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Abstract: Accurate prediction of defect fix time is important for estimating and coordinating software maintenance ef-
forts. Likewise, it is useful to predict whether or not the initially estimated defect fix time will be exceeded
during the maintenance process. We present an empirical evaluation on the use of machine learning for pre-
dicting defect fix time violations. We conduct an industrial case study based on real projects from the telecom-
munications domain. We prepare a dataset with 69,000 defect reports regarding 293 projects being maintained
between 2015 and 2021. We employ 7 machine learning algorithms. We experiment with 3 subsets of 25
features derived from defects as well as the corresponding projects. Gradient boosted classifiers perform the
best by reaching up to 72% accuracy.

1 INTRODUCTION

Software projects are usually subject to delays (Bloch
et al., 2012) mainly as a result of ineffective risk man-
agement. An effective risk management requires the
ability and tool support (Choetkiertikul et al., 2015) to
predict the tasks that are at risk of being delayed. One
of these tasks is fixing defects1. There have been re-
cent studies that exploit machine learning techniques
to estimate the fix time of a software defect (Weiss
et al., 2007; Zhang et al., 2013; Lee et al., 2020; Ardi-
mento and Mele, 2020). These studies mainly employ
regression models to predict fix time. In this study, we
employ classification models to detect violations re-
garding these predictions or manual estimations. That
is, we aim at predicting whether or not the initially
estimated defect fix time will be exceeded during the
maintenance process.

In this paper, we present an empirical evaluation
on the use of machine learning for predicting defect
fix time violations. We conduct an industrial case
study based on real projects that are being maintained
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1We use the terms bug and defect interchangeably in the

rest of the paper.

by a telecommunications company. Telecommunica-
tions industry employs a wide range of software appli-
cations with a large customer volume and subscriber
transactions. These applications serve various pur-
poses such as customer relationship management, or-
der management, and workforce management. Tele-
Management Forum (TM Forum) (Mochalov et al.,
2019) has been recently introduced as a framework
that can host such applications that are developed
by telecommunications service providers around the
world.

We prepare a dataset that is composed of 69,000
bug reports regarding 293 projects being maintained
between 2015 and 2021. These reports are col-
lected from the Application Lifecyle Management
tool (Kääriäinen and Välimäki, 2008) that is used in
the company. Another tool, namely the Enterprise
Architecture Management Application (Ernst et al.,
2006), is utilized for collecting information regarding
the projects associated with bug reports such as the
application type, programming language used and ar-
chitecture style adopted by the application. Some of
the collected data items such as keywords are directly
used as features for prediction. We also used Term
Frequency/Inverse Document Frequency (TF-IDF) to
derive additional features from textual descriptions.
We derive 25 features in total. We experiment with 3
different subsets of these features. In our experimen-
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tal setup, we employ 7 machine learning algorithms
including Random Forest, Multilayer Perceptron, Lo-
gistic Regression, K-Neighbors, Support Vector, Ex-
treme Gradient and Light Gradient Boosted classi-
fiers. Gradient boosted classifiers perform the best by
reaching up to 72% accuracy.

The remainder of this paper is organized as fol-
lows. We provide background information on the uti-
lized machine learning techniques in the next section.
In Section 3, the experimental setup is explained. We
present and discuss results in Section 4. Related pre-
vious studies are summarized in Section 5. We con-
clude the paper in Section 6.

2 BACKGROUND

In this section, we provide background information
regarding the techniques utilized in our study. Fix
time of a defect is estimated as soon as a defect is
opened. Our goal is to predict whether this estimated
time is going to be exceeded (i.e., violated) or not.
Hence, our goal is to solve a classification problem
rather than a regression problem. In the following,
we first explain TF-IDF, which is used for deriving
features from textual descriptions. Then, we explain
each of the classification models employed in our
study.

