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Abstract: Advances in Artificial Intelligence and Natural Language Processing (NLP) can be leveraged by higher-ed

administrators to augment information-driven support services. But due to the incredibly rapid innovation rate
in the field, it is challenging to develop and implement state-of-the-art systems in such institutions. This work
describes an end-to-end methodology that educational institutions can utilize as a roadmap to implement open
domain question-answering (ODQA) to develop their own intelligent assistants on their online platforms. We
show that applying a retriever-reader framework composed of an information retrieval component that encodes
sparse document vectors, and a reader component based on BERT -Bidirectional Encoder Representations
from Transformers- fine-tuned with domain specific data, provides a robust, easy-to-implement architecture
for ODQA. Experiments are carried out using variations of BERT fine-tuned with a corpus of questions and
answers derived from our institution’s website.

1 INTRODUCTION

Open-domain question-answering (ODQA) systems
have been a topic of research for many years. Such
architectures have been divided into two categories:
open-book and closed-book. The former encom-
passes models that are able to refer back to the cor-
pus of text they were trained on, as well as exter-
nal knowledge, to output answers. Moreover, the
most common framework for such systems is known
as a retriever-reader architecture and it was first pro-
posed by researchers at Stanford and Facebook Al
in 2017 (Chen et al., 2017). The latter focuses on
fine-tuning question-answering (QA) models for pre-
cise and rapid answer retrieval from a predetermined
dataset containing all possible answers. In this case,
the model focuses on finding the answer as efficiently
as possible in the curated dataset of question-answer
pairs instead of attempting to extract, or generate, it
from external knowledge.

We believe that educational institutions could
greatly benefit from adopting Natural Language Pro-
cessing (NLP) technologies such as ODQA sys-
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tems and intelligent chatbots. Potential benefits in-
clude higher efficiency when processing administra-
tive tasks, such as providing information about the in-
stitution or guidance on using specific services, tasks
traditionally conducted by staff. Furthermore, such a
technology can aid in improving the interaction be-
tween the students and the different areas of the in-
stitution, whether educational or administrative, and
in making information easily available to both current
and prospective students. Case in point, the ongoing
COVID crisis has propelled the use of online envi-
ronments. The challenge in these environments is the
frequent changes in content and content sources. If
those virtual environments are enhanced through the
use of artificial intelligence, they have the potential of
streamlining processes and making them simpler or
even seamless. Also, as it relates the prospective stu-
dent, enrollment management must embrace the cur-
rent and emerging technologies of social media and
online content to maintain its focus on the next gener-
ation of students. Online platforms assisted by digital
assistants can certainly enhance the recruitment pro-
cess. Still, and due in part to the rapid evolution of
the field of NLP, we notice that such benefits have
not been a strong enough incentive to motivate in-
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stitutions to allocate the necessary resources to im-
plement state-of-the-art architectures. For this rea-
son and with the purpose of showing the feasibility
of implementing such systems and encourage others
to follow a similar path, we have researched ODQA
architectures. In this paper we present an end-to-end
methodology depicting how to implement such an ar-
chitecture in an educational institution. The purpose
of this work is twofold: a) create a proof of concept of
a production-level ODQA system prototype based on
a sparse retriever-reader architecture that could be im-
plemented at our institution; b) develop a methodol-
ogy and guideline, and empirically test different com-
ponents of a retriever-reader architecture. We have
set this framework as our benchmark using the Best
Match BM25 (BM25) sparse text retrieval function
(Robertson and Zaragoza, 2009) as the retriever, and
a reader based on BERT -Bidirectional Encoder Rep-
resentations from Transformers (Devlin et al., 2019),
fine-tuned with domain-specific data. We believe that
institutions can make use of this guideline to imple-
ment these architectures and take advantage of these
promising technologies.

