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Abstract: Sleep is a fundamental daily process of several species, during which the brain cycles through critical stages
for both resting and learning. A phenomenon known as dreaming may occur during that cycle, whose purpose
and functioning have yet to be agreed upon by the research community. Despite the controversy, some have
hypothesized dreaming to be an overfitting prevention mechanism, which enables the brain to corrupt its small
amount of statistically similar observations and experiences. This leads to better cognition through non-rigid
consolidation of knowledge and memory without requiring external generalization. Although this may occur
in numerous ways depending on the basis theory, some appear more adequate for homologous methodology
in machine learning. Overfitting is a recurrent problem of artificial neural network (ANN) training, caused
by data homogeneity/reduced size and which is often resolved by manual alteration of data. In this paper we
propose an artificial dreaming algorithm, following the mentioned hypothesis, for tackling overfitting in ANNs
using autonomous data augmentation and interpretation based on a network’s current state of knowledge.

1 INTRODUCTION

When considering the average human spends roughly
a third of their life sleeping (Colten and Altevogt,
2006), it is natural to want to understand the im-
portance of this necessity. Not surprisingly, stud-
ies have linked sleep to several cognition-related fac-
tors which affect daily life. For instance, as a foun-
dation for permanent establishment of recent experi-
ences (Deak and Stickgold, 2010) and understanding
of new knowledge (declarative or not). It is therefore
only natural to expect certain learning-related pro-
cesses to occur during sleep, such as data augmen-
tation and scenario simulation, which eventually re-
sult in enhanced perception when we awake. To ex-
emplify, these phenomena have been observed exten-
sively by Matt Wilson on rodents (Foster and Wilson,
2006).

One of the most fascinating aspects of sleep is the
occurrence of dreams: virtual concoctions of mem-
ory, emotion and knowledge, recent or consolidated,
which result in multi-sensorial experiences of dis-
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puted significance. Some researchers have argued for
an evolutionary take on dreaming, where brains have
developed the ability to simulate threatening or un-
resolved situations and determine the course of ac-
tion most likely to culminate with success and sur-
vival (Blackmore, 2012), (Adami, 2006). Others
recorded examples of active problem solving being
catalyzed on participants who, while dreaming, per-
ceived apparent solutions they were not consciously
aware of before (Barrett, 1993). This evaluation of
internalized problems during sleep is even congru-
ent with attempted task integration in dreams (Schoch
et al., 2019). Yet, dreamless sleep has also been
correlated with performance improvement and learn-
ing (Cao et al., 2020). In fact, neural pattern replay
typical of non-dream stages is critical for abstract-
ing core knowledge and consolidate memory, as ev-
idence suggests (Lewis et al., 2018). However, this
offers no concise explanation on the utility of idiosyn-
cratic episodes during other sleep stages. Further, the
odd and consistently scattered nature of dreams dis-
favors the objective usefulness of these unconscious
experiences in daily life, as noted by (Hoel, 2021).
Dream absurdity could still be associated with the
emotional factor of subconscious simulations, con-
tributing to a mental preparation by hyperbolization
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of potential scenarios (Scarpelli et al., 2019). How-
ever, the fuzziness of emotionality discourages the no-
tion that the same exact emotional state could contin-
uously be experienced until a numbness is developed.
Indeed there is an abundance of open-ended theories
of sleep in the fields of Psychology and Neuroscience.
Yet, traversability to current machine learning seems
more plausible with the Overfitted Brain Hypothesis
(OBH) (Hoel, 2021). This notion envisions the brain
warping the statistically proximal instances observed
throughout a day, in the form of dreams so as to pre-
vent its overfitting. This begs the questions: Could
dreams function as our data augmentation process for
finer abstraction? If so, can ANNs benefit from a sim-
ilar capability?