2.1 TF-IDF and Feature Extraction

TF-IDF measures how important a word is to a docu-
ment. Term Frequency (TF) is obtained by multiply-
ing the number of times a term occurs in a document.
Inverse Document Frequency (IDF) is calculated as
the logarithm of the total number of documents di-
vided by the number of documents that include the
term (Parlar et al., 2016). In our study, keywords are
determined by considering the IDF scores of the terms
in all defect descriptions. By grouping these terms,
features are defined from the sum of TF scores. For
example, “GUI” features are created by summing the
TF scores of terms such as button, combobox, menu
in the defect description. Thus, we employ TF-IDF
by calculating IDF for a set of keywords, before cal-
culating TF. First, the important terms are found by
considering their IDF scores. Then, the sum of the
TF scores of a set important terms are used as fea-
tures. These terms are identified within defect de-
scriptions and they are grouped according to relevant
project components.

2.2 Random Forest (RF)

RF classifiers employ a group of decision trees for
facilitating ensemble learning. Each decision tree as
part of the random forest provides a class prediction.
These predictions are collected from all the decision
trees and majority voting is applied to decide on the
final outcome. RF classification owes its success to
the combination of class predictions obtained from
many decision trees. These predictions have low or
no correlation at all. This is due to the use of bag-
ging and feature randomness. Bagging is applied for
ensuring that each decision tree uses a different train-
ing set although the size of the set is the same for all
the trees. Feature randomness leads to the use of dif-
ferent feature sets by different decision trees. RF is
known to be efficient and effective when applied on
large datasets. However, it can be subject to overfit-
ting for such datasets (Yiu, 2021).

2.3 Multilayer Perceptron (MLP)

MLP model depends on the basic perceptron model
founded by Rosenblatt (Rosenblatt, 1958). A simple
perceptron model has a set of inputs. Each input is
associated with a weight. The model triggers an im-
pulse when the weighted sum of its inputs exceeds a
threshold value. This simple model has some draw-
backs. It can not imitate an XOR gate, for instance.
MLP is introduced to address this limitation. This
model employs a hidden layer between input and out-
put layers, where weighted sums are computed and
forwarded to the next layer. This process is known
as the feed forward approach. It requires the com-
pletion of a preliminary process called back propaga-
tion. This is a self learning process, where weights
are adjusted by calculating the mean squared errors
with respect to the expected output and propagating
these errors backward through the layers. This learn-
ing process continues until weights in all layers are
converged. MLP has the ability to cope with com-
plex non-linear datasets; however, it requires a high
amount of computational resources (Bento, 2021).

2.4 Logistic Regression (LR)

LR is a classification algorithm based on a statistical
model used for estimating the probability of depen-
dent variables (Abhigyan, 2020). This method uses a
logit function to derive relationships between depen-
dent and independent variables. Then a sigmoid func-
tion (S-Curve) translates the derived relationships to
binary values to be used for prediction. It is a success-
ful method for predicting binary and linear scenarios
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and for determining decision boundaries (Agrawal,
2021). This method is easy to implement and train
but it may lead to overfitting for large datasets. It is
computationally fast; however, it is successful mainly
for linearly correlated and separable, simple datasets.
It may fall short when there is not linearity between
independent variables.

2.5 K-Nearest Neighbors (KNN)

KNN is a supervised classification algorithm that re-
lies on labelled datasets (Vatsal, 2021). KNN al-
gorithm labels data by measuring proximity among
neighbor data points to create correlations. K de-
notes the number of nearest neighbors with respect
to a specified unlabeled point. KNN measures the
distance of neighbors to that point. If K is set as
3, for instance, then the nearest 3 points proximity
can be measured and found by the chosen distance
metric type. Hereby, the mostly employed distance
metrics include Minkowsky, Euclidian and Manhat-
tan distance. The label of the point is decided by ma-
jority voting. The algorithm is simple and easy to im-
plement; however, the value of K must be optimized
to prevent overfitting. In addition, KNN needs high
computational power and storage capacity especially
when working on large datasets.