The paper is organized in the following manner:
First, we provide a review of the extant existing liter-
ature emphasizing the rapid evolution of the field of
question-answering since the 1960s and the various
techniques and model architectures that have been de-
veloped throughout the past decades. We then move
on to discuss the core methodology we have designed
and implemented at our institution. We follow with
the experimental setup, providing an in-depth dis-
cussion of the QA dataset, methods, computational
platform and software used throughout the experi-
ments, as well as the performance metrics used to
assess the performance of the different variations of
the retriever-reader architecture tested throughout our
research. The experiments include the fine-tuning of
the BERT-based reader using a domain-specific QA
dataset extracted from the information found in our
institution’s website. We present and discuss our find-
ings. Finally, we close the paper with comments on
the limitations of the research, our conclusions, and
future research avenues.

2 LITERATURE REVIEW

Question-answering is a challenging sub-discipline of
NLP concerned with understanding how computers
can be taught to answer questions asked in natural
language. Most QA systems are focused on answer-
ing questions that can be answered with short-length
texts, also known as factoids (Jurafsky and Martin,

2021). Before the deep learning boom of the 21st cen-
tury, researchers adopted various approaches to tackle
the challenging task of QA. Two paradigms, informa-
tion retrieval QA (also known as open-domain QA or
ODQA) and knowledge-based QA, have been driv-
ing the field since the early 1960’s. Information re-
trieval (IR) focuses on gathering massive amounts of
unstructured data from different sources (i.e. social
media, forums, websites) and encoding those doc-
uments in vector representations such that, when a
question is received, the retriever component is able
to find relevant documents, which are then input to a
reading comprehension algorithm (typically referred
as the reader) that returns the span of text most likely
to contain the answer. Although some QA systems
focus solely on the reader component, the reader is
given a question and a text fragment with or without
the answer, and it returns a resulting prediction an-
swer. It is the combination of both components in
the so called retriever-reader architecture that has be-
come the dominant paradigm for ODQA. The reason
is simple: whereas in the all-by-itself reader architec-
ture the reader has to deal with the whole document
corpus to find an answer to the question, in the case of
a retriever-reader architecture the reader uses only the
top ranked documents selected by the retriever com-
ponent. This improves the system efficiency by re-
ducing run-time and increasing accuracy. Knowledge
based, or closed-domain QA, on the other hand, con-
sists of collecting structured data and formulating a
query over a structured database. One of the first ex-
amples of this approach is BASEBALL (Green et al.,
1961), a question-answering system that was able to
answer questions about baseball games and statistics
from a structured database. Until the 80’s, knowledge
based QA systems grew rapidly by developing larger
and more detailed structured databases that targeted
narrower domains of knowledge. Nevertheless, since
these databases had to be hand-written by experts,
they were costly and time consuming. Thus, the fo-
cus of research slowly drifted towards ODQA which
leverages statistical processing of large unstructured
databases.

Traditional approaches for ODQA consisted of
the use of sequence-to-sequence models which sep-
arate sequences of text (i.e. the question and the cor-
pus of text) via a special token often denoted [SEP].
Research in machine comprehension and question-
answering started with one-directional Long-Short-
Term-Memory (LSTM) models (Wang and Jiang,
2016). Then, moved onto bi-directional architectures
(Seo et al., 2018). Currently, it is embracing the trans-
former architecture introduced in 2017 by Google re-
searchers (Vaswani et al., 2017) which provides a sig-
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nificant advantage over complex recurrent and con-
volutional neural networks by focusing solely on at-
tention mechanisms, thereby reducing training time
and increasing efficiency. Until then, the inherent se-
quential nature of those recurrent neural nets limited
parallelization within training examples. The trans-
former architecture replaces the recurrent neural net-
work layer with a self-attention layer used to compute
a richer representation of a word in an input sequence
given all other words in the sequence at once, lead-
ing to simple matrix computations than can be easily
parallelized, therefore enhancing performance.

