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Abstract: Crowdsourcing has become a popular alternative model for software development, aiming at assigning tasks 
to developers through an open call for participation. The major challenge when crowdsourcing software tasks, 
is to appropriately orient the tasks to ensure the participation of the community and increase the chances of 
getting a high-quality solution. Especially in constantly evolving development environments, such as 
JavaScript (JS) programming language and its applications, it is of high importance to be aware of the skills 
that can be acquired by the community, to successfully invest in crowdsourcing. In the current paper, we aim 
to explore trends when crowdsourcing small JS development tasks in an attempt to unveil a) the core 
technological skills that are more frequently required in the crowdsourced tasks, b) the functionalities that are 
more frequently crowdsourced, and c) the relationship between the technological skills and the functionalities 
crowdsourced. For this reason, we analysed 8-year contest data collected from Bountify crowdsourcing 
platform. The results showed that JS small task development does not focus on a single technology but on a 
series of technologies, frameworks and libraries that in most cases either overlap or complement each other.

1 INTRODUCTION 

Crowdsourcing in Software Engineering focuses on 
overcoming task requirements acquisition by 
crowdsourcing them to stakeholders with a specific 
skill or domain knowledge (Wang, 2014). The 
crowdsourced software development model aims at 
recruiting stakeholders for software engineering tasks 
to reduce time-to-market, increase parallelism, lower 
cost and defect rates, and most importantly, alleviate 
the knowledge gap in a form of collective intelligence 
(Bibi, 2010) (Lakhani, 2010). This model enables 
extreme scalability for small tasks or self-contained 
microtasks, which is considered more reliable and 
efficient than a large task development scheme 
(LaToza, 2016). Industries can handle small tasks by 
crowdsourcing them to acquire missing knowledge 
and expertise, rather than outsourcing the whole 
development as one big task, which may risk the 
success of the project (Zanatta, 2018). As an 
emerging market, major software companies rely on 
crowdsourcing, boosting the popularity of 
crowdsourcing platforms with most notably Amazon 
Mechanical Turk, uTest, StackOverflow, TopCoder 
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and Bountify. TopCoder has hosted more than 400 
million competitions, uTest incorporated more than 
100 thousand testers, and more than 16 million 
programming-related tasks have been answered in 
StackOverflow. 

JavaScript (JS) on the other hand is today among 
the most popular programming languages for all-
purpose development (Chatzimparmpas, 2019), 
presenting a constantly expanding development eco-
system including front-end, client-side, server-side 
and Internet-of-things applications. It is a high-level 
dynamic, object-based, multi-paradigm, interpreted 
and weakly type language, which leverages a variety 
of libraries, frameworks and technologies. Large 
numbers of difficult to handle small tasks are based 
on JS due to the prementioned evolving and 
expanding ecosystem, as well as the fragmentation of 
required skills and technologies related. A common 
practice to deal with these small tasks is distributing 
them to an arbitrarily larger crowd via crowdsourcing 
(Guittard, 2015).  

Under this scope, this study explores JS small task 
development, considering that the task is described in 
the form of a unique crowdsourced task that does not 

Zozas, I., Anagnostou, I. and Bibi, S.
Trends on Crowdsourcing JavaScript Small Tasks.
DOI: 10.5220/0011035800003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 85-94
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

85



belong to a network of micro-tasks on a project that 
is being crowdsourced. By analyzing the data derived 
from crowdsourced tasks our goal is to: 
 Explore the trends related to a) the technology 

(i.e., frameworks) and the associated 
programming languages that these tasks use, and 
b) the functionality that the tasks implement and 
the platforms (i.e., operating systems, 
applications) on which these tasks are deployed. 