The scarcity of definitive example cases and dis-
tinct data instances available during the day seems
contradictory to the generalization capabilities of the
human psyche. Moreover, the intuitiveness of the
brain is what enables condensation of experiences
with incorporation of scattered priors to generate new
intelligence (Dubey et al., 2018). Therefore OBH be-
comes increasingly plausible, as the corrupted data of
dreams could function as a source of creativity in ma-
chines. To exemplify, statistical corruption of data as
that performed by Google’s DeepDream (Mordvint-
sev et al., 2015) has been used for multi-candidate
dreamed object classification, through correlation of
real image feature vectors and decoded brain activity
patterns obtained from sleeping subjects (Horikawa
and Kamitani, 2017). Thus a logical next step would
be to employ these data warping techniques in gen-
erating augmented data for ANNs to improve their
training. Evidently not following the same proce-
dure as the original training of the model, but imple-
menting certain biological aspects outlined by OBH
which prevent overfitting. To summarize, this pa-
per advocates for potential overfitting prevention in
ANNs through augmentation of input data based on a
model’s current knowledge, most similar to the imag-
inative characteristics of real dreaming.

2 BIOLOGICAL SLEEP

Sleep is commonly registered as alternating between
two stages over the course of a single session, namely
REM (rapid eye movement) and NREM (non-REM)
sleep. Opposing wave activity makes for an easy dis-
tinction between the two stages (Martin et al., 2020).
Whilst slow-wave activity (SWA) is characteristic of
NREM, the accentuated excitatory-inhibitory oscillat-
ing behavior gradually stabilizes as the brain cycles
to REM and shifts to higher frequency (gamma) ac-

Figure 1: Dream data augmentation, from left to right.
Dream starts either by random memory access or activation
of brain structures. Based on current knowledge, personal
interest, persisting thoughts and others, the dream is mor-
phed to match the current state of the brain. Simultaneously
it attempts to interpret this information in order to form a
response to it. Consequently, it helps negate latent overfit-
ting.

tivity. This shows a potential inverse correlation be-
tween SWA decrease, gamma increase and dream in-
tensity/recallability (Siclari et al., 2018). Moreover,
as replays of previous neural activity, NREM experi-
ences are recalled as mundane and memory-related.
Contrastingly, REM episodes display a surrealistic
disposition (Manni, 2005). It is therefore presumable
that NREM sleep accounts for the consolidation ne-
cessities of the brain, while REM deals with the cog-
nitive and data augmenting aspects detailed by OBH.
As such, our approach could be interpreted as sim-
ulating an artificial REM phase, whilst conventional
training would correspond to NREM, and finally post-
training usage be homologous to wakefulness.

2.1 REM Augmentation

During REM sleep, the brain resembles its awake
state with intense bursts of activity occurring in a
seemingly random fashion. In addition to these
desynchronized and fast brain waves, the body tran-
sitions to a new homeostatic balance (Ranasinghe
et al., 2018) whose objectives differ from the usual
optimized functioning. Thus the brain is capable
of processing information in a manner unconven-
tional with its waking operation, which suggests an
exploration-exploitation dichotomy resonating with
sleep-wakefulness. This would also be supported by
the decreased activity of the prefrontal cortex, respon-
sible for logic and planning, during REM dreaming
which allows the dreamer to forgo risk aversion and
consider novel associations (exploration). As such,
considering OBH and how the small amount of ex-
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amples available to a real brain does not hinder its
recognition abilities in real life, it is possible that data
augmentation occurs during REM sleep.

Since the brain does draw from general knowl-
edge, memory and episodic information to simu-
late scenarios of what it perceives (Foulkes, 2014),
(Domhoff, 2003), a process through which biological
dream data corruption can occur involves taking sta-
tistically similar observations idly flowing through the
brain and forcing a set of patterns on them for inter-
pretation according to what the brain knows and com-
prehends. Logically these must also correspond to the
patterns most likely to fit on the initial data, and as
the dream progresses they may be enhanced to form
decipherable examples of either novel or recurring in-
formation. A diagram of this hypothesis is shown on
Figure 1 using visual data, despite the process’ ap-
plicability to other data types. In the figure an initial
dream of clouds is forced with broad stroke animal
shape patterns, likely according to the subject’s inter-
ests and curiosity, which are afterwards interpreted as
valid yet soft object recognition examples. Finally,
this bio-based theory can be readily adjusted for ma-
chine learning as we detail in the following section.

3 ARTIFICIAL SLEEP

Much like the human brain functions according to
OBH, with artificial sleep our primary objective is
to come up with a mechanism for overfitting self-
prevention in neural networks. This encompasses a
conditional extra training stage during which models
”dream”, augmenting or inferring data. Such a pro-
cess could be integrated in most ANN frameworks
and architectures with little effort.

