
Irreversible Applications for Windows NT Systems

Rahul Sankalana Gunawardhana1 a and Kavinga Yapa Abeywardena2 b
1Faculty of Graduate Studies and Research, Sri Lanka Institute of Information Technology, Colombo, Sri Lanka

2Faculty of Computing, Sri Lanka Institute of Information Technology, Colombo, Sri Lanka

Keywords: Anti-reverse Engineering, Anti-cheat, Third Party Monitoring, Anti-debug, Windows NT.

Abstract: Anti-reversing or anti-debugging mechanisms refer to the implementations put in place in an application that
tries to hinder or completely halt the process of debugging and disassembly. The paper discusses the
possibility of a monitoring system that would prevent any debugger from debugging a given process in a
Windows NT environment. This project aims to facilitate a similar concept present in that of anti-cheat
monitoring programs in online games for commercial products and applications. In contrast, an anti-cheat
product monitors the game's memory pages for direct or indirect modifications either via internal (within the
process) mechanisms such as hooks and DLL injections or external mechanisms such as Read Process
Memory (RPM), Write Process Memory (WPM), named pipes, sockets. In many other scenarios, the anti-
debug program would monitor a selected process for attempts of debug or disassembly.

1 INTRODUCTION

De-compilation and debugging of commercial
software or software in general that are not released
under the GNU GPL/Open-Source Category
prohibits any person from altering the code at any
given level of execution. Thus, this is difficult to
achieve considering the technological advancements
at present. Free and Open-Source debugging and de-
compilation tools have led to widespread knowledge
in the reverse engineering area making the protection
of source codes at commercial level almost
impossible. For this reason, experts have utilized
many techniques over the years to mitigate the issue
of de-compilation and debugging using various
techniques. Some are provided by the API of an OS
itself while some get developed when observing the
internal changes present when a process of debugging
or decompilation starts. The latter is effective for the
majority of cases since these changes are
undocumented and therefore bypasses for these
mechanisms rarely exist.

Most modern techniques of reverse engineering
rely mainly on the operating system and its provided
API functions to prevent debug and disassembly.

a https://orcid.org/0000-0001-6072-8544
b https://orcid.org/0000-0001-7089-1476

However, this is inadequate and can be bypassed
easily using simple patches.

For the Windows environment, the papers
(Canzanese, 2012) and (Marpaung, 2017) discuss the
possibilities of mitigating the issue of disassembly
and debugging through API (Application
Programming Interface) functions of Windows and
internal Windows structures accessed by those
functions. However, these could be easily mitigated
or bypassed using suitable mechanisms as stated in
(Canzanese, 2012) since most of them are
documented and are available publicly.

Exploits or vulnerabilities within applications are
concerned as the main medium of entry into gaining
unauthorized control over a system. Unlike social-
engineering which relies on the weaknesses of human
beings, these take a more technical aspect as an
attacker would have to identify the vulnerabilities and
come up with ways to exploit them without triggering
any detection mechanisms implemented in the
system. The way an exploit is developed for a
particular application or software is first by analyzing
it for its weaknesses. These weaknesses can be in the
form of stack or buffer overflows, dangling pointers,
weak references and many other scenarios. The
finding of these types of vulnerabilities were made

Gunawardhana, R. and Abeywardena, K.
Irreversible Applications for Windows NT Systems.
DOI: 10.5220/0011051700003283
In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 479-484
ISBN: 978-989-758-590-6; ISSN: 2184-7711
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

479

possible due to the ease of reverse engineering an
application. However, if there exists any possibility to
make that process extremely complex or even
impossible, then the surfacing of such exploits would
be rendered extremely unlikely.

The idea for this mainly comes from online
gaming and their anti-cheat systems. Anti-cheats are
third party software present in a computer that
monitors and detects arbitrary modification to the
process’s memory, execution flow or its file
components. These detect anomalies affecting the
games memory by having a constant memory scan
and a look up for different programs by using
techniques such as signature detection, page hooks,
mini filters, stack walking etc.

2 BACKGROUND AND RELATED
WORK

2.1 What Is an Anti-cheat?

In this discussion, the main focus would be regarding
client-sided anti-cheats in which the general concept
of this paper was derived from.