 Associate JS technologies to domain 
functionality, in an attempt to optimize small task 
completion efficiency. In the case of the volatile 
JS development eco-system, trends can provide 
further information on the language current and 
future domain utilization (Mao, 2017) as well as 
reveal industrial requirement skills for developers 
to master (LaToza, 2016). 
In the current study, we decided to shed focus on 

Bountify as a platform providing small tasks to the 
participants covering a variety of required 
programming languages, including JS. Bountify is a 
popular question-and-answer platform, that has been 
employed to improve crowdsourced small coding 
tasks, seeking to provide only code solutions and 
crowd-based support with an optional requirement of 
a payment or charity donation as a form or reward. 
We selected this platform among others as it currently 
hosts small crowdsourced task, it is open source, with 
free access, and easy access to the task database with 
tag-based filter. Bountify promoted crowdsourcing 
small task that lack the cognitive requirement to 
belong to a large project (LaToza, 2016). 

The rest of the paper is structured as follows. 
Section 2 reviews the current related work regarding 
investigating trends in JS small tasks. Section 3 
presents the case study design we utilized to locate 
and analyze trends. In Section 4 we present the results 
of the statistical analysis process while in Section 5 
we discuss the results, implications to researchers and 
practitioners, as well as threads to validity. Finally, 
Section 6 concludes the paper. 

2 RELATED WORK 

Crowdsourcing software development is a research 
topic that concentrated the interest of the community 
the recent years. Yuen et. al. (2011) was the first to 
perform a survey on crowdsourcing development 
models and categorized them into four types; 
application, algorithm, performance and dataset. 
Hetmak (2013) conducted a systematic literature 
review in the domain of crowdsourcing systems to 
gain a better understanding of what crowdsourcing 

systems are and what typical design aspects are 
considered in the development of such systems. In 
addition, Alt et. al. (2010) described the concept of 
crowdsourcing by designing and implementing a 
crowdsourcing platform that integrates location as a 
parameter for distributing tasks to workers. In his 
concept, small tasks are broadcasted to a crowd in the 
form of open calls for solutions, concluding that as a 
concept is feasible. On the crowdsourcing task 
decomposition problem, Tong et. al. (2019) focused 
on how the desired reliability is achieved at a minimal 
cost. The authors proposed a series of efficient 
approximation algorithms using the greedy strategy 
and the optimal priority queue data structure to 
discover near-optimal solution based on cost and time 
(but not skills). The majority of papers focus on small 
tasks and most mainly on Amazon’s Mechanical Turk 
micro-task market. Kittur et. al. (2008) examined the 
Amazon platform as a potential paradigm for 
engaging a large number of users for minimizing 
monetary costs and shortening time-to market. 
However, he pinpointed that further work is needed 
to understand the kinds of experiments that are well-
suited to user testing via micro-task markets and 
determining effective techniques for promoting 
useful user participation and overall effectiveness. 
Moreover, Weidema et. al. (2016) concluded that 
many participants on the same platform find the 
crowdsourced tasks to be difficult despite the fact 
they are of limited scope.  

With respect to the allocation of tasks to the 
crowd, Boutsis et. al. (2014) presented a 
crowdsourcing system that addresses the challenge of 
determining the most efficient allocation of tasks to 
the human crowd. This study concluded that 
crowdsourcing systems assign a varying task 
workload to a set of humans with different skills and 
characteristics. Furthermore, Bibi et al. (2010) 
analyzed among others the profiles, competencies and 
relative performance of the task participants with 
respect to the application domain of the crowdsourced 
task. On a different perspective, Machado et. al. 
(2017) conducted an empirical study to identify the 
difficulty in tally stakeholder programming skills and 
domain tasks. Kittur et. al. (2013) indicated the 
potential danger to replace some forms of skilled 
labor with unskilled labor in the task decomposition 
process. The authors concluded that task assignment 
in relation to each stakeholder’s ability is an 
important issue for crowdsourcing labor economics, 
affecting efficiency, quality, overall cost and job 
satisfaction (Sun, 2017). 