One of the biggest limitations QA-systems faced
in the early days was not being able to encode context.
This issue was successfully addressed by Google’s bi-
directional transformer model BERT which was “de-
signed to pre-train deep bidirectional representations
from unlabeled text by jointly conditioning on both
left and right context in all layers” (Devlin et al.,
2019). Furthermore, the publication of the SQuAD
2.0 dataset (Rajpurkar et al., 2018), developed specif-
ically for fine-tuning question-answering models, en-
abled researchers to train on both answerable and
unanswerable questions. This novel QA dataset, the
open-source release of BERT and the development of
transfer learning has skyrocketed the interest and re-
sources allocated to the discipline. Note that trans-
fer learning and domain adaptation “refer to the situa-
tion where what has been learned in one setting is ex-
ploited to improve generalization in another setting”
(Goodfellow et al., 2016). Consequently, question-
answering -ODQA in particular- has been evolving
rapidly. For this reason, we have focused our work
on ODQA systems, specifically on retriever + BERT-
based reader architectures fine-tuned with domain-
specific data.

3 METHODOLOGY

The methodology we describe in this paper is com-
prised of several steps:

Step 1 - Gather Domain-specific Data: The first
step of our project, as in any Al project, is to collect
and pre-process data; in this case, the corpus of doc-
uments on which questions are formulated and their
corresponding answers are produced and delivered by
the QA system. For this, we developed a web scraper
which pulls the text information contained in every
official website from our institution. The scraper ex-
tracts all the data and adds it to a json file, from which
we then draw out the scraped text for pre-processing.
This pre-processing task includes eliminating special
characters, stop words, lemmatizing and tokenizing
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activities. Next, we load all the clean data to a re-
lational database to optimize retrieving performance
(on a side note, we initially experimented with Mon-
goDB to exploit its NoSQL document model, but we
did not find any significant advantage; in fact, at scale,
it under-performed in terms of efficacy and retrieval
time).

Step 2 - Choose ODQA Architecture: This step im-
plied some exploration of the extant ODQA existing
technologies as well as some trial and error work to
find and implement the architecture and its compo-
nents that best fitted our goals. In the context of a
retriever-reader architecture this implies identifying
the following items:

a) the information retrieval (IR) system, search en-
gine, or retriever component. The system in
which the document corpus is stored, encoded and
indexed. Encoding in this context means vector
encoding; at query time (i.e. when a question
is delivered by an end-user) questions are trans-
formed online into vector representations, and the
resulting vector-encoded questions are compared
by the IR system with the vector-encoded corpus
to retrieve a subset of the top ranked documents.

b) the reading comprehension algorithm, or
reader component, typically a deep learning,
transformer-based encoder model such as BERT,
that takes the top ranked document(s) fed by
the IR system and scans each document to find
segments of text - spans - that can probably
answer the question.

c) the software platforms available to implement
these components.

Let’s consider each of these items in more detail:

Retriever Component: Information retrieval systems
uses the vector space model to identify and rank likely
documents given a query, in which documents and
queries are vector-encoded and matched by similarity
using a distance metric in the respective vector space
(Salton, 1971). We score (i.e measure similarity) of
a document d and a query g by computing the cosine
of their respective vector encodings d and q. If the
cosine is 1 there is perfect match.
qd

score(q,d) alld] €]
IR systems can be classified as dense and sparse de-
pending on the nature of their vector encoding. We
considered both types of retriever systems:
Sparse Retrievers: Traditional IR systems encode
documents using word frequencies or similar derived
metrics such as TF-IDF (Term Frequency — Inverse
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Document Frequency) and BM25. These types of IR
systems are known as sparse retrievers since words
are considered independently of their position and
vector encoding is sparse (there is no concept of space
embedding based on context). Sparse retrievers are
fast both in terms of document encoding (sparse vec-
tors are easy and fast to compute) and query encoding
(encoding the query as a vector on the fly) is a trivial
task.

The TF-IDF retriever is a popular algorithm used
in information retrieval tasks such as finding similar
books or documents given a query. It derives its name
from the TF-IDF metric, an enhanced replacement of
the Bag of Words (BOW) approach to encode text.
TF-IDF rewards larger frequency of terms while pe-
nalizing terms which occur frequently in documents
(e.g. stop words). The metric computes the frequency
of a term in a document times the logarithm of the
ratio between the number of documents in the corpus
and the number of documents where the term occurs.
In other words we calculate TF-IDF as follows:

ny N
TF-IDF(d,t) = " logM 2)
where n; is the frequency (count) of term ¢ in docu-
ment d, n is the total count of all terms in document
d, N is the total count of documents, and A, is the
count of documents containing term ¢.

