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Abstract: In the last few decades, the procedure for identifying, classifying and mapping the asbestos-containing 
materials (ACMs), and contaminated areas, is considered one of the most important aspects for the purpose 
of remediation. This task, carried out by skilled workers, can be very long and difficult to perform, and it can 
also increase the risk of inhalation of asbestos fibers. The identification and characterization of areas 
contaminated by asbestos using remote sensing techniques represent a valid alternative to census methods, 
traditionally based on visual inspection of surfaces and in situ sampling to be analyzed later in the laboratory. 
The aim of this work was to explore the possibilities of using machine learning techniques to identify possible 
asbestos-contaminated areas and ACMs by using PRISMA satellite imagery in areas where chrysotile was 
once extracted, processed and used in asbestos-containing products (ACPs). The study area is located in the 
Balangero’s asbestos mine site. More in detail, Principal Component Analysis (PCA) was performed on a 
Visible, Near-InfraRed and Short-Wave InfraRed (VNIR-SWIR) PRISMA image to reduce data 
dimensionality and used as an exploratory analysis tool. Classification And Regression Trees (CART) 
technique was finally utilized to test a classification of six predetermined classes on the panchromatic image. 

1 INTRODUCTION 

In many countries, asbestos contaminated areas are 
still a relevant issue. Asbestos was widely used during 
the 20th century thanks to its important physical and 
mechanical characteristics.  

There is not a group of minerals that, from a 
mineralogical point of view, goes under the name 
’asbestos’, but there are various mineral types that can 
be distinguished based on their crystallographic and 
chemical characteristics. According to the European 
applicable legal references, the general term 
‘asbestos’ is used to identify six naturally occurring 
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silicate minerals belonging to the serpentine 
(Chrysotile) and amphibole (Amosite, Crocidolite, 
Tremolite, Anthophyllite and Actinolite). They can 
be found in several different crystalline forms, but 
only the fibrous forms are classified as asbestos 
(Council of the European Union, 2003). Based on 
numerous epidemiological studies carried out since 
the 1960s and proving the carcinogenic nature of 
these fibers, all the asbestos minerals have been 
classified as carcinogens by the International Agency 
for Research on Cancer (IARC) (Paglietti et al., 
2016). Many countries like Italy, have thus banned 
the production, importation, processing and 
distribution of Asbestos-Containing Products (ACPs) 
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(i.e. roofing sealant, pipe lagging, duct tape, furnace 
cement and glue for flooring, etc.) and Asbestos-
Containing Materials (ACMs) (i.e. corrugated cement 
sheets, flat cement sheets, etc.) and have 
recommended action plans for the mapping and safe 
removal of asbestos from public and private buildings 
and remediation of highly contaminated areas 
(Paglietti et al., 2016). The procedure to identify, 
classify and map ACMs and contaminated areas is 
considered one of the most important aspects for the 
purpose of remediation; this procedure performed by 
skilled workers can be very long and difficult to 
perform, and it can also increase the risk of inhalation 
of asbestos fibers. Scientific literature reports many 
studies on the utilization of remote sensing techniques 
to map asbestos in anthropic and natural environment, 
using different approaches (Amano et al., 2008; Chen 
et al. 2012; Aplin et al. 2008; Blaschke, 2010) as 
hyperspectral remote sensing (Frassy et al., 2014; 
Marino et al. 2001; Massarelli et al. 2017).  Several 
studies have also explored the abilities to identify 
ACMs by HyperSpectral Imaging (HSI) proximal 
sensing in Short-Wave InfraRed (SWIR) (Bonifazi et 
al., 2018; Bonifazi et al. 2019; Serranti et al. 2019). 