2.6 Support Vector Machines (SVM)

SVM is also a supervised algorithm commonly used
for classification and regression problems (Yadav,
2018). The aim of the algorithm is basically to form
optimal hyperplanes that separate data points. Hy-
perplanes are formed by measuring their distances to
the data points, which are called as margins. The al-
gorithm adjusts hyperplanes to maximize these mar-
gins. Separations can be formed with lines in a two
dimensional space. However, hyperplanes are needed
in a three dimensional space. Optimal hyperplane di-
visions are robust against outliers and they are very
effective with separated classes. However, the algo-
rithm needs high computation power while working
with large datasets to form optimal hyperplanes (Ya-
dav, 2018).

2.7 Extreme Gradient Boosting (EGB)

EGB is an advanced machine learning algorithm that
is built upon decision trees and gradient decision ar-
chitecture. It exploits parallelization, tree pruning and
efficient use of hardware. L1 (Lasso) and L2 (Ridge)
regularization are used for avoiding overfitting. This

approach concentrates on boosting weak learners by
handling missing data efficiently (Morde, 2019).

2.8 Light Gradient Boosting (LGB)

LGB is also a decision tree based high performance
algorithm for classification problems. Main differ-
ence of this algorithm from EGB is that decision trees
grow horizontally instead of vertically. Unlike EGB,
LGB can handle large datasets and requires less mem-
ory space. However, LGB is inclined to be subject
to overfitting. Therefore, it is not suitable for small
datasets (Nitin, 2020).

3 EXPERIMENTAL SETUP

In this section, we explain our experimental setup in-
cluding our experimental objects, preparation of the
dataset, evaluation metrics and tuning of the machine
learning algorithms for classification. Python pro-
gramming language is used in the study. Code de-
velopment is performed with Jupyter notebook. We
used the implementations of RF, MLP, LR, KNN,
SVM, EGB and LGB classification algorithms from
the Scikit-Learn library (Hao and Ho, 2019).

3.1 Preparation of the Dataset

We utilized Application Lifecyle Manage-
ment (Kääriäinen and Välimäki, 2008) and Enterprise
Architecture Management Application (Ernst et al.,
2006) tools to collect data regarding the reported
bugs and the corresponding projects, respectively.
Our dataset consists of 69,000 defects reported
for 293 projects from December 2015 to October
2021. We preprocessed the collected data to apply
basic corrections on lookup values, data format and
typographical errors. Then we derived 25 features as
listed in Table 1. Some of these features are directly
collected from the properties of the bug reports. For
instance, Day, Month, Season and Quarter features
are obtained from the issue date of the defect. Weekly
Defect is the weekly average number of defects that
is calculated based on the number of defects in the
last 1 year. Severity is a feature in ordinal scale, of
which value ranges between 1 (Low) and 5 (Urgent).
Defect resolution times vary according to severity
and the environment, in which it occurs. This time is
displayed in the Operational Level Agreement (OLA)
field. Defects that are opened in September are
marked as Back to School. Defects that are opened
on Saturday and Sunday are marked as Weekend.
Environment feature identifies whether the defect is
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detected in a test or production environment. Main
Type indicates the particular environment, where
the defect is detected. Defect Type and Project
Phase identifies the context and activity during
which the defect is detected. Telco Domain indicates
the application domain such as Mobile, Fixed and
Broadband. Application Type denotes the type of
application in nominal scale. Possible values for this
feature include Order Management (OM), Web Portal
(WP), Middleware (MW), Billing and Rating (BR),
Customer Relationship Management (CRM), Data
Warehouse (DW), Enterprise Resource Management
(ERP), Workforce Management (WFM), Collection
(COL), Messaging (MSG), Problem Management
(PM) and Document Management (DOC).

Table 1: The set of utilized features. Those feature that have
high importance are marked with *.

Features Description

Day* based on opening date

Month based on opening date

Season based on opening date

Quarter based on opening date

Weekly Defect* Weekly defect count

Severity* 1-Low, ... , 5-Urgent

OLA* Solution time

Back to School 0-No, 1-Yes

Weekend 0-No, 1-Yes

Main Type* 01 - TEST, 04 - PROD, ...

Environment TEST, PROD

Defect Type* Code, Analysis,...