To compute the distance between document d and
query g using TF-IDF we apply Eq.(1) and decom-
pose the inner product as a sum of products over the
TF-IDF scores. With some simplification -see (Juraf-

sky and Martin, 2021) for details, we obtain:

TF-IDF
score(q,d) = Z (1) 3)
t€q | Y TF-IDF(d,w)?
wed

Alternatively, the Best Match 25 ranking metric,
also known as Okapi BM25, or just BM25 (Robertson
and Zaragoza, 2009), improves retrieval efficiency
compared to TF-IDF by considering document length
normalization and term frequency saturation (i.e. lim-
iting through saturation the impact that frequent terms
in a document can have in the score).

BM?25 tunes the term frequency (TF) factor in
the TF-IDF formula by adding two parameters: b,
which regulates the relevance of normalizing docu-
ment length; and &, which provides a balance between
term frequency and inverse document frequency. The
simplified scoring formula for BM25 as implemented
in the popular Lucene search engine (Apache Soft-

ware Foundation, 2021) is defined as follows:

score(q,d) =~ ZTuned TF-IDF

t€q
Tuned TF =
4 erk-((lfb)er'w;(n)) @
IDleogE
Ny

A large value of parameter b means that the length
of the document matters more (with b = 0, the length
of the document has no influence on the score). High
values of parameter k, in turn, pull the score up when
the term occurs more frequently. When k£ = 0 term
frequency TF becomes 1, which means that TF-IDF
is solely driven by IDF.

In order to efficiently identify the most relevant

documents to the input query, the IR system needs a
data structure that can relate terms to documents. A
typical data structure is an inverted index which lists
every unique term that appears in any document, and
for each term, all of the documents the term occurs
in. This is what indexing means in the context of an
IR system. The search is a two-step process: the IR
system uses the inverted index to find the subset of
documents that contains the terms in the query; only
then it proceeds to compute the similarity score on the
subset of documents and ranks them to complete the
document search.
Dense Retrievers: Sparse retrievers are powerful and
fast IR engines, but they have one critical flaw: they
lack context. So, as the location of terms in the text
is irrelevant, they work in those cases in which there
is word-to-word correspondence between the query
and the document. Dense retrievers address this is-
sue by replacing sparse vectors with dense vector em-
beddings. Modern implementations of dense retriev-
ers like Dense Passage Retrieval, also known as DPR
(Karpukhin et al., 2020) use transformer models such
as BERT -more on BERT in the following paragraphs-
to encode the corpus of documents into dense vec-
tors. This can take a long time to process, especially if
the corpus of documents is large, as it requires train-
ing just like any transformer (deep learning) model.
Then, at retrieval time, the query is BERT-encoded
on the fly into a dense vector and use to score likely
BERT-encoded documents in the corpus using a simi-
lar approach as that in Eq(1). Following (Jurafsky and
Martin, 2021) notation:

69



CSEDU 2022 - 14th International Conference on Computer Supported Education

q = BERTy(q)
d = BERT(d) 5)
score(q,d) =q-d

We considered the use of dense retrievers as part of
this work, but the time required to encode the corpus
of documents and the lack of evidence of significant
improvement when compared to the use of sparse
retrievers made us favor the latter approach, at least
in this stage of our research. We therefore settled for
a sparse BM?25 retriever.

Reader Component:  Pre-training and transfer
learning have been, arguably, the most important
breakthroughs of the decade in deep learning. As
stated in (Erhan et al., 2010) pre-training “’guides the
learning towards basins of attraction of minima that
support better generalization from the training data
set”. In other words, transformer models are trained
on very large amounts of data for a general purpose
task, allowing the researcher to then fine-tune such
models for specific tasks, like question-answering
in this case. The idea of transfer learning branches
out from the aforementioned technique. A model
pre-trained on natural language, for example, can be
reused (i.e. fine-tuned) for a specific task without
losing its previous general knowledge, effectively ob-
taining a powerful model capable of solving complex
tasks. BERT-like encoders have therefore become
the de facto standard for reading-comprehension in
ODQA systems. For a list of the BERT-like readers
considered in this paper check the section on software
platforms.