2.1.1 Server-sided

These types of anti-cheats are implemented at the
server. The purpose of them is to verify the data that
is being sent to the server and to perform analysis on
player statistics (Peter Laurens∗, 2007) in order to
determine whether they are cheating or not. This is
not the only type of server-sided anti-cheat that is but
currently, the most advanced type of implementation
that can happen at a server and this generally happens
using rules. One advantage of using this type of anti-
cheat implementation is that the typical bypassing
methods relevant to client-sided anti-cheats are
useless since an attacker has less access to a server
than they would to a physical computer.

2.1.2 Client-sided

This concept is the main focus area on this paper.
There are mainly two types of client-side anti-cheats
as kernel and user-mode but these will not be
discussed in detail due to the fact that it generally
refers to the privilege level that the anti-cheat is
operating on. Client-side anti-cheats are basically
programs that monitor the system state and the game
state at the client’s end. By system state it means the
enumeration of system processes, handles, loaded
modules and memory. More advanced systems also

perform integrity checks on both system and game
files in both live and stored memory.

To summarize, a well-established anti-cheat
consists of several modules that work together. In
kernel level anti-cheats these usually consist of a
Windows service, driver and a detection module that
gets mapped into the client process(game) at runtime.
However, in the user-mode only the driver is absent.
The use of having a driver is that it blocks user-mode
attempts at gaining access to the targeted process
using functions such as OpenProcess,
WriteProcessMemory, SetWindowsHookEx etc.
These are achieved using minifilters and preventive
callbacks (ObRegisterCallbacks) at the kernel level.
To achieve this, the anti-cheat drivers, services and
the detection modules need to get mapped into the
client (game) file before the client execution starts.
This could be achieved using TLS Callbacks. One
main advantage of these types of callbacks is that they
happen before the OEP (Original entry point) is
called. Usually these anti-cheats have a ‘heartbeat’.
This is in the case that someone simply terminates the
anti-cheat process while the client is still running.
Having a heartbeat prevents the execution of the
client when the anti-cheat is not present. The
heartbeat module has to be in both the anti-cheat and
the client and has to have a regular challenge-
response type communication either via named pipes,
sockets, mapped files etc, to determine whether or not
both of them are running

A new layer of complexity can be introduced into
reverse engineering an application if this concept of
anti-cheats can be established within the general
software development. This would not only mean that
the reverse engineer would have to know about the
anti-debug and anti-disassembly mechanisms present
within the binary itself but should be able to
circumvent a monitoring system that is capable of
detecting debuggers via different methods.

3 METHODOLOGY

3.1 Initial Prototype

The initial prototype was developed in order to assess
the effectiveness of the anti-debug mechanisms
currently present. Even though these were not
explicitly used in the final monitoring system, these
will be used by the self-defense mechanisms present
within both the monitoring system and the mapped
DLLs that was made afterwards.

The formatting and the general organization of the
prototype version was not considered to be important

SECRYPT 2022 - 19th International Conference on Security and Cryptography

480

as it was primarily done in order to demonstrate and
analyze the effectiveness of the current anti-debug
mechanisms. Credits to referenced authors and source
code are given in the source code itself. There are
several routines that can be considered as main
components in this iteration of the implementation
which will be discussed below. The prototype was
developed to be able to be used as either a TLS
callback or injected as a DLL.

3.1.1 Program Execution Flow

Figure 1: Prototype Execution Flow.

3.2 Final System

This system utilizes the main focus point of this
discussion which is the concept of third party
monitoring similar to that of anti-cheats present in
online gaming leagues. Although the implementation
specifics were detoured from the original concept
idea which was taken from the BattlEye anti-cheat
system, the base idea remains the same. The BattlEye
system consisted of mainly 4 components which were
at both the server side and the client side. Even though
having a server side is the much more viable and fool-
proof option, in this particular implementation the
server side was not taken into consideration. The
main components of this system are as follows,

1. MNS-Console
2. MNS-DLL
3. MNS-Driver

MNS-Console is a console application that is
utilized as the third-party monitoring application.
MNS-DLL component is the DLL that will get
mapped into the process that is being protected by this
system. MNS-Driver is the kernel level
implementation that is responsible for stripping
handle access and providing all the kernel level
detection mechanisms. It is important to understand
that all of these components are interconnected and
use inter process communications (IPC) in order to
determine that they are still running. This is where the
heartbeat implementation comes into place. This
ensures that no component is executing alone at a
time but instead all are executing at all times. The
main functionality of the heartbeat is to ensure the
overall cohesion of the monitoring system.

https://github.com/sank20144/MNS-System.

