., 2012) selected 14
change metrics of different categories such as size,
history, experience, etc. and developed logistic re-
gression models to predict commits as buggy or not.
Later on, they extended their work and evaluated the
feasibility of their proposed method in a cross-project
context (Kamei et al., 2010). Moser et al. (Moser
et al., 2008) used different history metrics such as
the number of revisions, ages of files, and past fixes
to predict defects. Yang et al. (Yang et al., 2015),
Barnett et al. (Barnett et al., 2016), and Rahman et
al. (Rahman et al., 2011) applied another alternative
approach to increase JIT-DP accuracy such as deep
learning, cashed history, and textual analysis. Wang
et al. (Wang et al., 2018) proposed DBN-based se-
mantic features and examined the performance of the
built models on change- level and file-level for both
cross and within defect prediction tasks.

All the above mentioned traditional features are
manually encoded and still ignore the structural and
semantic information of programs as well as the de-
pendencies between entities within methods.

3.2 Deep Learning in Software
Engineering

Deep learning techniques have been widely applied
in defect prediction (Ferreira et al., 2019). Yang et
al. (Yang et al., 2015) leveraged DBN from a set of
change metrics such as code deleted, modified direc-
tories, metrics related to developers ’experience, etc.
to predict a commit as buggy or not. Wang et al (Wang
et al., 2018) generated semantic features based on the
program’s AST and used DBN to automatically learn
advanced features. Then, they performed defect pre-
diction by applying a regression classifier. Li et al.
(Li et al., 2017) applied convolutional neural network
CNN to generate expressive features with structural
and semantic information. They combine traditional
features with CNN-learned-features to improve the
file-level prediction accuracy. Dam et al. (Dam et al.,

2018) rely on the usage of a tree-structured LSTM
network based on the intermediate representation of
the source code AST. The experiments confirmed the
effectiveness of the proposed method on file- level for
both within and cross-project.

4 APPROACH

In this section, we establish our proposed software de-
fect prediction process relying on the code property
graph, providing granular detail and a thorough un-
derstanding of data flows. The overall framework is
depicted in figure 3. The framework is mainly com-
posed of five steps: 1) labeling and data extraction, 2)
data-preprocessing: feature extraction based on code
property graph 3) encoding, 4) learning and evalua-
tion, and 5) prediction. We outline the details of each
step in the overall framework in the following sub-
sections.

4.1 Labeling and Data Extraction

In this step, we give a label to each change as buggy or
clean and identify the bug-introducing changes based
on version control data (e.g. Git) and bug report
stored in an issue tracking system (e.g. JIRA) of a
project by applying SZZ algorithm (Fan et al., 2019).

4.2 Feature Extraction

The objective of this phase is to represent the code
change by a suitable representation and extract mean-
ingful features from previous commits. Since the syn-
tax information of change data is often incomplete,
building AST, CFG, and PDG for these changes di-
rectly from code is challenging. Therefore, the learn-
ing is carried out with sub-graphs of code property
graphs that represent the code change. To do this, we
firstly parse the source code of each file into CPG by
merging AST, CFG, and PDG as outlined in the code
property graph section. Then, we extract the code
property sub-graph from the code property graph,
which represents the code changes. To do this, we
select only the nodes which are made from changed
lines and all their direct neighbours as well as all the
corresponding edges. Figure 1.A represents the code
property graph corresponding to the sample code in
file1.java. The nodes of the sub-graph are coloured in
red. The nodes in dark red represent the code change
while the nodes in light red represent the direct neigh-
bours. The code property sub-graphs are constructed
by following the steps below: 1) we identify firstly
all the lines that have been changed. For each file
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Figure 2: A code sample and its corresponding AST, CFG, PDG, and CPG.

Figure 3: The overall just-in-time defect prediction framework.

that represents the last version of the files before in-
troducing changes, we annotate all the modified or
deleted lines corresponding to their changed lines by
adding a comment with a specific format�//[Unique-
Identifier] T� with T = M (modified), D (deleted).
Figure 4 depicts a sample of code change that intro-
duces a bug. As we can see in file2.java in figure 1,
line 5 was modified by adding the variable raise to fix
the logic bug described above. Thus, we annotate the
line 5 in figure 4 by adding the specific comment and

the variable T takes the value M to indicate that this
line has been modified. 2) In the second step, we need
to store whether the nodes representing the CPG of
each file is making from a changed line or not. There-
fore, we assign the type T affected to the changed line
to its corresponding node in CPG. Taking the example
of the code sample in figure 1, the node correspond-
ing to the print () function is assigned by the character
M which is given as an annotation in the correspond-
ing line 5 as shown in figure 4. 3) Finally, we select
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Figure 4: The identification of change introducing bugs.
The unique identifier is to separate the original comment
from the specific one, and the characters M and D represent
the modified line and deleted line respectively.

only the nodes having the type M or D and all their di-
rect neighbours as well as all the corresponding edges
to extract the code property sub-graph that represents
only the code change of the file.