3.1 Hypothetical Formulation

The intense but incoherent neural activity approxi-
mating REM sleep to wakefulness suggests a contin-
uous attempt of the brain to correlate and make sense
of information flowing through it, which can only oc-
cur in accordance with the knowledge available. The
source of this information can, from our perspective,
be two-fold: noisy input, caused by random activa-
tion of certain neural regions or external stimuli to a
dormant system; objective albeit out-of-context input
from memory accesses induced by the shifted elec-
trical connectivity of a brain in REM sleep. This
rewiring could explain REM sleep’s lack of correla-
tion with neural replay, opposing NREM. In any case,
those special inputs are adulterated by the network
which tries to process them, inadvertently acquiring

Figure 2: Deepdream’s maximization of layer activations
used for augmentation of non-relevant data (rocky forma-
tions) on the left. The resulting image on the right, with
relevant information (buildings resembling pagodas), using
a network trained on places by MIT Computer Science and
AI Laboratory as presented in (Mordvintsev et al., 2015).
The new image could be useful for disrupting overfitting, as
the network continues training on place identification, using
soft labels to account for its augmented characteristics (i.e.
the pagodas).

attributes specific to its current state of knowledge
and structure. Homologously, ANNs can be made to
integrate global patterns of learned data on new ex-
trinsic data instances through excitation of the layers
which detect them (Mordvintsev et al., 2015). Even
though DeepDream’s usage has exclusively targeted
visual data, the premise still holds for any other input
type, provided the goal is not solely art generation.

Generalizing DeepDream’s maximization of layer
activations to non-image processing networks can
yield outputs with little meaning to human interpre-
tation, even artistically speaking. Yet to the models
inducing the patterns themselves, the resulting repre-
sentations will feature non-relevant data augmented
by relevant information (e.g. speaker X characteris-
tics integrated into the sound features of an animal
cry, by/for a speaker recognition model). An exam-
ple of this augmentation, specifically on visual data
in order to be more easily comprehensible, is shown
in Figure 2. If employed correctly, these fabricated
examples can be useful in terms of overfitting disrup-
tion. With that in mind, the question comes down to
how the examples should be perceived post-dream, by
the networks which generate them. Labels should re-
flect both the original and augmented characteristics
of the corrupted data, so that its combination may en-
able new knowledge inference. Further, this labeling
process must not influence the parameters of a net-
work, as it would most likely lead to catastrophic
interference. Minor forgetting of overfitted details
should not be disregarded entirely as it could prove
useful, and may be added to the presented technique
in the future.

The ambiguity of artificial dream data characteris-
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tics is also congruent with real dream recalling (often
fuzzy). To account for this level of imprecision while
simultaneously assuring the usability of that data, the
generated labels must necessarily be soft. This is im-
perative to the implementation, as it is more accu-
rate to human memory and likely the reason for our
occasional confusion. Labels can then be learnable
as dream data is iteratively interpreted according to
the current state of a model’s knowledge. Hence la-
bel updates would minimize the impact of their cor-
responding instances on the training of that model.
This process is agreed to have potential since Soft-
Label Dataset Distillation (Sucholutsky and Schon-
lau, 2019) has used a similar notion successfully. In
it, distilled labels are perfected to minimize the error
of a model on real data, when trained with a single
forward pass of distilled data.

Finally, the conjectural nature of dream elements
requires an escape in case no interpretation is found
plausible by the network. In the case of humans, when
dealing with content we are unable to make sense
of, a “nonsense” classification is frequently employed
and that specific content later disregarded. Respec-
tively, the same can be implemented in ANN dream-
ing with an additional absurdity class which accounts
for meaningless dream aspects. This class can later be
ignored for post-dream model purposes such as recog-
nition applications.

3.2 Workflow

A fundamental requirement of this algorithm is its
applicability to existing neural network frameworks.
As such we attempted to use typical nomenclature
as much as possible. Additionally, from here on we
employ the same basic notation as (Sucholutsky and
Schonlau, 2019), which presumes a K-layered neural
network f parameterized by θ, with typical backprop-
agation based on a twice-differentiable loss function
l1(xr

i ,y
r
i ,θ). The goal of such models is usually to

find an optimal set of parameters θ∗, using a training
dataset r = {xr

i ,y
r
i}N

i=1, according to (1).