Aim of this work was to explore the possibilities of 
using machine learning techniques to identify possible 
asbestos-contaminated areas and ACMs by using 
PRISMA (Hyperspectral PRecursor of the Application 
Mission) satellite imagery (ASI, 2009) in areas where 
chrysotile was once extracted, processed, and used in 
ACPs. Principal Component Analysis (PCA) was 
performed on a Visible and Near-InfraRed - Short-
Wave InfraRed (VNIR-SWIR) PRISMA image to 
reduce data dimensionality and used as an exploratory 
analysis tool. Classification And Regression Trees 
(CART) technique was used to test a classification of 
six classes (i.e. ‘ACM’, ‘Urban Area’, ‘Anthropogenic 
vegetation’, ‘Natural vegetation’, ‘Water’, 
‘Balangero’s mine’), predetermined on the 
panchromatic image. The classification was performed 
on a novel dataset, where the panchromatic image was 
fused with the PCA scores resulting from the 
application of PCA on the VNIR-SWIR dataset. The 
data fusion strategy selected was mid-level (Figure 1). 
According to this procedure the features extracted from 
the different blocks are concatenated to build a single 
array which is then processed by the desired 
chemometric technique (Biancolillo et al. 2014). 

2 MATERIALS AND METHODS 

The studied areas are located near Turin, in the 
Piedmont region (Northern Italy), the former 

Balangero’s and Corio’s asbestos mine site (Figure 2 
and Figure 3).  

 

Figure 1: Scheme of the data-fusion and classification 
approach adopted. 

Figure 2 shows an asbestos mining (2a) characterized 
by the presence of building roofs containing asbestos 
and a rural area (2b) with building roofs where 
asbestos presence was not detected. 

 
(a) 

 
(b) 

Figure 2: Balangero’s asbestos mining site with building 
roofs containing asbestos (a) and rural areas with building 
roofs without asbestos (b). 
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(a) 

 
(b) 

Figure 3: Portion of the underwater asbestos open-pit mine 
with presence of natural vegetation (a) and urban area with 
the presence of an abandoned industrial site where roofs 
contain asbestos (b). 

Figure 3a shows another portion of asbestos mine 
with presence of natural vegetation. Figure 3b shows 
and urban area with the presence of an abandoned 
industrial site where building roofs contain asbestos. 
The datasets corresponding to Figure 2 were used as 
calibration set, while the datasets corresponding to 
Figure 3 were utilized as validation set.  

2.1 Data Handling and Processing 

The PRISMA equipment is made up of an imaging 
spectrometer, able of acquiring VNIR (Visible and 
Near-InfraRed) and SWIR (Short-Wave InfraRed) 
images (~ 250 bands), with a spatial resolution of 30 
m on a swath of 30 km, and a panchromatic camera 
with spatial resolution of 5 m. The spectral resolution 

is about 12 nm in the spectral range of 400-2500 nm, 
that are VNIR and SWIR regions (ASI, 2009). 

The PRISMA VNIR-SWIR hyperspectral image 
and the panchromatic image datasets were imported 
into the MATLAB® environment (R2021a, Version 
9.10, The Mathworks, Inc.). The details of utilized 
dataset are shown in Table 1. 

Table 1: Dataset sizes. 

  Area 1 Area 2 
Raw data 

VNIR-SWIR 
Training 
dataset 

193*304*23 
(Figure 1a) 

213*224*234 
(Figure 1 b) 

Prediction 
dataset 

125*191*234 
(Figure 2a) 

240*190*234 
(Figure 2b) 

Raw data 
panchromatic 

image 

Training 
dataset 

193*304*1 
(Figure 1a) 

213*224*1 
(Figure 1 b) 

Test 
dataset 

125*191*1 
(Figure 2a) 

240*190*1 
(Figure 2b) 

 

 

Figure 4: Region of Interests (ROIs) selected on the 
panchromatic image. 

The imported data were analyzed using the 
PLS_Toolbox (Version 8.2 Eigenvector Research, 
Inc.) (Wise et al., 2006) and Statistics and Machine 
Learning Toolbox. The PLS_Toolbox was used to 
pre-process data and for performing the Principal 
Component Analysis (PCA), while Statistics and 
Machine Learning Toolbox was utilized for setting up 
the Classification And Regression Trees (CART). 