Telco Domain* Mobile, Fixed, Broadband

App. Type* OM, WP, MW, BR, ...

Project Phase* Functional, Unknown,...

GUI* TF of buton, screen,...

Subscriber* TF of service, tariff, ...

Workflow TF of flow, ...

Database TF of database, field, ...

Workorder TF of workorder, ...

Order* TF of order, churn, ...

Device TF of cpe, device, ...

Integration TF of webservice, ...

Report TF of report, ...

Customer* TF of customer, account, ...

OLA Violation 0-Successful, 1-Violation

10 of features listed in Table 1 are derived from
textual descriptions using TF-IDF. First, we deter-
mined the mostly used terms in these descriptions
by calculating the corresponding IDF values. Sec-
ond, we performed a domain analysis using our in-
dustry experience to group these terms according to
their application context. The formed groups are
used as features, including GUI, Subscriber, Work-
flow, Database, Workorder, Order, Device, Integra-
tion, Report, Customer. The value of each of these
features is set by summing up the TF scores of the
terms associated with the feature.

The last row of Table 1 lists OLA Violation. This
has to be predicted based on the 25 features. It is set
to 1 if the resolution time of the defect exceeds the
OLA time. It is set to 0, otherwise. We experiment
with 3 feature sets: i) All (A) contains all the 25 fea-
tures listed in Table 1; ii) High Importance (H) con-
tains those features that are considered as highly im-
portant and as such labelled with * in Table 1. These
features are determined as a result of the high impor-
tance feature selection with the random forest and lo-
gistic regression algorithms (Bonaccorso, 2017); iii)
Without TF-IDF (W) contains all the features expect
10 of them that are derived from textual descriptions
based on TF-IDF calculations. These are the first 15
features listed in Table 1.

We created multiple models for prediction by
combining various machine learning techniques with
the 3 feature sets that are described above. We exper-
imented with combinations of different feature sets
and models to evaluate their effectiveness in predic-
tion. We describe the evaluation metrics in the fol-
lowing.

3.2 Evaluation Metrics

We expect our classifier to provide a binary verdict:
the expected defect fix time (i.e., OLA) is exceeded
(i.e., violated) or not. This verdict is considered a true
negative (TN), true positive (TP), false negative (FN),
or false positive (FP) as defined below:

TN: There is no violation and the verdict is negative.

TP: There is violation and the verdict is positive.

FN: There is violation and the verdict is negative.

FP: There is no violation and the verdict is positive.

We evaluated the effectiveness of classifiers with
precision, recall, accuracy and F1 metrics that are
calculated based on the number of TN, TP, FN and
FP verdicts as listed in the following.

Accuracy =
|T P|+|T N|

|T P|+|FP|+|T N|+|FN|
(1)
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Precision =
|T P|

|T P|+|FP|
(2)

Recall =
|T P|

|T P|+|FN|
(3)

F1 = 2× Precision×Recall
Precision+Recall

(4)

These metrics are used for evaluating machine learn-
ing models, which are tuned and trained as described
in the following.

3.3 Model Tuning and Training

We used 7 different classifiers as described in Sec-
tion 2. Classifiers have different hyper parameters
and their performances differ according to parame-
ter settings. We experimented with various hyper pa-
rameter values by using all the features listed in Ta-
ble 1. We selected hyper parameters settings that lead
to the best recall values. These settings are obtained
by using randomized search and grid search (Bonac-
corso, 2017) as implemented in the Scikit-learn li-
brary. 360 different models are created by adopting
different combinations of hyper parameters for 7 dif-
ferent classifiers. Model performances are measured
with 10-fold cross validation (Bonaccorso, 2017). Ta-
ble 2 shows the values of hyper parameters that lead to
the best performance for each of the 7 algorithms. The
table also shows the employed hyper parameter opti-
mization method and the number of iterations (n iter)
used for each algorithm. We present and discuss the
results in the following section.

4 RESULTS & DISCUSSION

We created 7 models trained with 3 different feature
sets. Hence, we obtained 21 different models in total.
We present results obtained with these models in the
following. Then, we discuss these results and threats
to the validity of our evaluation.