3.2.1 Program Execution Flow

Figure 2: MNS Execution Flow.

3.2.2 Defects in the System

One of the main defects in the current implementation
is the fact that it is difficult to determine whether a
thread has been completely suspended. The system
mainly relies on several threads in order to implement
the desired functionality and each thread is hidden
using an undocumented method, but it does not mean
that it is not possible for an attacker to discover and
access the particular threads. There are several
restrictions in place to stop such an attempt such as
the callbacks registered using the driver but it is
possible to mitigate them using several methods as
well. The operating system suspends certain threads
periodically with regards to its scheduling algorithm.
Any documented method of obtaining the state of a
thread would produce false positives in this matter
since it cannot determine whether the thread was
suspended by the operating system or by an attacker.

Irreversible Applications for Windows NT Systems

481

A fix would be to monitor the threads for termination
and not suspended state but it is possible to just set
the thread to be suspended indefinitely without
terminating it. A possible solution for this would be
to check the suspended time on each thread and
determine whether they have been suspended for an
unusual amount of time, but the implementation of
this solution would have to be specific since
suspension times can vary due to various reasons
from the operating system as well. In the current
implementation, the only thread that would produce a
detection vector when suspended would be the
heartbeat thread since both the driver and the user
mode application operates upon it. Another defect is
present in the driver. Both the user mode application
and the protected process utilize API functions and
subroutines from the driver to enable their self-
defence mechanisms but the driver does not
implement such features. Due to this fact it is possible
to simply unregister the callbacks registered by the
driver if an attacker is able to map a driver of their
own. The only method preventing rogue mapping of
drivers is checking for test signing policy through the
user mode application. However, it is possible to
manual map drivers into kernel space without a valid
certificate using methods such as through vulnerable
drivers. The implemented heartbeat system is vague
and could be improved upon. This is due to the fact
that only the heartbeat thread is responsible for
carrying out the communication between the driver.
This means that the heartbeat thread could be
terminated or simply suspended in order to bypass the
entire implementation. A solution for this would be to
create a system thread of its own through the driver
and synchronize the heartbeat process through them.
Another major weakness would be the fact that the
monitoring system does not perform any integrity
checks on itself and the files. An attacker would be
able to patch system routines and monitoring system
files in order to circumvent most of the detection
mechanisms. The files include system files as well.
Obtaining hash values for all system modules in each
distribution of Windows would be a tedious and long
task that would not be fruitful when achieving the
ultimate goal of developing this system, which is to
introduce a new method of approach to anti-
debugging and anti-disassembly.

4 TESTING THE SYSTEM

In these scenarios, we will attempt to cloak the
x32dbg debugger using various methods and attempt
to debug a protected application. The effectiveness of

the monitoring application will be decided on the
following criteria.

1. Detection
2. Traceback
3. Termination – Not carried out

Detection refers to the ability of the monitoring

application to detect any debugging attempts done to
the protected application. Detection criteria will be
triggered if Hooks, Suspicious handles to the process,
presence of a dormant (installed but not running)
debugger within the system, injected modules,
manually mapped modules are discovered.