4.3 Encoding

In this step, we encode the token sub-graphs to integer
sub-graphs by using a well-known method word2vect
(Mikolov et al., 2013) as the DGCNN takes only nu-
merical data. Furthermore, we equalize all the con-
verted integer vectors by adding O.

4.4 Employing the Deep Graph
Convolutional Neural Network
DGCNN

DGCNN is used in our proposed predictive system to
insert complex, high dimensional data integral in code
property sub-graphs for efficient classification of de-
fects. There are three consecutive stages to be per-
formed by the DGCNN based algorithms:Graph con-
volutionallayers, Sortpooling layer, and 3) the predic-
tion.

4.5 Building Classifiers and Performing
Defect Prediction

The classifier can be built and trained by using their
features as well as their labels i.e. defective or clean,
and then the test data is used to analyze this classi-
fier’s performance.

5 EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of our
proposed semantic and structural features based on
graphs and compare them with the state-of-the-art-
methods.Initially, the used standard datasets are pre-
sented and then the experiment setup. After this the
baseline techniques are presented and the evaluation
criteria for used performance are described. Finally,
research questions (RQ) are proposed and answered.

5.1 Dataset

We choose existing widely used Java datasets for eval-
uating change level defect prediction tasks (Xia et al.,
2016b), (Tan et al., 2015). This allows us to com-
pare our approach with existing just-in-time defect
prediction models on the same datasets and obtain a
process-safe evaluation. We select four Java open-
source Jackrabbit, Lucene; Jdt (from Eclipse), and
Eclipse platform. Table 1 shows the details about
these projects in terms of LOC and the number of
changes. We rely on the SZZ algorithm to label the
bug-fixing changes of these projects.

5.2 Experiment Setup

1. Change-level Within-project Defect Prediction:
For each project listed in table 1, we used the
training data to construct the predictive model,
and apply it to the test data to analyse the
accuracy of the built model. According to the
authors of these papers (Kamei et al., 2012;
Kamei et al., 2016), change-level data are always
imbalanced. i.e. there are fewer buggy instances
than clean instances in the training data that can
introduce noise/bias and lead to a poor prediction
performance. For a fair comparison, we apply the
same settings as Tan’paper (Tan et al., 2015) to
overcome this issue. In this way, the training set
will be more balanced (Tan et al., 2015).

2. Change-level Cross-Project Defect Prediction:
To develop just-in-time defect prediction models
for the projects which have not enough training
data, the state-of-the-art proposes change-level
cross projects. The objective of cross-project
methods is to train the predictive models by utiliz-
ing the data of existing projects, known as source
projects. After this, the trained models are used
for predicting the defects in new projects, known
as target projects.

5.3 Baseline Methods

The proposed approach is evaluated by comparing it
with the given baseline methods:

• DBN-based features (Wang et al., 2018): This
method performs the DBN algorithm.

• CBS+ (Huang et al., 2019): a simple super-
vised predictive model that leverages the idea of
both the supervised model (EALR) (Kamei et al.,
2012) and the unsupervised model (LT).
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5.4 Performance Evaluation Criteria

To analyze the precision of the predictive models,
we used the non-effort-aware and the effort-aware
analysing metrics.

1. Non-effort-aware Evaluation: three performance
metrics were used that are commonly adopted by
the studies to analyze the models of defect predic-
tion. The measures include recall, accuracy, and
F1 score.

2. Effort-aware Evaluation: Under the effort-aware
scenario, we use the PofB20 metric (Jiang et al.,
2013) for identifying the accurate percentage of
defects observed by monitoring the first 20% lines
of code.

5.5 Results

In this section we present the results of our experi-
ments which are designed to answer the following re-
search questions:

1. RQ1: Do structural and semantic features based
on graphs outperform the state-of-the-art baseline
for change-level within-project defect prediction?