Overall results are listed in Table 3 based on the
evaluation metrics described in Section 3.2. EGB
achieves the best accuracy (0.72), when all the fea-
tures are used except those derived from textual de-
scriptions. The best precision value (0.69) is obtained
with EGB and SVM, when only the features of high
importance are used or when we at least exclude those
derived from textual descriptions. LGB achives the
best F1 score (0.68) and the best recall value (0.72) re-
gardless of the feature set used for training the model.
In summary, LGB and EGB perform the best in terms

Table 2: Employed machine learning algorithms and their
hyper parameter settings.

Classifier Hyper parameters

MLP
Randomized Search
n iter=50

max iter = 2000
hidden layer size = 100
activation = ‘tanh’
solver = ‘sgd’
alpha = 0.01
learning rate = ‘constant’

RF
Randomized Search
n iter=50

criterion = ‘entropy’
n estimators = 800
max features = ‘auto’
max depth = 10
min samples split = 5
min samples leaf = 1
bootstrap = False

LR
Grid Search

solver = ‘liblinear’
penalty = ‘l1’
C = 0.01

KNN
Randomized Search
n iter=50

n neighbors = 5
metric = ‘manhattan’
weights = ‘distance’
leaf size = 30
p = 2

SVM
Randomized Search
n iter=10

kernel = ‘rbf’
gamma = ‘scale’
C=1

EGB
Randomized Search
n iter=50

n estimators = 900
learning rate = 0.06
subsample = 0.9
max depth = 6
colsample bytree = 0.5
min child weight = 1
use label encoder = False

LGB
Randomized Search
n iter=50

boosting type = ‘dart’
num leaves = 7
max depth = 79
learning rate = 0.228
n estimators = 766
class weight = ‘balanced’
min child samples = 10
importance type = ‘split’

of recall and precision, respectively. Detection of all
the violations is more important than an increased
number of false positive warnings for business pro-
cesses. That is, achieving high recall is relatively
more important than achieving high precision.

In general, we observe that the performance of
algorithms are not significantly affected by the em-
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Table 3: Overall results regarding Accuracy (Acc.), Preci-
sion (Prec.), F1 score and Recall (Rec.) for 3 Feature Sets
(FS): A: All, H: High Importance, W: Without TF-IDF.

Classifier FS Acc. Prec. F1 Rec.
LGB W 0.70 0.65 0.68 0.72
LGB A 0.70 0.65 0.68 0.72
LGB H 0.70 0.65 0.68 0.72
RF W 0.70 0.67 0.66 0.66
RF A 0.70 0.67 0.66 0.66
RF H 0.70 0.67 0.66 0.65
EGB W 0.71 0.69 0.66 0.64
EGB A 0.72 0.70 0.67 0.64
EGB H 0.72 0.70 0.67 0.64
MLP W 0.69 0.66 0.64 0.63
MLP A 0.69 0.66 0.64 0.63
MLP H 0.71 0.69 0.65 0.62
SVM W 0.71 0.69 0.65 0.62
SVM A 0.68 0.64 0.63 0.62
SVM H 0.70 0.69 0.64 0.61
KNN W 0.67 0.65 0.62 0.59
KNN A 0.67 0.65 0.62 0.59
KNN H 0.67 0.64 0.61 0.58
LR W 0.67 0.65 0.60 0.56
LR A 0.67 0.65 0.60 0.56
LR H 0.67 0.65 0.6 0.56

ployed set of features. In particular, LGB abd LR are
not affected at all. The difference for other classifiers
is mostly 0.01. The maximum difference is obtained
for SVM as 0.05, when all the features are used (0.64)
instead of only those with high importance (0.69).
Figure 1 shows the recall values obtained with the 7
algorithms for different feature sets. We see that the
results are mostly the same and the difference is never
larger than 0.01 for any of the algorithms.