On the other hand, research on trends related to JS 
application development, is growing mainly due to 
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the popularity of the language. Gude et al. (2014) 
performed an empirical study on JS feature utilization 
and suggested possible future directions. Delcev et. 
al. (2018) performed a survey on frameworks and 
recorded trends in JS emerging web technologies. 
Sun et. al. (2017) and Rauschmayer (2012) explored 
both JS programming as well research trends. While 
research effort exists on JS trends, to our knowledge, 
there isn’t currently any research on trends and 
common practices when it comes to crowdsourcing 
JS tasks. 

3 CASE STUDY DESIGN 

To empirically investigate and detect trends in 
crowdsourcing JS small tasks, we performed a case 
study on 771 JS coding tasks posted on Bountify 
platform between 2014-2021. The case study is 
performed according to the guidelines of Runeson et 
al. (2009). 

3.1 Research Questions 

The overall goal of the case study is formulated to the 
following three research questions: 
 RQ1: Which are the JS frameworks and 

technologies mostly used by the crowdsourced 
tasks? 

The purpose of this RQ is twofold: a) to identify 
trends regarding the development frameworks and the 
technologies (i.e., programming languages) when 
crowdsourcing JS tasks and b) to explore whether the 
success of JS crowdsourced tasks presents significant 
differences with respect to the technologies and 
programming languages used.  
 RQ2: Which types of functionalities do the 

crowdsourced tasks mostly implement?  
The purpose of this RQ is also twofold: a) to identify 
trends related to the functionalities that are mostly 
implemented by the crowdsourced tasks and the 
platforms on which the tasks will operate (i.e., 
operating systems, container applications-facebook, 
wordpress, etc.)  b) to explore whether the success of 
JS crowdsourced tasks presents significant 
differences with respect to the functionalities required 
and the platform with which they are related to.  
 RQ3: Is there a correlation between the JS 

frameworks and technologies used by the 
crowdsourced tasks and the functionalities 
implemented? 

In the third research question, we investigate whether 
there is a significant correlation between frameworks 
and technologies, as well as functionalities and 

platforms. Our goal is to identify trends in the 
technologies that are selected to implement particular 
types of functionalities and see whether the 
combination of technologies with functionalities can 
be successful when being crowdsourced. 

3.2 Data Collection and Units of 
Analysis 

For the purpose of our research, we collected data 
from tasks crowdsourced in the Bountify platform 
during the period from 2014 to March 2021. The 
collection process was performed by a data crawler 
developed by the second author.  
 

 

Figure 1: Overview of Data Collection and Analysis 
process. 

In total, we collected data from 3,263 tasks. For each 
individual task, several variables were recorded: 

 Title 
 Tag 
 Winner 
 Number of solutions 
 Year of announcement 

In order to isolate tasks related to JS technology, we 
examined the tags and the titles of the tasks, and kept 
the tasks that included related keywords (i.e., js, 
javascript). The process was performed by two 
individual researchers of our team in order to ensure 
the accuracy of the results. This resulted in a total of 
771 tasks.  

To be able to perform the statistical analysis we 
quantified the absence or appearance of each tag in 
every task collected, by using a Boolean 
representation (0 or 1 correspondingly). A total 
number of 328 individual tags were recorded for all 
tasks. As tags were freely declared by each task 
provider, a significant number of similar tags were 
traced targeting the same (e.g., angular, angularjs) or 
different versions of software (e.g., bootstrap-3, 
bootstrap). Therefore, a manual grouping process was 
performed to summarize tags with the same meaning, 
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producing 61 individual tags counting 1,218 
appearances in all tasks, as presented in Tables 2 and 
3. 
Additionally, for each task, we calculated the variable 
task success which is a Boolean variable that 
indicates whether at least one winning contribution 
exists, for the task under study. A successful posted 
task is considered a fulfilled task that has at least one 
winning contributor to it. For each unique tag then we 
calculated the success percentage that is described in 
Equation (1), where Nsolved is the total occurrences of 
the particular tag in the tasks that acquire at least one 
acceptable solution, and Ntotal is the total tag 
occurrences of the particular tag in all contests 
analyzed. 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠% ൌ 𝑁௦௩ௗ/𝑁௧௧ (1)

The final step of the data collection process is to 
classify the tags into four groups: frameworks (JS 
frameworks), technologies (programming languages), 
functionalities (i.e., visualization, data handling, 
security), and platforms (operating systems, container 
applications). An overview of the Data Collection and 
Analysis process is presented in Figure 1. 