(a) Non-effort-aware Evaluation: To address this
question, we need to compare it with the base-
line methods. As the code source of both
baselines are not available, we take the val-
ues from their experiment results provided in
their papers and we consider only Java datasets.
Thus, we compare our approach with DBN and
CBS+ on the available Java datasets (Jackrab-
bit, Lucene and JDT) and (JDT and Plateform)
respectively; and pick the available values of
DBN and CBS+. Table 2 shows the F1 results
of both of them. It can be observed that our
CPG- based features outperform significantly
the baseline DBN based change features on av-
erage of 20.86 percentage points and CBS+ on
average of 34.1 percentage points.

(b) Effort-aware Evaluation: We further conducted
a new experiment for change-level within-
project defect prediction by computing the
PofB20 metric. In table 3, the PofB20 values
of the defect prediction models are displayed
with the CPG-based features as well as with
the baseline DBN-based features. The PofB20
score varies from 33 to 49 percentage points.
Compared to DBN, our approach achieves an
improvement on average of 11.8 percentage
points.

Table 1: Selected Java open-source Projects. LOC is the
number of lines of code. First Date is the date of the first
commit of a project. last Date is the date of the last commit
of a project. changes is the number of changes.

Average
Projet LOC First Date Last Date Changes Buggy

rate (%)
JDT 1.5M 2001/06/05 2012/07/24 73K 20.5

Lucene 828K 2010/03/17 2013/01/16 76K 23.6
Jackrabbit 589K 2004/09/13 2013/01/14 61K 37.5
Platform 2001/20 2007/12 64K 25

Table 2: Selected Java open-source Projects for change-
level defect prediction. LOC is the number of lines of code.
First Date is the date of the first commit of a project. last
Date is the date of the last commit of a project. changes is
the number of changes.

Project Approach F1 score

Jackrabbit DBN 49.9
CPG-based 74.55

Lucene DBN 39.7
CPG-based 61.55

JDT
CBS+ 32.9
DBN 41.4

CPG-based 57.48

Platform CBS+ 35.1
CPG-based 78.72

Average (Jackrabbit, Lucene, JDT) DBN 43.66
CPG-based 64.52

Average (JDT Platform) CBS+ 34
CPG-based 68.1

Table 3: F1 score values of our CPG-based features
are compared with the baseline methods for change-level
within- project defect prediction . where the PofB20 are
calculated in percent and the highest pofb20 scores are pre-
sented in bold.

CPG-based
Project features DBN-based features

F1 F1
Lucene 33.3 28.1

Jackrabbit 33 27.9
JDT 49 23.8

Average 38.4 26.6

2. RQ2: Do structural and semantic features based
on graphs outperform the state-of-the-art baseline
for change-level cross-project defect prediction?

(a) Non-effort-aware Evaluation: To answer this
question, we compare our technique with the
baselines DBN-CPP (Wang et al., 2018) and
CBS+ (Huang et al., 2019). To conduct an un-
biased comparison, a similar approach as that
of Wang (Wang et al., 2018) was applied and
which is also very close to the CBS+. There-
fore, we select the data of the training set of
one run from a source project and the test set
of one run from a different project to prepare
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Table 4: F1 scores of our CPG-based features DBN-based
features for change-level cross-project defect prediction.
The F1 metrics are calculated in percent.

Source Target CPG-based DBN-based
Project project features features

F1 F1

All projects
Jackrabbit 72.69 44.4

Lacene 63.84 31.3
JDT 70.94 33.3

Average 69.15 36.3

Table 5: F1 scores of our CPG-based features and tradi-
tional features CBS+ for change-level cross-project defect
prediction. The F1 metrics are calculated in percent.

Source Target CPG-based CBS+-based
Project project features features

F1 F1

All projects
JDT 70.94 30.8

Platform 73.05 33.3
Average 71.99 32.05

Table 6: PofB20 scores our CPG-based features for change-
level cross-project defect prediction. the PofB20 metrics are
calculated in percent. The best values are in bold.