θnew = argmin
θ

1
N

N

∑
i=1

l1(xr
i ,y

r
i ,θ)

, argmin
θ

l1(xr,yr,θ)

(1)

This is achieved iteratively with small batches of
training data and stochastic gradient descent (SGD),
according to (2), where η denotes a preset learn-
ing rate. Even though additional parameters may be
present, such as a momentum α, we disregarded these
for the sake of simplicity as our technique is indepen-
dent from them.

Figure 3: Overview of the neural network’s workflow, with
the dream stage being used as a mechanism to tackle over-
fitting.

θt+1 = θt −η∇θt l1(x
r
batch,y

r
batch,θt) (2)

Assuming that at some moment t > 1 the network
is deemed overfitted, training is halted and a dream
process starts to disrupt the overfitting. Following
the hypothesis described in the previous section, this
process can be divided into 4 major phases: initial-
ization, augmentation, interpretation and assessment.
These are shown orderly in the flow diagram of Fig-
ure 3. The first is meant to parallel the random flow
of information occurring in REM sleep. Here we
consider a dream dataset d = {xd

i ,y
d
i }L

i=1 whose in-
stances, named augmentation themes, each make up
the general setting of a single dream and which will be
augmented using a model’s current knowledge. The
main requirement for d, however, is that it must not
include data existent in the regular dataset r being
used for training. There are several ways to achieve
this, depending on data availability, application goals
and other factors. The most simple would be noise
initialization, in which case each theme would have
no inherent meaning. Real data may also be used,
in which case it may or may not be related with the
training dataset. In the former case, data can be split
into train, test and dream data to accommodate this
extra set, whereas in the latter, data may be sourced
from another completely unrelated dataset with the
imposition of it being available in the same modal-
ity as the training dataset (e.g. using face images
as themes when training with CIFAR10 (Krizhevsky
et al., 2009) datasets).

The second phase is meant to incept knowledge
the network already possesses onto the dream themes.
This is achieved through a loss objective L2, which
depends on layer activations a = fθ(xd) (i.e. chosen
layers’ outputs given a forward pass of a theme). The
augmentation stems from the excitation of a few ran-
domly chosen layers k ∈ K \ {input,out put}, which
will force the patterns they generally identify into
the themes they receive. Considering network layers
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deal with different levels of abstraction and feature
complexity, as described in the functioning of Deep-
dream (Mordvintsev et al., 2015), depending on fac-
tors such as depth and purpose each layer will impose
different characteristics on the data being augmented.
This is achieved using a differentiable loss function
l2(xdbatch,ak) based on layer activation, calculated in-
dividually for each theme.

L2(x̃d ,θt) := l2(x̃d ,ak) (3)

x̃d
new = argmax

x̃d
L2(x̃d ,θt)

= argmax
x̃d

l2(x̃d ,ak)
(4)

With new and possibly meaningful information
now present on the themes post-augmentation, the
third phase is carried out based on the one-step
loss objective L1, here minimized by learning those
themes and their corresponding labels, for θ1 = θ0−
η∇θ0 l1(x̃d , ỹd ,θ0).

L1(x̃d , ỹd ;θ0) := l1(xr,yr,θ1) (5)
However, this minimization of the L1 objective is

carried out over ỹd only, and it does not consider x̃d as
dataset distillation (Sucholutsky and Schonlau, 2019)
would. That is because we intend for the model to
merely interpret dream data rather than optimize it ac-
cording to its current knowledge.

ỹd
new = argmin

ỹd
L1(x̃d , ỹd ;θ0)

= argmin
ỹd

l1(xr,yr,θ0−η∇θ0 l1(x̃d , ỹd ,θ0))
(6)

Evidently, the greater number of times the sec-
ond and third phases are carried out, the more preva-
lent the forced patterns will be on each dream theme
as well as the network’s interpretation of them. Ad-
ditionally the number of recognized classes, whose
vector is updated by (6), is also extended to include
an absurdity class which can be dropped once the al-
gorithm concludes, as noted in the previous section.
Algorithm 1 realizes the described procedure for im-
plementation. Once the algorithm finishes its execu-
tion, the resulting pairs of augmented dream themes
and soft labels are integrated into the regular dataset
r to complete the fourth and last phase of the dream-
ing process. Finally overfitting disruption occurs once
regular training is resumed and goes through these
new data samples.