3.3 Data Analysis Methods 

The applied methodology follows common statistical 
methods used by literature. To answer the first two 
RQ, we have calculated standard descriptive 
statistics, observations, and frequencies, and 
performed a chi-square test (IEEE, 2009) to 
determine whether each tag is associated with success 
as described by equation (1). To answer the third RQ, 
we performed Exploratory Factor Analysis (EFA) 
(Snook, 1989), to determine the underlying 
dimensionality of tags based on the correlation among 
them. EFA is a statistical approach used to examine 
the internal reliability of a measure and investigate 
the theoretical constructs, or factors, that might be 
represented by a set of items. For this purpose, we 
performed Principal Component Analysis (PCA) to 
decide the total number of factors. The approach is 
used to discover the factor structure of a measure and 
to examine its internal reliability, usually when no 
hypotheses exist about the nature of the underlying 
factor structure of their measure (Difallah, 2015).  In 
order to perform EFA and determine components of 
related tags in the context of JS crowdsourced 
development, we followed the steps described in 
(Papoutsoglou, 2017). We performed PCA factoring 
extraction with the adaption of the Varimax rotation 
of the data. In order to determine the number of 
factors, we selected all factors with an eigenvalue 

higher than 1. The commonality of each variable was 
examined with a cutoff value of 0.5, whereas in the 
cases where the cut-off values were lower than 0.5 the 
model was refitted. Additionally, for RQ3 we 
performed Spearman correlation in order to explore 
potential correlations between the derived 
frameworks and technologies factors, and the 
functionality and platform factors. 

4 RESULTS 

In the current section, we present the results of the 
case study performed to answer the three research 
questions. 

4.1 RQ1 

In this RQ we want to explore which JS frameworks 
and technologies (i.e., programming languages 
related to JS) are mostly used by crowdsourced small 
tasks and whether these tasks are successful. In order 
to answer this RQ, we analyzed the tags that are used 
by the contest providers to describe each 
crowdsourced task and define the skills required to 
address it. Table 1 presents the frequency, the 
percentage frequency, and the success percentage for 
each tag identified along with the results of the chi-
squared test performed for each tag and the success 
variable.  

In the case of frameworks, we identified a large 
diversity of both client and server-side technologies. 
The dominant development framework is “jQuery” 
followed by “bootstrap”. When analyzing the 
frameworks tag frequencies, we observed that there is 
a variety of frameworks used just one time (i.e., 
Parsley.js, Popper.js, Chart.js, etc.) which were all 
merged in “jslibrary” tag. However, the combined 
frequency of all these frameworks is high, indicating 
the wide diversity in framework usage. The frequency 
of each individual library is mere below 2 instances 
for each one. A future further analysis with a larger 
dataset should indicate whether these libraries should 
be merged or not for further identification. To 
summarize with framework usage, special emphasis 
should be placed upon “nodejs” which seems to be 
very popular probably due to the fact that it supports 
server-side scripting.  

When it comes to programming languages, we 
can see that “css” and “html” scripting languages are 
often used complementary within JS applications. 
This finding can be explained by the fact that many 
tasks are not implemented in any framework. Most 
frameworks are oriented to directly manipulate the 
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output and as a consequence, the absence of a 
framework requires, most of the time, the existence 
of code implemented in the relevant output formatting 
languages (CSS, HTML). Regarding JS 
interoperability with other full-stack development 
programming languages, “php” is the most 
prominent, followed by “ruby” and “python”. 