Software Platforms: It is difficult to create a taxon-
omy of software platforms that assist in implement-
ing ODQA systems, given the variety of available
open-source IR projects, QA frameworks and search
engines, and the various ways in which these plat-
forms handle document indexing and storage of in-
dexed documents - in some cases in a vertically-
integrated, monolithic fashion, in others as compo-
nents of a custom-built QA application. As part of
this work we investigated a number of the most rel-
evant projects. The list that follows should not be
considered as an exhaustive survey of software tools.
Instead, it is a reflection of our exploration and the
choices we made during this research project to im-
plement a sparse retriever-reader solution for ODQA
at our institution:

- Lucene (Apache Software Foundation, 2021) is
the widely used, high-performance, Apache text
search engine project written in Java.

- ElasticSearch (Elastic, 2021) is a software pack-
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age developed by Elastic, based on the Lucene
library, that provides a distributed, JSON-based,
text-retrieval engine exposing an HTTP APIL
ElasticSearch is offered under both the Server
Side Public License, and the company’s own li-
cense. Elasticsearch can store both sparse (TF-
IDF/ BM-25) and dense representations.

FAISS (Johnson et al., 2017) is a library developed
by Facebook research team for similarity search
of dense vector representations of text. FAISS is
written in C++, can make use of GPUs to speed
up the similarity search, and has wrappers for
Python.

Anserini (Yang et al., 2017) is a Java-based infor-
mation retrieval project based on Lucene.
Pyserini (Lin et al., 2021) is a Python informa-
tion retrieval library that encodes documents in
both sparse and dense representations. Sparse re-
trieval is implemented through integration with
the Anserini library. Pyserini uses Facebook’s
FAISS library to implement dense retrieval.

- Haystack (Pietsch, Soni, Chan, Mboller, and
Kosti¢, 2021) is a recent open-source framework
developed by Deepset.ai for building search sys-
tems and ODQA systems that provides a simple
interface through which a) documents can be en-
coded in both sparse (TF-IDF and BM25) and
dense (DPR) vector representations and indexed
into a variety of data stores; b) a retriever-reader
architecture can be easily setup, leveraging a va-
riety of BERT models; c) QA models can be
fine-tuned with domain specific data. Deepset.ai
has also partnered with HuggingFace (Wolf et al.,
2020), a leading NLP startup, to provide state-of-
the-art pre-trained models.

As we previously mentioned, the main goal of
our research is to provide educational institutions a
guideline to implement state-of-the-art ODQA archi-
tectures on their campus in a simple and fast way. Our
architecture has the structure depicted in Figure 1. We
chose the Haystack’s API that provides a convenient
pipeline to fine-tune and deploy the ODQA architec-
ture. We employed an Elasticsearch server to store
our indexed documents to optimize retrieval, a BM25
sparse retriever and a BERT-like reader initially fine-
tuned with SQuAD 2.0. We considered three varia-
tions of BERT:

- roBERTa (Liu et al., 2019), a successor of BERT
and trained on a much bigger (10x) dataset, us-
ing larger mini-batches and learning rates among
other enhancements. All of these differences al-
low roBERTa to generalize better to downstream
tasks and has been the state-of-the-art model for
QA tasks in recent years.



Implementing Open-Domain Question-Answering in a College Setting: An End-to-End Methodology and a Preliminary Exploration

Domain

% Sparse vectors pe
Gather UL TS Vector-encode (stored in e BERT-based Answer
Corpus Q&A set Reader

RaE R | | Data documents ElasticSearch) .
H".E il || Fine-tune
I I I Retrieve Extract
College : - B
g Question Sparse BM25 Top ranked (Fine-tuned) Chosen El goan |E
Data (vector-encoded Retriever document(s) BE:T-TSEd span G. / :
on the spot) = b

Figure 1: (Sparse) Retriever - Reader Architecture.