Our evaluation metrics can be misleading for im-
balanced datasets. Therefore, we also calculated and
reported additional metrics for LGB and EGB, which
take the proportion of actual occurrences of classes
in the dataset into account. Table 4 shows the re-
sults, which are obtained with all the features. The
first two rows listed for LGB and EGB of Table 4
show the performance of the algorithms for predict-
ing instances of two classes to be predicted: Viola-
tion and No violation. Macro average values are ob-
tained by first calculating the corresponding metrics
for each class separately and then calculating their un-
weighted mean. Weighted average is also calculated
as the mean of measurements obtained for each class.

Figure 1: Recall values for 3 different feature sets.

However, the contribution of each class to the mean
value is weighted based on the number of instances of
the class taking place in the dataset. We see in Table 4
that there are no significant differences or no differ-
ence at all between the macro and weighted average
scores.

Table 4: Results obtained with LGB and EGB for additional
metrics that reflect class imbalance.

LGB Precision Recall F1
No violation 0.75 0.69 0.72
Violation 0.65 0.72 0.68
Macro Average 0.70 0.70 0.70
Weighted Average 0.71 0.70 0.70
EGB Precision Recall F1
No violation 0.73 0.78 0.76
Violation 0.70 0.64 0.67
Macro Average 0.72 0.71 0.71
Weighted Average 0.72 0.72 0.72

Results obtained with LGB for 3 different feature
sets are depicted in Figure 2 in the form of confusion
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Figure 2: Results obtained with LGB for 3 different feature sets (A, H and W, respectively).

matrices. They show the actual number of TP, TN, FP
and FN cases used for calculating the metric values.

Our evaluation is subject to an external validity
threat (Wohlin et al., 2012) since we conducted a case
study within the context of a single company. Some
of the features in our feature set are also specific for
the telecommunication domain. More case studies in
different companies and domains must be conducted
to be able to generalize the results.

There are internal validity threats due to the em-
ployed dataset. Although we collected data with tool
support, the data is manually provided by develop-
ers and test engineers. Hence, there might be incor-
rect entries. We preprocessed the collected data to
fix some basic mistakes such as data formatting and
typographical errors. Another issue we noticed was
about the lack of consistency in the use of language
for providing textual descriptions. Some descriptions
were in English, where some others were in Turkish.
We translated Turkish text to English for maintaining
consistency among the descriptions.

The structure of the dataset can lead to construct
validity threats. We employed a variety of metrics to
mitigate these threats. There have been inconsisten-
cies observed regarding the results reported in previ-
ous studies published in the literature, especially be-
tween those that employ open source projects (Bhat-
tacharya and Neamtiu, 2011) and those that employ
commercial projects (Hooimeijer and Weimer, 2007;
Guo et al., 2010) as experimental objects. We sum-
marize related studies in the following section.

5 RELATED WORK

Anbangalan and Wouk (Anbalagan and Vouk, 2009)
reported an empirical study, where the Ubuntu system
was selected as the experimental object. They stud-
ied 72,482 bug reports regarding this system. They
found out that 95% of bug reports are associated with

people of group size ranging between 1 and 8 peo-
ple. They observed a strong linear relationship score
of 92% among the number of users contributing to the
fixing process of a bug and the median time taken to
fix it. They proposed a linear model to predict the
bug fixing time by using the correlation between the
number of people participating in the process and cor-
rection time. We did not consider the number of peo-
ple involved in the bug fixing process as a feature for
classifiers. This feature can be considered for very
large scale open source projects like Ubuntu, involv-
ing thousands of contributors. Our dataset does not
involve bug reports regarding a single project. Our
experimental objects include 293 commercial appli-
cations of varying size.

Bhattacharya and Neamtiu (Bhattacharya and
Neamtiu, 2011) constructed regression models for
predicting bug fix time. They employed multivariate
and univariate regression testing. They used a dataset
consisting of 512,474 bug reports. These reports are
collected from Eclipse, Chrome, and three products
of Mozilla. They showed that the accuracy of ex-
isting models ranges between 30% and 49%. They
also found out that bug fix times are not highly corre-
lated with bug-fix likelihood and bug-opener’s repu-
tation. These results contradict with those previously
reported for commercial software projects (Hooimei-
jer and Weimer, 2007; Guo et al., 2010). This shows
that open source projects and commercial projects
might have different properties leading to contradict-
ing results.