Table 1: JS Frameworks & technologies tags. 

Framework N % Success χ2 p .05

jquery 182 23.61 96.70 1.93 0.16
bootstrap 79 10.25 94.94 0.01 0.91
jslibrary 61 7.91 93.44 0.20 0.65
nodejs 42 5.45 83.33 11.36 0.01
angular 20 2.59 85.00 3.82 0.05
react 18 2.33 83.33 4.71 0.03 
meteor 12 1.56 91.67 0.22 0.63
typescript 9 1.17 77.77 5.16 0.02 
vue 7 0.91 100 0.39 0.52

      

Languages N % Success χ2 p .05

css 123 15.95 93.50 0.40 0.52
html 108 14.01 94.44 0.01 0.90
php 37 4.80 86.49 5.18 0.02 
json 27 3.50 92.59 0.24 0.62
ajax 14 1.82 92.86 0.09 0.75
xm1 9 1.17 100 0.51 0.47
ruby 8 1.04 77.78 6.22 0.01
python 7 0.91 100 0.39 0.52
java 5 0.65 60.00 12.02 0.01 
perl 3 0.39 100 0.16 0.68
c 2 0.26 100 0.11 0.73

 
Finally, concerning data manipulation, “json” and 
“xml” are the most common technologies used for 
data retrieval. Figure 2 presents a relative 
representation of the 10 most frequently appearing 
framework and technology tags from 2012 to 2020. 
We can notice that the use of React is increasing while 
all others decrease (especially in the dominant case of 
jQuery). 
 

 

Figure 2: Analysis of small tasks framework utilization. 

Regarding the success rate we can observe that tasks 
related to “typescript”, “jquery” and “bootstrap” 
frameworks present high percentages of success, 
followed by tasks implemented in “nodejs”, “react” 
and “angular.js”.  We can observe that the least 
successful tasks are related to “ruby” and “python” 
programming languages and “vue.js” framework. In 
order to examine whether the tasks implemented in 
the various frameworks and technologies present a 
significant difference with respect to success, we 
conducted a chi-square test for each related tag and 
the success variable.  For most tasks, we calculate a 
χ2 value with an asymptotic 2-sided significance p-
value over 0.05. The only frameworks that present a 
significant difference with respect to success are 
“nodejs”, “react” and “typescript”, while for 
languages “php”, “ruby” and “java”. This leads to 
the conclusion that regarding RQ1, there are no 
significant differences in success percentages of the 
tasks regardless of the frameworks and programming 
languages implemented.  

4.2 RQ2 

In this RQ we will first identify trends related to the 
types of applications and the functionalities that are 
crowdsourced in JS tasks and then explore whether 
the success of the tasks presents significant 
differences within each type of functionality, an 
application implemented, and platform. In Table 2 we 
present the descriptive statistics of the tags along with 
the results of the chi-square tests. In Figure 3 we 
present the 10 most frequent platform and 
functionality tags from 2012 to 2020. 
 

 

Figure 3: Comparison of top 10 tag frequency of each 
category. 

In the case of platforms and applications, “wordpress” is 
the dominant content management platform confirming the 
largest market share to other content management systems 
(“cms”) observed, while “google” is the dominant service 
provider. We observe that the demand concerning 
operating systems (such as “windows”, “linux”, “android” 
and “ios”) is very limited. Probably this can be explained 
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by the shift towards the cloud computing paradigm where 
Software-as-a-Service operational models override the 
client operating system (Sharma, 2011). On the other hand, 
in the case of core functionality, the dominant functionality 
is visual representation (“layout”, “canvas”, “image”, 
“design”, “table”).  

Table 2: Tags analysis. 