2.2 Class Setting 

From a small part of the panchromatic image, 
depicting near a half of the open-pit mine and its 
surrounding, six Region of Interests (ROIs) were 
selected and the following classes were set: ACM, 
Urban Area, Anthropogenic vegetation, Natural 
vegetation, Water and Balangero’s mine (Figure 4). 
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The above-mentioned classes were then selected 
according to surface truth to the ground. In ‘ACM’ 
was included Asbestos Containing Materials (i.e. 
Eternit corrugated roofing). In ‘Urban Area’ were 
included areas characterized by urban morphology. In 
‘Anthropogenic vegetation’ were selected areas with 
cultivated crops. In ‘Natu-ral vegetation’ were 
included areas with woods and sparse trees patterns. 
While, in ‘Water’ class was included the underwater 
open-pit mine area. Finally, ‘Balangero’s mine’ class 
was chosen selecting barren areas near the open-pit 
mine. The class set of the panchromatic image was 
then transferred to the VNIR-SWIR dataset. 

2.3 Data Pre-processing 

Spectral data preprocessing is a necessary step in 
order to reduce detector noise, to eliminate the 
spectral nonuniformity due to the illumination, 
scattering phenomena and the influence of the 
changing environmental conditions. Data pre-
treatment is also addressed to better solve the spectra 
information by enhancing differences among the 
classes.  To choose the right pre-processing 
algorithms, different pre-processing algorithms were 
tested among those widely adopted (Rinnan & 
Engelsen, 2009). The algorithms combination which 
gave the best data decomposition of the class scores 
were selected. The adopted pre-processing 
combination was spatial Median Filter (MF), 
Standard Normal Variate (SNV), Gap-Segment (GS) 
1st Derivative and Multiway Center (MC). 

2.4 Principal Component Analysis 

The Principal Component Analysis (PCA) is a well-
known data exploratory method, widely adopted to 
HSI datasets, that gives the possibility to have an 
overview of complex multivariate data. PCA allows to 
reduce the dimensionality of a data matrix containing 
multiple interrelated variables, while retaining as much 
as possible of the variation present in the data set (Bro 
et al., 2014). In this case, PCA was carried out to detect 
outliers and choose the data to built-up the classifiers 
by reducing the dimensionality of the dataset. The PCA 
was performed on the VNIR-SWIR dataset. Six PCs 
were chosen. The scores of the performed PCA were 
then concatenated with the panchromatic image. 

2.5 Classification and Regression Trees 
(CART) 

Classification And Regression Trees (CART), a non-
parametric statistical technique, was used to classify 

the six classes on the panchromatic image fused with 
the PCA scores (Shao et al. 2012). Classification And 
Regression Trees (CART), a non-parametric 
statistical technique, was used to classify the six 
classes on the panchromatic image fused with the 
PCA scores. CART classification algorithm, 
developed by Breiman et al. (1984), allows to build a 
decision tree based on Gini’s impurity index as 
splitting criterion. In classification and regression 
problems, CART algorithm produces a decision tree 
describing a response varying as a function of 
multiple explanatory variables. A tree hierarchy is 
produced by the subdivision process.  

In the tree hierarchy, the observation subsets are 
represented by the nodes, while the leaves are the 
final nodes. A binary model, formulated in each node, 
is responsible for the subdivision process. In each 
node, all the samples satisfying the model are 
clustered in a sub-group, while the remaining nodes 
are assigned to another subgroup. The classification 
process therefore follows a path along the tree from 
the root towards a final leaf. This process can be 
synthetized in three steps. In the 1st step of CART 
analysis, the binary split procedure allows to build the 
maximum tree by finding the best split which 
maximizes the splitting criterion. Usually, overfitting 
can occur when the maximum tree is overgrown 
closely describing the used training set. To correct the 
overfitted model a pruning process occurs in the 2nd 
step. The pruned model results in multiple less 
complex tree, that are derived from the maximum 
tree. In the 3rd step, finally, a cross-validation process 
helps to select the optimal tree (Deconinck et al. 
2006). 