Source Target CPG-based DBN-based
Project project features features

All projects
Jackrabbit 42.0 19.3

Lacene 39.6 18.1
JDT 43.7 25.6

Average 41.7 21

the trial pairs. Table 4 presents the average F1
scores of the CPG based features with those of
DBN-CCP on three projects . The higher score
of F1 among them is displayed in bold. The re-
sults show that our approach significantly im-
proves the average of F1 by 32.85 percentage
points for three projects. Moreover, we pro-
vide comparison results of CPG-based features
and CBS+ in table 5. Compared to CBS+ on
two projects, our approach achieves a better F1
score on average of 39.94 percentage points.

(b) Effort-aware Evaluation: During this evalua-
tion, we compute the PofB20 metric on change-
level cross- project defect prediction for our
proposed approach as well as the DBN-CPP.
Table 6 presents the scores of PofB20. For ev-
ery target project, we applied the other whole
source project as a training set and computed
the PofB20. As presented in Table 6, the scores
of PofB20 range from 39.6 to 43.7 % across the
experiments. We concluded that our approach
achieved a better PofB20 in every experiment.
This improvement depicts an average of 20.7
points.

3. RQ3: What are the time costs of our approach?

Table 7: Time cost of generating features involving the se-
mantics and the intra-procedural dependencies of the com-
mits source code.

Project time cost (s)
Lucene 49

Jackrabbit 58
JDT 80

Plateforme 75

This question leads to the study of the effi-
ciency of our approach which is an important
indicator to assess whether or not the approach
is good enough.We measure therefore the time
taken for DGCNN-based features generation pro-
cess described in the sections 4.4 and 4.5. Ta-
ble 7 presents our method’ time cost on the four
datasets for generating features process. For every
project, the execution time automatically devel-
oped features based on DGCNN lies in the range
of 49 sec (Lucene) to the 80 sec (JDT).

Our CPG based semantic and structural features
learned automatically from the DGCNN is applica-
ble in practice.

6 THREATS TO VALIDITY

Threats involve potential errors that may have oc-
curred in the code implementation of our proposed
approach and study settings. Hence, to develop the
semantic feature with the dependency information,
we present the source code within the data struc-
ture known as CPG involving the AST, PDG, and
CFG. Since the original implementation of CPG is
not released, we have implemented a new CPG ver-
sion. Generally, we have followed the methods given
in previous studies (Yamaguchi et al., 2014), how-
ever, the newly developed CPG version may not re-
flect each detail of the actual CPG. Therefore, we
have consulted with the writer of PROGEX2 by email;
about the basic details of implementation and this was
the beginning of our framework implementation. We
are confident that the CPG implementation is quite
close to the original CPG, because the PROGEX in-
cludes the basic features which were useful for us to
implement the merge of graphs.

Moreover, we don’t possess the basic source code
to copy the techniques of (Wang et al., 2018; Huang
et al., 2019), therefore we have allowed ourselves to
consider the results they gave in their papers. We have
followed the same experiment settings just as it is ap-
plied in (Wang et al., 2018) in carrying out a compar-

2https://github.com/ghaffarian/progex
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ison with our approach. To realize a supplementary
comparison., we retrieved the results of (Huang et al.,
2019).

6.1 External Validity

Actually, our approach can be evaluated only on Java
open source projects. So, we conducted our exper-
iment only on four Java open-source projects that
have extensively been used in previous studies. This
can influence the generalizability of our results. To
mitigate this threat, further studies are required to
analyze our approach even to more datasets from
other types of projects whether proprietary software
or commercial one written in other programming lan-
guages. Other threats are related to the suitability
of our performance metrics to evaluate our JIT-DP
model. However, we use F1 and PofB20 which are
applied by past software engineering studies to anal-
yse various prediction techniques (noa, 2020; Xuan
et al., 2015).

7 CONCLUSION AND FUTURE
WORKS

This paper proposes an end-to-end deep learning
framework for just-in-time defect prediction to au-
tomatically learn expressive features from the set
of code changes.We conduct evaluations on four
open-source projects.The experiment results proved
that our approach improves significantly the exist-
ing work DBN- based features and CBS+ on average
of 20.86 and 34.1 in F1, respectively in the task of
within-project defect prediction. Besides, it improves
the cross-defect prediction technique DBN-CPP and
CBS+ on average of 32.85 and 39.95 respectively in
F1. Also, our approach can outperform it under the
effort-aware evaluation context.

In the future, we would like to extend our eval-
uation to other open source and commercial projects
in order to reduce the threats to external validity. In
addition, we plan to make our framework applica-
ble to other open-source projects written in differ-
ent languages besides Java language, such as Python,
C/C++, etc.
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