Platform & 
Application 

N % Success χ2 p .05 

wordpress 24 3.11 91.7 0.44 0.50 
google 23 2.98 91.3 0.53 0.46 
browser 14 1.82 92.9 0.09 0.75 
cms 11 1.43 81.8 3.66 0.05 
mobile 10 1.30 90.0 0.44 0.50 
android 7 0.91 85.7 1.12 0.28 
evnote 7 0.91 100 0.39 0.52 
facebook 6 0.78 100 0.34 0.56 
ios 6 0.78 83.3 1.54 0.21 
excel 6 0.78 100 0.34 0.56 
youtube 5 0.65 100 0.28 0.59 
linux 5 0.65 80.0 2.15 0.14 
web 5 0.65 80.0 2.15 0.14 
videogame 4 0.52 100 0.22 0.63 
pdf 3 0.39 100 0.16 0.68 
windows 3 0.39 66.6 4.69 0.03 
twitter 1 0.13 100 0.05 0.81 

      

Core 
functionality 

N % Success χ2 p .05 

layout 34 4.41 100 1.99 0.15 
canvas 26 3.37 96.2 0.11 0.73 
database 24 3.11 83.3 6.33 0.01 
image 21 2.72 90.5 0.75 0.38 
epayments 19 2.46 94.7 0.00 0.99 
form 16 2.08 93.8 0.02 0.86 
design 15 1.95 93.3 0.05 0.81 
table 14 1.82 100 0.80 0.37 
algorithm 18 2.33 83.3 4.71 0.03 
regex 21 2.72 100 1.21 0.27 
video 12 1.56 100 0.68 0.08 
security 10 1.30 90.0 0.44 0.50 
analytics 9 1.17 100 0.51 0.47 
geolocation 8 1.04 75.00 6.22 0.01 
responsive 8 1.04 100 0.45 0.50 
sales 8 1.04 87.5 0.82 0.36 
api 7 0.91 100 0.39 0.52 
audio 7 0.91 100 0.39 0.52 
messaging 7 0.91 71.4 7.58 0.00 
datatransfer 6 0.78 100 0.34 0.56 
graphics 6 0.78 100 0.34 0.56 
performance 5 0.65 100 0.28 0.59 
mail 4 0.52 100 0.22 0.63 

 

Although there are JS frameworks that can easily 
support this functionality, it seems that the absence of 
a framework, in most contests, contributes to these 
high frequencies that are reported. A significant 
functionality group is logic-related, including 
“algorithms” and regular expressions (“regex”) that 
support web application development. Lastly, 
“epayments” and “sales” also present high 
frequencies, indicating that JS client-side 
technologies are used to minimize data transitions to 
servers and ensure data safety and privacy. Regarding 
the demand for specific functionalities and 
applications over years, as presented in Figure 3 we 
can see that this does not remain stable. The popular 
tags tend to present a declining trend while new tags 
appear over years that concentrate the attention (i.e 
“responsive”). 

4.3 RQ3 

Our purpose in this RQ is to explore whether we can 
form components of related tags with respect to a) the 
different technology, platform and framework used b) 
the different functionality and application 
implemented. In the end, our target is to examine if 
these components are correlated. 

Table 3: Frameworks and Technologies factor analysis. 
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1 1.76 8.39 8.39 100 python, perl, c 
2 1.60 7.62 16.01 94.3 xml, json 
3 1.48 7.06 23.08 93.3 html, css, java 
4 1.42 6.77 29.86 85.4 nodejs, meteor 
5 1.29 6.14 36.00 87.0 react, typescript 
6 1.19 5.69 41.70 89.4 perl, c, php, ajax 
7 1.18 5.65 47.35 95.6 bootstrap, jquery, 

angular, java 
8 1.06 5.08 52.44 87.8 c,ajax, ruby, angular 
9 1.02 4.89 57.33 91.5 jslibrary, java, vue 

 
The components of JS frameworks and technologies 
and the related success percentages for each 
component are presented in Table 3. The success 
percentage is derived according to Equation (1), and 
as each task includes multiple tags, for each tag, 
success is based on the success task in which it is 
included. The calculation of each tag success is based 
on the mean of cumulative success rates of each task 
containing at least the corresponding tag. The tag 
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inclusion in each task is based on the process 
described in Section 3.2. 