The main advantage of CART algorithm relies on 
the fact of being nonparametric. Moreover, it can be 
used in combination with other prediction algorithms 
and by combining both testing with a test data and 
cross-validation thus enabling to more precisely 
measure the quality of the model fitting. 

2.6 Classification Performance Metrics 

The performance evaluation of the classification 
methods was carried out in terms of prediction maps, 
that is false colour images representing the 
classification and in terms of the statistical 
parameters: Sensitivity and Specificity (Ballabio & 
Todeschini, 2009). In more detail, the Sensitivity 
represents the ability of determined classifier to 
correctly recognize samples belonging to a specified 
class and is defined by Equation (1). On the other 
hand, Specificity relates to the model ability to 
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correctly reject samples belonging to all the other 
classes as defined by Equation (2). ܵ݁݊ݕݐ݅ݒ݅ݐ݅ݏ ൌ ்௉்௉	ା	ிே       (1) 												ܵݕݐ݂݅ܿ݅݅ܿ݁݌ ൌ ்ே்ே	ା	ி௉   (2) 

TP are the total number of True Positive, FN the 
total number of False Negative, TN the total number 
of True Negative and FP the total number of False 
Positive. Sensitivity and Specificity were calculated 
according to the number of correctly or not correctly 
assigned pixel to each defined class, with reference to 
calibration (CAL), cross-validation (CV) and to the 
prediction of the validation set (PRED). 

 

 

Figure 5: Region of Interests (ROIs) transferred from the 
panchromatic image to the VNIR-SWIR dataset. 

 

 

Figure 6: Raw spectra of the six classes. (LTOA: Top of 
Atmosphere radiance). 

3 RESULTS AND DISCUSSION 

The six Region of Interests (ROIs) selected on the 
panchromatic image and transferred to the VNIR-
SWIR dataset (Figure 5) and corresponding mean 
spectra are shown in Figure 6. The average spectra of 
the six classes show significant spectral differences 
but are also very noisy. For this reason, in order to 
reduce the noise and emphasize the spectral variation 
(as already explained in the Chapter 2.3), the data 
were pre-processed as shown in Figure 7. 

 

 

Figure 7: Pre-processed spectra averaged for the six classes. 
The adopted pre-processing combination is spatial Median 
Filter (MF), Standard Normal Variate (SNV), Gap-Segment 
(GS) 1st Derivative and Multiway Center (MC). 

After data preprocessing, a PCA model was 
created (Figure 8). PCA model allows to capture 
99.69% of the total variance with six principal 
components. In detail, the PCA score plot of PC1 and 
PC3 shows 6 separated clusters corresponding to the 
6 different classes considered (i.e. ‘ACM’, ‘Urban 
Area’, ‘Anthropogenic vegetation’, ‘Natural 
vegetation’, ‘Water’ and ‘Balangero’s mine’). The 
positive space of scores on PC3 is mainly influenced 
by ‘Balangero’s Mines’ spectra. The negative space 
of scores on PC1 is mainly influenced by water of 
Balangero’s lake. The combination of the positive 
value of scores PC1 and negative value of scores on 
PC3 allows the separation of ‘Urban area’, 
‘Anthropogenic’ and ‘Natural vegetation’. Finally, 
the ACM class is separated from the other classes by 
the combination of negative PC1 and positive PC3 
values. 
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Figure 8: PCA scores plot (a) and loadings plot (b) of the 
first and third PCs. 

The negative space of scores on PC1 is mainly 
influenced by water of Balangero’s lake. The 
combination of the positive value of scores PC1 and 
negative value of scores on PC3 allows the separation 
of ‘Urban area’, ‘Anthropogenic’ and ‘Natural 
vegetation’. Finally, the ACM class is separated from 
the other classes by the combination of negative PC1 
and positive PC3 values. 