Suspicious handles are handles to the application
created by untrusted processes. Untrusted processes
refer to processes without a valid digital signature or
forged signatures and processes containing
(Microsoft, Debug Privilege, 2017) SE_DEBUG
privileges. System processes are excluded from this
detection vector since most of the system processes
contain this privilege in latest Windows builds.
Furthermore, registry values will be observed in order
to determine whether certain analysis tools and
processes are installed within a system. If a detection
has occurred, the monitoring application would try to
traceback to the process responsible. In the
termination phase, the monitoring application would
try to determine if the process obtained through the
traceback is eligible to be terminated. The termination
would occur in two separate ways by either
terminating the process that triggered the detection or
terminating the protected process itself. The latter
method is used in case the monitoring application is
unable to terminate the debugger. The monitoring
program should only protect the protected
application. It should not prevent debugging attempts
done to other applications which are not protected by
the monitoring system. Therefore, traceback and
termination should not happen in the case of a
debugger debugging another application which is not
protected. The monitoring system is designed to
traceback and log the triggered detection vector and
the actual termination of the responsible process or
tool is not carried out since it will be difficult to
monitor the effectiveness of the system and log the
required details. Therefore, a traceback is determined
as a successful termination. One major issue during
testing was the fact that since thread hiding is enabled
it is difficult to attach a debugger to any application
without it crashing since there are no visible threads
in the process. A way to bypass this would be to byte
patch the executable (timb3r, 2019). However, this
would be impractical in most test scenarios therefore

SECRYPT 2022 - 19th International Conference on Security and Cryptography

482

the thread hiding feature was disabled during the
testing phase for several of the tests that were carried
out.

4.1 Test Cases

The following set of functions will be hooked to
protect the debugger. All of the function hooks will
be achieved using ScyllaHide. There are other plugins
for x32dbg debugger that are used to hide the
debugger but they all utilize at least one of these
functions which are all available to be configured via
ScyllaHide. Local hooks will be placed inside our
predetermined application while global hooks will be
attempted via SetWindowsHookEx. (fisherprice,
2020) VAD hiding will attempt to remove the
debugging application from the current active process
list. The following set of functions will be hooked
individually and as groups at certain test cases. And
finally, the debugger process will be hidden using
VAD hiding and attempted to debug the protected
application with the help of ScyllaHide and all of its
functions.

Figure 3: Hooked function list.

4.2 Test Results

The monitoring system and its capabilities were
tested from a reverse engineer’s perspective in order
to determine its effectiveness and it yielded the
expected outcome which was to detect, prevent or
further complicate the process of debugging done to
an application. The tests were carried out targeting
several components of the system such as the user
mode application and the protected process and the
current design was able to prove that the system
accomplishes its designated task in all of the testing

environments. There were 20 test cases carried out
trying to debug the protected process and 3 test cases
trying to circumvent the monitoring system, this
equates to 23 test cases carried out per test
environment and a total of 115 test cases carried out
across all the testing environments.

Out of the 115 test cases that were carried out only
1 test case produced negative results. This was the
Test case 5.14. The test was to open the debugger
using SE_DEBUG privileges and monitor for
detection vectors triggered by the monitoring system.
The monitoring system was unable to detect
processes with SE_DEBUG privileges. However, it is
safe to conclude that the monitoring system achieved
its desired functionality across several builds of
Windows operating system since 114 of the total 115
test cases were successful.

5 CONCLUSION

This research was carried out in inspiration of
introducing a concept from the online gaming
community to the reverse engineering discipline. The
main problem that leads to this research is the
debugging and de compilation of software not
published under the GNU/GPL license. In short,
every product or source code not published under this
license prohibits unauthenticated reversing and
decompilation of the particular software product.
There are mechanisms built by both the operating
system and software developers that can be used to
detect and mitigate these events but they are not very
effective. This can be clearly seen in the prototype
implementation carried out in this research. It
implemented all the known anti-debugging
mechanisms present into an application that
implements them but it presented many drawbacks
within the system that could be easily known and
abused by an experienced reverse engineer. There
were 29 current anti-debug mechanisms discussed in
this paper and all of them posed a cat and mouse game
between the developer and the reverse engineer. As a
simple example in order to show how the same tools,
functions and utilities used by developers in order to
implement anti-debugging features are used by
reverse engineers to easily circumvent we can take
the famous Windows API function
IsDebuggerPresent. This function can be utilized in
many different ways by the developer in order to
detect debuggers for example by simply calling the
function through the API, this would leave artifacts in
the IAT of the process about the existence and the use
of this function. A reverse engineer would then be