The components are presented in descending 
order of importance based on the percentage of the 
explained variance. The cumulative coverage for 
frameworks and technologies consists of 9 
components explaining 57.33% of the total variance. 
The Kaiser-Meyer-Olkin (KMO) measure of 
sampling adequacy was 0.521. All sampling 
adequacies were above the commonly recommended 
value of 0.5, while the Bartlett’s test of sphericity was 
statistically significant x2(210) = 1,046.96 for p < 
0.001. We also note that all eigenvalues score high on 
success over 87%. Factors revealed distinguishable 
and highly related frameworks and technologies 
found in tasks.  

Table 4: Functionalities factor analysis. 

 
In Table 4 we present the results of PCA analysis 
performed to identify factors based on the types of 
functionalities and applications implemented. In total 
20 components are identified explaining 65.26% of 
variance. Each eigenvalue consists of at least one tag 
to a maximum of four. Concerning Functionalities, 

the KMO measure of sampling adequacy was 0.527. 
All sampling adequacies were above the 
recommended value of 0.5, while Bartlett’s test of 
sphericity was statistically significant x2(780) = 
3,499.98 for p < 0.001. We note that all eigenvalues 
score high on success over 82%.  

Table 5: Tag component correlation analysis. 

JS Frameworks and 
Technologies Functionalities 

rh
o 

S
u

cc
es

s 

C1 
Tags C2 Tags 

9 jslibrary, java, vue 13
layout, image, 
youtube, canvas .287 95.0

6 perl, c, php, ajax 6
sales, database, 
security .241 90.4

4 nodejs, meteor 6
sales, database, 
security .214 86.6

5 react, typescript 8 analytics, algorithm .214 86.0

4 nodejs, meteor 2
windows, linux, 
android, ios .187 87.9

5 react, typescript 1 table, browser .187 91.1

1 python, perl, c 20 pdf .186 100 

2 xml, json, evernote 14
mobile, ios, security, 
evernote .179 91.5

1 python, perl, c 19 regex, audio .173 100 

1 python, perl, c 2
windows, linux, 
android, ios .152 95.6

4 nodejs, meteor 14
mobile, ios, security, 
evernote .138 87.5

5 react, typescript 13
layout, image, 
youtube, canvas .138 94.3

1 python, perl, c 17 wordpress, regex .128 96.0

1 python, perl, c 4
android, mobile, 
datatransfer, ios .124 93.3

7 
bootstrap, java, 
jquery, angular

19 regex, audio -.113 95.9

4 nodejs, meteor 4
android, mobile, 
datatransfer, ios .112 87.8

5 react, typescript 4
android, mobile, 
datatransfer, ios .112 88.1

4 nodejs, meteor 15 messaging, cms .107 86.8

5 react, typescript 14
mobile, ios, security, 
evernote .107 87.7

3 html, css, java 19 regex, audio -.106 94.1

8 
c, ajax, ruby, 
angular

6
sales, database, 
security .105 89.0

1 python, perl, c 14
mobile, ios, security, 
evernote .100 92.1

6 perl, c, php, ajax 7 google, api .099 89.8

7 
bootstrap, java, 
jquery, angular

14
mobile, ios, security, 
evernote -.096 94.9

a. P < 0.001, C for Component 

As a next step, we performed correlation analysis to 
identify significant correlations between framework 
and technology components, and, functionality and 
application components. The analysis indicated 
statistical significance (Spearman's rho coefficient for 
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1 2.44 6.11 6.11 93.3 table, browser
2 1.88 4.70 10.81 94.1 windows, linux, 

android, ios
3 1.62 4.05 14.86 93.8 design,responsive
4 1.47 3.68 18.54 91.3 android,datatransfer 

mobile, ios
5 1.41 3.52 22.07 98.0 layout, excel, form
6 1.37 3.44 25.52 89.5 sales, database, 