Another study (Panjer, 2007) on bug fixing time
prediction utilized Eclipse Bugzilla database, from
which they reached 118,371 bug reports. Instead of
predicting bug fixing time directly, they used a set of
discretized log scaled lifetime classes and they aimed
at predicting the class associated with each bug report.
Hence, they also employed classifiers rather than re-
gression models. They experimented with various
prediction models like Naı̈ve Bayes, decision trees
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and logistic regression. Their feature set includes bug
priority, bug severity, product, component, operating
system, platform, version, target milestone, bug de-
pendencies and comments. However, accuracy of pre-
diction turned out to be very low according to the
reported results. 34,9% is the maximum accuracy,
which was obtained by using logistic regression.

Sawarkar et al. (Sawarkar et al., 2019) achieved
62.52% accuracy in predicting bug fixing time (called
as bug estimation time) with SVM models. They also
predicted the average time that would be required for
each developer. They employed a bag of words model
to predict both the bug fix time and the developer to
be assigned for the task.

Zhang et al. (Zhang et al., 2013) presented an em-
pirical study on predicting bug fixing time for three
projects maintained by CA Technologies. They pro-
posed a Markov-based method to estimate the total
amount of time required to fix a given set of defects.
They also proposed a model to predict the bug fix-
ing time for a particular defect. Hereby, they also ap-
proached the problem as a binary classification prob-
lem like we did in our study. They introduced two
classes: slow fix and quick fix. They employed a KNN
classifier to assign a bug report to one of these classes
based on a predetermined time threshold. They mea-
sured an F1 score of 72,45%.

Another study (Ardimento and Dinapoli, 2017)
that tackles the problem as a binary classification
problem aims at predicting the resolution time of a
defect as either slow or fast. They performed an em-
pirical investigation for the bugs reported for three
open source projects, namely Novell, OpenOffice and
LiveCode. They used an SVM model as the classifier.
They use features derived from textual descriptions
based on TF-IDF calculations as well. They report ac-
curacy values up to 77%. In our study, we used many
commercial projects as experimental objects and we
experimented with several different types of models
as classifiers.

Deep learning models have become very popular
in the recent years and they have also been used for
bug fix time prediction. In particular, BERT (Devlin
et al., 2018) was employed in one of the recent stud-
ies (Ardimento and Mele, 2020). BERT stands for
Bidirectional Encoder Representations from Trans-
formers (Devlin et al., 2018). This model has the abil-
ity to learn the context of word by considering other
words around it in both directions. It was used for
exploiting textual information regarding bug reports
like the comments of developers and bug owners. The
study also adopted a binary classification task, where
each bug is assigned to one of the classes called fast
and slow. The median of the number of days it takes

to resolve bugs is selected as the threshold. Resolu-
tions of those bugs of which resolution time (in days)
exceeds this number are categorized as fast. They are
categorized as slow, otherwise. The proposed method
based on the BERT model proved to be very effective,
where the accuracy is measured as 91%. However,
the dataset was obtained from a single open source
project, LiveCode. The size of the dataset is also
small, especially considering the scale of data needed
for a sound assessment of deep learning models.

6 CONCLUSIONS

Fix time of a defect is estimated as soon as a defect
is opened. However, these estimations can turn out
to be inaccurate and as such, the estimated time can
be exceeded. We presented an empirical evaluation on
the use of machine learning for predicting these viola-
tions. We conducted an industrial case study based on
real projects that are being maintained by a telecom-
munications company. We prepared a dataset based
on 69,000 bug reports over the last 6 years regard-
ing 293 projects. We derived 25 features, some of
which are based on textual descriptions. We experi-
mented with 3 different subsets of these features used
for training 7 different classifiers. We obtained the
best results with Gradient boosted classifiers, which
reached up to 72% accuracy.
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