3.3 Advantages and Limitations

Despite its capability to modify existing data with
information meaningful to the training being carried

out, this technique is not similar to data augmenta-
tion performed by generative models. Some advan-
tages include its architecture agnosticism, as the al-
gorithm is applicable regardless of network architec-
ture. This is unlike generative data augmentation,
where typically a full model or extra generative sec-
tion is added to the main architecture, and trained to
augment data, incurring additional memory and com-
putational power requirements. Additionally, genera-
tive data augmentation does not have an interpretation
phase following the network’s current state of knowl-
edge, with labels being retained from the original data
source or inferred from latent space distribution.

Algorithm 1: Overfitting Disruption.

Input: M: Number of themes to occur during dream; α:
step size; n: batch size; T : Dream depth in steps; ỹd

0 :
initial value for ỹd .

Output: Augmented dream data (x̃d ,ỹd).
Dream Data of Theme Initialisation :

1: ỹd = {ỹd
i }M

i=1← ỹd
0

2: x̃d = {x̃d
i }M

i=1 randomly OR sample batch from dream
dataset d

3: for each training step t = 1 to T do
4: for each layer k ∈ {randomly chosen layers} do
5: for dream theme x̃d

i do
6: Forward pass the theme
7: Evaluate objective function on activations

L(k,i)
2 = l2(x̃d

i ,ak)
8: end for
9: Compute updated model parameters with SGD:

θ1 = θ0−η∇θ0 l1(x̃d , ỹd ,θ0)
10: Evaluate objective function on real training data:

L(k)
1 = l1(xr

batch,y
r
batch,θ

(k)
1 )

11: end for
12: Update dream data:

ỹd ←− ỹd −α∇ỹd ∑k L(k)
1 , and

x̃d
i ←− x̃d

i +α∇x̃d
i

∑k L(k,i)
2

13: end for

As any other technique however, the presented al-
gorithm also has its drawbacks. Specifically the cor-
ruption of dream themes with training data patterns,
which relies on gradient ascent, imposes a compu-
tational cost proportional with dream depth (i.e. the
depth of the layers whose activations are maximized
over the themes, through gradient ascent). Nonethe-
less, this increase is coherent with the processing in-
tensity of a brain in REM sleep which, according to
energy expenditure, matches and often exceeds that
of wakefulness. Another depth-related potential is-
sue is related with the escape absurdity class included
in the soft label vectors of the dream data. The shal-
lower the dream process is made to be, the more likely
it is that the network will be unable to interpret the
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Table 1: Exemplary run of two CIFAR10 images as themes (top - airplane, bottom - ship) over a single dream iteration, using
a double-layered CNN trained exclusively for MNIST handwritten digit recognition. ’Original’ rows show the untouched
CIFAR10 images, while ’Conv1’ and ’Conv2’ each refer to a 800-step run of the Deepdream technique over the CIFAR10
images activating the first and second convolutional layers, respectively. Probabilities, shown as percentages, refer to the
evaluation of their respective images by the MNIST-trained CNN (i.e. the soft-labels they would attributed after this initial
iteration).

O
ri

gi
na

l

13.7 4.8 15.9 6.5 14.8 5.2 10.2 2.3 23.6 3.0

C
on

v1

0.0 0.0 10.1 0.0 0.0 0.0 0.0 0.0 89.9 0.0

C
on

v2

0.0 0.0 83.1 1.3 0.1 12.1 0.0 0.7 2.7 0.0

O
ri

gi
na

l

41.4 0.3 16.8 5.0 3.7 0.6 16.2 0.0 15.8 0.2

C
on

v1

0.0 0.0 98.9 0.9 0.0 0.0 0.0 0.0 0.2 0.0

C
on

v2

0.0 0.0 66.0 7.8 0.0 26.1 0.0 0.1 0.0 0.0

theme which it augments. As a consequence, the ab-
surdity class can overwhelm the others in the label
vector, making the augmented instance insignificant
for later overfitting prevention purposes. It should be
noted however that either of these issues can be mit-
igated with enough dream depth. As such, they can
be negligible if enough computational resources are
available or no critical time constraints are imposed
for training.