- ELECTRA (Clark et al., 2020) introduces a new
approach to training that produces a model with
similar, and sometimes better, results than top-
performing transformers using only a fraction of
computing resources. ELECTRA replaces the
masked language modeling (MLM) pre-training
methods used by BERT and other transformers
with a more efficient approach called “replaced
token detection”. Strictly speaking, ELECTRA is
not really a variation of BERT, but we decided to
incorporate it on our experiments due to its novel
training approach and potential for QA tasks.

- Minilm (Wang et al., 2020) “distilles” a smaller
(student) model from a much larger (teacher)
model, like BERT, and with it uses half of the
transformer’s parameters and computations of the
teacher model.

reader = FARMReader (

model_name_or_path= "deepset/
electra-base-squad2", use_gpu=
True)

train_dir = "path/to/

custom_train_dataset"

reader.train (data_dir=train_dir,
train_filename="
OurTrainFileName. json",
use_gpu=True,
n_epochs=20)

reader.save (directory="
OurFineTunedModelName")

Listing 1: Fine-tuning electra-base-squad?2.

Step 3: Fine-tune Reader: Seeking to improve our
model’s performance, we found the next logical step
to fine-tune the reader on our custom QA dataset. For
this we created a SQuAD-formatted training dataset
using an annotation tool that allowed contributing op-
erators - in this case several student workers- to a)
pick a random document from the College website;
b) formulate questions on the given document, iden-
tifying the answer to the question in the document
(first and last word of the answer word of each an-

swer). That is what the BERT-reader does: finds from
the corresponding reading passage the beginning and
the end of a segment of text, or span, that is most
likely to contain the answer to a given question. List-
ing 1 depicts a sample fragment of Haystack code
used to load an ELECTRA model initially trained
with SQuAD 2.0 and fine-tune it with our SQuAD2-
formatted domain-specific training dataset.

4 EXPERIMENTAL SET UP

In the experiments, we studied the performance of the
sparse retriever-reader architecture, considering dif-
ferent versions of the BERT-based reader before and
after fine-tuning it using the College website data.
The primary goal was to explore the feasibility of the
architecture for question-answering at our institution.
A second goal was to analyze and measure if, given
domain-specific questions, fine-tuning the reader on
custom examples would improve its predictive perfor-
mance.

4.1 Dataset and Methods

We developed a dataset with 594 questions and
their respective answers in SQuAD 2.0 format us-
ing Haystack’s annotation tool. We then proceeded
to randomly split the dataset into training and test-
ing partitions using a 80-20 ratio: the training data
set was used to fine-tune the BERT-based reader (in
those runs where we fine-tuned the model), and the
testing dataset was used to measure the performance
of the retriever and reader components. Each experi-
ment was performed by varying the random partition
seed. We used 30 randomly chosen seeds, creating
30 dataset pairs (training and testing) to perform ex-
periment runs, using 3 different readers (roBERTa,
ELECTRA and Minilm). Each of the readers was
used in plain-vanilla mode or was fine-tuned using the
training datasets. This amounted to a total of 30 runs
repeated over 3 x 2 readers, for a total of 180 experi-
ments (for details see section 5 and Table 1).
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4.2 Performance Metrics

We collected the metrics listed below. We chose n=5
(the number of top relevant documents identified by
the retriever).

Retriever Recall: at n=5 reports how many actual rel-
evant documents (true positives, or TP) were shown
out of all actual relevant documents for the question.
Mathematically:

TP@n
tri n1en= — 6
retriever recall@n TP@n+FN@n (6)

Retriever MAP: for cases where n>1 (the retriever
returns a ranked set of relevant documents), aver-
age precision, or AveP(q), is a metric that evaluates
whether all of the true positive documents retrieved by
the system for a given question q are ranked higher or
not. The mean average precision, or MAP, is the mean
of AveP for all questions q € Q (Q is the total number
of questions).

18

= Y AveP(q) (N
Q=

Reader Top-n-Accuracy: measures the number of
times where the (ground truth) answer is among the
top n predicted answers (i.e. the extracted answer
spans).

retriever MAP =

Reader EM: the reader exact match metric, or EM,
is an uncompromising, rigid metric; it measures the
proportion of questions where the extracted answer
span exactly matches that of the correct (ground
truth) answer at a per character level.