Irreversible Applications for Windows NT Systems

483

able to either byte patch the function call by finding
it in the executable. Another way the developer could
use this would be by calling its underlying system
functions, which would be to simply check the
Process environment block in the current process in
order to detect the BeingDebugged flag. This could
then allow a reverse engineer to simply change the
value within the process environment block. This
could go on for several more steps as to patching
previously known detection vectors and introducing
new ones but the ultimate prevention mechanism
currently in place would be to incorporate many
different detection mechanisms together in hopes that
one of them might slip through the patching process.
This was exactly what was achieved in the initial
prototype but to no avail and it is the main reason for
introducing the concept of anti-cheating in online
games in order to prevent debugging and
disassembly. This was achieved to a certain degree in
the implemented monitoring system. The wording is
very specific when saying to a certain degree because
there are many ways this could be improved in order
to achieve better and more consistent results. The
monitoring system discussed in this paper introduced
another variable to the debugging equation. Not only
does a reverse engineer have to deal with protection
mechanisms present in the protected process but also
the monitoring system in order to successfully debug
an application. The monitoring system initiation
method implemented in the paper basically initiates
the monitoring system and its drivers whenever the
protected process is executing and that is one method
of accomplishing it. A much better implementation
would be to have the monitoring system load up at
boot time as in the anti-cheat concept used by Riot
Games for their new title Valorant (Dev, 2020). It is
the best cheat free title to date and its anti-cheat
implementation mechanisms should be observed and
taken into consideration when further developing this
system. More detection vectors can be introduced into
this system by closely observing how debugger
routines are carried out.

The implementation of this concept was strictly
limited to 32-bit Windows Operating systems. All the
development was done in a 32-bit Windows
Environment along with all the testing. The testing
proves that it can be persistent through several
generations and versions of the Windows NT
Operating system. However, this concept could be
implemented in any operating system following the
same outline. Another major objective would be to
understand and implement the server component. In
order to do that, first the operations that could be
carried out server side should be identified and

separately discussed. It would mitigate most of the
problems discussed during the implementation
process regarding the user mode and kernel mode
heartbeat process. This is merely a stepping stone into
the goals that could be achieved by using this concept
properly in reverse engineering and the ultimate goal
would be to develop a monitoring system with solid
self-defence and detection mechanisms that would
detect, prevent and further complicate the process of
reverse engineering protected commercial
applications.

REFERENCES

al, M. K. (2010). Design and Performance Evaluation of
Binary Code Packing for Protecting Embedded
Software against Reverse Engineering. IEEE
International Symposium on Object/Component/
Service-Oriented Real-Time Distributed Computing.

Canzanese, J. M. (2012). "A Survey of Reverse Engineering
Tools for the 32-Bit Microsoft Windows Environment.
ACM.

Dev. (2020, 06 05). Valorant Anti-Cheat: What, Why,
And How. (Riot Games) Retrieved from
https://playvalorant.com/en-us/news/dev/valorant-anti-
cheat-what-why-and-how/

fisherprice. (2020, 08 13). VAD Hiding.
(UnKnoWnCheaTs) Retrieved from https://www.unkn
owncheats.me/forum/c-and-c-/411299-vad-hiding.html

Marpaung, M. S.-J. (2017). Survey on malware evasion
techniques. Busan: Graduate School of General,
Dongseo University.

Microsoft. (2017, 05 23). Debug Privilege. (Microsoft)
Retrieved from https://docs.microsoft.com/en-us/win
dows-hardware/drivers/debugger/debug-privilege

Microsoft. (2017, 12 21). HAL Library Routines.
(Microsoft) Retrieved from https://docs.microsoft.com/
en-us/previous-versions/windows/hardware/drivers/ff5
46644(v=vs.85)

Microsoft. (n.d.). Processes, Threads, and Jobs in the
Windows Operating System. Retrieved from Microsoft
Press Store: https://www.microsoftpressstore.com/
articles/article.aspx?p=2233328

Peter Laurens, R. F. (2007). A Novel Approach to the
Detection of Cheating in Multiplayer Online Games.
ICECCS 2007.

timb3r. (2019, 12 27). How to Find Hidden Threads -
ThreadHideFromDebugger - AntiDebug Trick.
(Guided Hacking) Retrieved from https://guided
hacking.com/threads/how-to-find-hidden-threads-
threadhidefromdebugger-antidebug-trick.14281/

SECRYPT 2022 - 19th International Conference on Security and Cryptography

484