4 DEMO POTENTIAL AND
FUTURE WORK

The presented procedure is a working idea. However,
as demonstrated in Table 1, it clearly shows poten-
tial in terms of autonomous data augmentation. De-
spite the fact that CIFAR10 images are completely un-
related with handwritten digit recognition, the forc-
ing of patterns over those images by a CNN trained
with the MNIST (Deng, 2012) dataset yields data with
potentially meaningful information to that same net-
work, which may disrupt the eventual monotony of
training data and consequential overfitting. The inter-
pretation phase assures this by allowing the network
to label the results according to its current state of
knowledge, so they may be later added to the train-
ing set. For instance, in Table 1 the image of a ship
enhanced by the second convolutional layer of the
MNIST-trained CNN produces something closely re-

sembling the digits 2, 3 and 5. Since the CNN applied
here was not overfitted, its low loss implies that it is
more certain of its predictions than an overfitted coun-
terpart would be. Thus, more digits could possibly
also be interpreted by the network, were it overfitted
or also if more iterations were carried out.

Evidently, specific experimental scenarios are re-
quired for validation. With that in mind, in addition
to the ongoing implementation of the described algo-
rithm, we plan to devise adequate experiments for its
validation. This will include but is not limited to:

1. Comparison of integration in shallow and deep
ANNs;

2. Performance assessment with different data types;

3. Exploration of layer suitability for excitation;

Ultimately we intend to build on this first autonomous
step against overfitting, until obtaining a technique ca-
pable of dealing with the greatest amount of scenar-
ios possible, while also being applicable to common
ANN architectures.

5 CONCLUSION

Research into the intricate cognitive aspects of sleep
is ongoing and contributing to a growing understand-
ing of dream phenomena. Despite the potential use-
fulness of such advancements in addressing common
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issues of machine learning, such as overfitting, there
is a continuous disregard for neuroscientific findings.
Ultimately the issues remain latent in machine learn-
ing models, consistently hindering their performance
until being resolved through manual intervention.

Our position reflects support for the introduction
of a dream stage in the training process of machine
learning models, to function as a self-sufficient mech-
anism for preventing overfitting. To this end, we pro-
posed an artificial ”dreaming” algorithm to achieve
this goal in ANNs. The process works by augment-
ing data through excitation of layer activations and
interpretation of that same data according to current
model knowledge. We hope to obtain successful re-
sults in the future with the implementation of the out-
lined ANN ”dreaming” procedure, further supporting
general autonomy in artificial intelligence.

ACKNOWLEDGEMENTS

This work was supported in part by scholarhip
2020.05620.BD of the Fundação para a Ciência
e a Tecnologia (FCT) of Portugal and OE - Na-
tional funds of FCT/MCTES under project number
UIDB/00048/2020.

REFERENCES

Adami, C. (2006). What do robots dream of? Science,
314(5802):1093–1094.

Barrett, D. (1993). The ”committee of sleep”: A study
of dream incubation for problem solving. Dreaming,
3(2):115–122.

Blackmore, S. (2012). Consciousness: an introduction. Ox-
ford University Press, New York.

Cao, J., Herman, A. B., West, G. B., Poe, G., and Savage,
V. M. (2020). Unraveling why we sleep: Quantita-
tive analysis reveals abrupt transition from neural re-
organization to repair in early development. Science
Advances, 6(38).

Colten, H. R. and Altevogt, B. M. (2006). Sleep Disor-
ders and Sleep Deprivation: An Unmet Public Health
Problem. The National Academies Press, Washington,
DC.

Deak, M. C. and Stickgold, R. (2010). Sleep and cognition.
WIREs Cognitive Science, 1(4):491–500.

Deng, L. (2012). The mnist database of handwritten digit
images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142.

Domhoff, G. W. (2003). The scientific study of dreams:
Neural networks, cognitive development, and content
analysis. American Psychological Association.

Dubey, R., Agrawal, P., Pathak, D., Griffiths, T., and Efros,
A. (2018). Investigating human priors for playing

video games. In Dy, J. and Krause, A., editors, Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 1349–1357, Stock-
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