Reader Fl-score: a measure widely used in binary
classification, is in this case computed over the in-
dividual words in the extracted answer span against
those in the correct (ground truth) answer, measuring
the average overlap between prediction and ground
truth. A good f1 score entails high classifications’ ac-
curacy (low false positives and negatives). The scores
range from O to 1, with 1 being a perfect score.

recall X precision
reader Fl-score = 2 x oo * Precision ®)
precision + recall

Precision and recall in this context are, respectively,
the fraction of shared words with respect to the total
number of words in the extracted answer span, and
the fraction of shared words with respect to the total
number of words in the correct (ground truth) answer.
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Fine-tuning Execution Time: measured in seconds
per epoch. This is of course a relative measure, totally
dependent on the power of the available computing
platform (see below). Anyway, it is insightful to
compare the time needed to fine-tune each of the
readers considered in this work.

4.3 Computational Platform

We opted to run most of the experiments over the
cloud, using Google Colab(oratory). The Pro+ ver-
sion yielded a virtual machine (VM) with the follow-
ing characteristics:

- 8-core Xeon 2.0 GHz

- 54.8 GB RAM

- 167 GB HDD

- 1 Tesla V100-SXM2 16 GB

Additionally, the VM had the capability of run-
ning in the background without the need for hu-
man intervention which made running multiple exper-
iments non-stop possible.

Running our experiments in Colab limited us to
initialize and run ElasticSearch locally each time the
notebook ran. A production setting would obviously
require a cloud-based or on-premises GPU-enabled
platform with access to a retriever (e.g. Elasticsearch)
server running in distributed or all-in-one-box fash-
ion.

S RESULTS AND DISCUSSION

Table 1 displays the assessment of mean predictive
performance of each retriever-reader configuration.
We use the plain-vanilla reader (no fine-tuning) as a
baseline for comparison purposes.

Each experiment was conducted 30 times, each
time recording the previously mentioned metrics. The
mean predictive performance of each configuration
was computed by averaging the 30 outcomes of each
metric, together with its standard error. In each vari-
ation, fine-tuning the reader on our domain-specific
dataset showed significant improvements in the F1
score and accuracy. The following improvements in
the reader F1 score were recorded: roBERTa gained
29.57 percentage points on average (49.20% from
19.63%); Electra showed an improvement of 35.49
points (48.78% from 13.29%); and Minilm gained
29.73 (46.25% from 16.52%). In terms of reader
accuracy, roBERTa gained 14.02 points (86.69%
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Table 1: Results of experiments.

RoBERTa ELECTRA Minilm
fine-tuned not ft fine-tuned | not ft fine-tuned not ft
Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

retriever recall 0.90 0.0056 | 0.89 0.0054 | 0.90 0.0041  0.90 0.0039 | 0.89 0.0041 | 0.89 0.0045
retriever MAP 0.68  0.0076 | 0.68 0.0050 | 0.69 0.0058  0.69 0.0049 | 0.67 0.0055 | 0.70 0.0050
reader accuracy | 86.69  0.5736 | 72.67 | 0.6669 | 85.64 | 04246 68.60 | 0.5300 | 84.85 | 0.5037 | 70.02 | 0.4591
reader EM 18.56  0.4307 | 5.99 0.3700 | 17.68 | 0.4759 1.87 0.1786 | 16.46 | 0.5250 | 2.87 0.1950
reader F1 49.20 0.6337 | 19.63 | 0.3889 | 48.78 | 0.5111 13.29 | 0.4084 | 46.25 | 0.6322 | 16.52 | 0.2763
ft exec time 76.59  1.2381 55.42 | 0.6500 28.79 | 0.3891

from 72.67%), Electra 16.84 points (85.64% from
68.60%), and Minilm improved 14.83 points on av-
erage (84.85% from 70.02%). Overall fine-tuned
roBERTa slightly outperformed the fine-tuned ver-
sions of both ELECTRA and Minilm.