Starting from the good separation obtained, this 
PCA model was used for the data reduction of 
PRISMA hyperspectral datasets. The PCA-reduced 
datasets were concatenated to the corresponding 
panchromatic images as shown in the example 
reported in Figure 9. In detail, the concatenated 
procedure allows to combine chemical information 

coming from VNIR-SWIR range with the shapes and 
contours of the topographical details obtained from 
the panchromatic image.    

 

Figure 9: False color image of the novel dataset, resulting 
from the fusion of VNIR-SWIR PCA scores and the 
panchromatic of the studied area. 

Starting from this new data set, the classes for the 
calibration dataset were set as shown in Figure 10. 
The calibration set was then created and utilized to 
build the CART model. 

  

 

Figure 10: Class map of the Training set. 

The results in terms of Sensitivity and Specificity 
(Table 2) confirm the good performance of the model, 
with values ranging from 0.816 (‘ACM’ class) to 
0.980 (‘Water’ class) and 0.979 (‘Anthropogenic 
vegetation’ class) to 1.00 (‘Water class’), 
respectively, both in calibration and cross-validation. 
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Table 2: results in terms of Sensitivity and Specificity. 

Class Sens. 
(Cal) 

Spec. 
(Cal) 

Sens. 
(CV) 

Spec. 
(CV) 

ACM   1,000 1,000 0.816 0.999 

Anthropogenic 
vegetation  

1,000 1,000 0.981 0.979 

Balangero's 
Mines 

1,000 1,000 0.946 0.997 

Natural 
vegetation 

1,000 1,000 0.962 0.992 

Urban area 1,000 1,000 0.963 0.988 

Water 1,000 1,000 0.980 1.000 

The CART prediction map of the validation set is 
reported in Figure 11, whereas the performance 
metrics of the classification model applied to the 
validation set are shown in Table 3. The results in 
terms of prediction images (Figure 11) are in 
agreement with those achieved in the calibration 
phase. By analyzing the performance metric 
parameters reported in Table 3, despite a slight 
decrease in sensitivity in the identification of ACM 
roofs, is clear that the identification of the main 
structures with asbestos is correct, confirming the 
success of the proposed test. 

4 CONCLUSIONS 

In this paper, a novel approach was developed and 
implemented to identify ACM from "Urban Area", 
Anthropogenic and natural vegetation", "Water" and 
“Balangero’s mine”. 

PRISMA satellite hyperspectral images were 
elaborated through multivariate statistical analysis in 
order to extract the chemical features of the classes. 
Subsequently, the PRISMA hyperspectral data, 
reduced by PCA, were concatenated with the 
panchromatic image in order to combine chemical 
information with the shapes and contours of the 
topographical details. Afterwards, starting from the 
fused dataset, a CART classification model was 
developed in order to recognize the roofing 
containing asbestos from other objects on the images. 

The adopted procedure proved to have a 
significant discriminating capacity in terms of 
sensitivity and specificity enabling the possibility to 
use this approach for more extended areas. 

 
Figure 11: CART prediction map. 

Table 3: Performance metrics of CART classification in 
prediction calculated on the test set. 

Class 
Sens. 
(Pred) 

Spec.  
(Pred) 

ACM 0.756 0.997 

Anthropogenic vegetation 0.993 0.981 

Balangero's Mines 0.999 0.993 

Natural vegetation 0.937 0.997 

Urban area 0.980 0.994 

Water 1.000 1.000 

The possibility of a systematic and integrated use 
of PRISMA image combined with machine learning 
tools for ACMs identification, proved to be a 
complementary method for a faster identification and 
mapping of contaminated areas, with less risk of 
exposure for operators and the possibility to perform 
a fast and reliable survey of ACPs by remote sensing. 

The fulfilment of the previous mentioned goals 
could produce positive environmental impacts, as 
well as big economic benefits related to the lower 
identifying and mapping costs. 
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