The retriever component performed very well,
with recall and MAP values of 0.90 and 0.68 respec-
tively. We also computed the time in seconds per
epoch it took each model to fine-tune on our 594 ques-
tions dataset, recording the following average execu-
tion times: a) roBERTa - 76.59 s/epoch; b) ELEC-
TRA - 55.42 s/epoch; ¢) Minilm - 28.79 s/epoch. As
can be seen, ELECTRA and Minilm took consider-
able less time per epoch than roBERTa, a much larger
model, with Minilm’s execution time being close to
one third of roBERTa’s execution time. This could
have an impact if the training dataset is large and
training time is a relevant factor in the models’ de-
ployment.

Interestingly, we found that, despite roBERTa’s
robustness and significantly greater size. it did not
perform that much better than ELECTRA, which
showed the greatest gains in performance from fine-
tuning (35.5 points in F1 and 16.8 points in accu-
racy). This suggests that ELECTRA’s novel training
approach may provide a significant advantage over
bigger models such as roBERTa, specially when being
considered for production, given its similar accuracy
and faster training time.

6 CONCLUSIONS AND FUTURE
WORK

There is a plethora of benefits to be garnered by ed-
ucational institutions from applying these technolo-
gies, such as helping students (both incoming and
current) and families learn more about the institution,
guide students through the process of common tasks
such as enrolling in classes or deciding on a major,
to name a few. More importantly, it would help de-
crease the number of administrative tasks currently
conducted by staff, opening the door for allocating
those resources more efficiently. As a result of the

automation of the tasks involved in assisting students
and their families there is the added benefit of being
able to track what questions are being asked, how well
the Al replied to the question and the context of the
question. Leveraging these statistics can help an in-
stitution better focus staff on tasks and issues that are
most important and determine the areas of improve-
ment for the supporting systems and the ODQA appli-
cation. Further, it is conceivable that one could create
an evolutionary process that would automatically im-
prove the performance of the ODQA and by extension
the student support services.

Still, we do understand that under-budget and
time-constrained administrators may find such imple-
mentation challenging. In this paper, with the in-
tent of minimizing the resources required, we have
described a methodology for the implementation of
ODQA system by abstracting the process into gen-
eral components, and provided a detailed descrip-
tion of the extant literature. The goal of this re-
search is not centered on tuning the models for op-
timal performance: a larger dataset with several thou-
sand question-answer pairs would improve the perfor-
mance metrics, and would open a new research av-
enue: tracing performance metrics vs number of train-
ing instances in the fine-tuning process. This is cer-
tainly one aspect of this project which could be im-
proved.

We centered our efforts on sparse retrievers as
we did not find considerable benefit during the initial
tests that would justify the use of dense representa-
tions within the time constraints of this work. Still,
this is currently a hot topic of research, and there-
fore such configurations should probably be revisited
when considering the implementation of the retriever
component.

Moreover, other novel approaches could also
be considered in future work. For example,
recently Facebook researchers introduced a gen-
erative approach to Question-Answering, called
RAG (Retrieval-Augmented Generation) architecture
(Lewis et al., 2021). This alternative architecture im-
plements a dense retriever with a variation of BERT as
areader. Their innovation lies in the answering mech-
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anism: in addition to retrieving the best documents,
RAG generates answers -instead of retrieving the best
span of text- and complements the process by evalu-
ating relevant words within the retrieved documents
related to the given question. Then, all individual an-
swer predictions are aggregated into a final prediction,
a method which they found to enable the backpropa-
gation of the error signals in the output to the retrieval
mechanism, and with it potentially improving the per-
formance on end-to-end systems such as the one de-
scribed in this research. It would be therefore interest-
ing to gauge the performance of a RAG architecture,
compared to the architectures depicted in this paper.

Finally, we acknowledge that the methodology de-
picted in this research work could be applied in dif-
ferent industry sectors, but it does provide a roadmap
for researchers and practitioners in artificial intelli-
gence for higher education to implement open domain
question-answering systems. In this regard, this con-
ference is the right venue to promote a discussion on
these topics.
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