security 
7 1.32 3.31 28.83 92.6 google, api
8 1.30 3.25 32.09 87.5 analytics, algorithm
9 1.23 3.09 35.18 100 api, performance, 

graphics 
10 1.21 3.03 38.22 100 facebook, mail
11 1.20 3.01 41.23 94.7 tweeter, epayments
12 1.15 2.88 44.12 100 videogame,graphics
13 1.14 2.85 46.97 96.1 layout, image, 

youtube, canvas
14 1.12 2.82 49.79 90.3 mobile, ios,security, 

evnote 
15 1.08 2.70 52.50 82.4 messaging, cms
16 1.05 2.64 55.14 85.7 web, geolocation
17 1.02 2.56 57.70 95.6 wordpress, regex
18 1.01 2.52 60.23 100 video 
19 1.00 2.51 62.74 100 regex, audio
20 1.00 2.50 65.25 100 pdf 
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p < 0.001) as presented in Table 5 revealing twenty 
statistically significant correlations.  
From the examination of the statistically significant 
correlations, we can derive some interesting findings: 
 C1.1 component (“python”, “perl”, “c”) is the 

most correlated component from the framework 
and technology components, as it is associated 
with 6 functionality and application components. 
It seems that these three programming languages 
are used supplementary with JS language to 
perform a variety of functionalities related to 
operating systems (C2.1, C2.2, C2.14), regular 
expressions (C2.17) and mobile data transferring 
and security handling (C2.4, C2.14).  

 C1.4 (“nodejs”, “meteor”) and C1.5 (“react, 
“typescript”) are both correlated to mobile data 
transfer functionalities (C2.4). C1.4 is also 
related to back-office operations (C2.6) and 
content management (C2.15). C1.5 is also related 
to user interface functionalities (C2.1, C2.13) 
and to more demanding tasks related to analytics 
and algorithms (C2.8). 

 C1.6 component (“perl”, “c”, “php”, “ajax”) 
correlates to back-office functionalities (C2.6) 
and functionalities related to the interaction with 
external sources (C2.7). C1.7 (“bootstrap”, 
“java”, “jquery”, “angular”) correlates to 
functionalities related to regular expressions. 

 We should note that all correlations are over 84% 
successful, meaning that the contests that are 
related to the technologies and functionalities 
that are present in the components have managed 
to acquire a winning solution. Specifically 
component C1.1 (“perl”, “python”, “c”) when 
combined with component C2.17 (“regex”, 
“audio”) or component C2.20 (“pdf”) it presents 
100% success. 

5 DISCUSSIO1N 

5.1 Interpretations of Results 

Based on the above results in Section 4.1, we can 
identify several trends when crowdsourcing JS micro-
tasks. With respect to JS frameworks and 
technologies, Node.JS and Meteor technologies are 
widely used for crowdsourcing a variety of tasks, 
including business and data-oriented tasks for several 
platforms. These frameworks are also found when 
crowdsourcing mobile deployment and security-
related tasks. On the other hand, React and 
TypeScript are also used in multiple platform 

development, but emphasize more in layout and user 
interface micro-tasks. A number of programming 
languages have been often utilized supplementary 
with JS for development. These include Python, Perl 
and C languages. In these cases, these languages are 
used to handle tasks related to operating systems and 
for regular expression manipulation. 

In Section 4.2 with respect to the JS 
functionalities and applications that are mostly 
crowdsourced, we observe that tasks related to mobile 
applications and security are common and they are 
implemented by a disperse variety of technologies. 
These may include other programming languages like 
Python or JS frameworks like React and Bootstrap, as 
well as technologies to distribute data as XML and 
JSON. Sales transactions, database manipulation and 
security tasks rely on server-side technologies like 
Node.JS and Meteor, as well as on other 
programming languages in conjunction with JS like 
C, PHP, and AJAX. In these cases, we assume that 
AJAX calls act as an intermediate to ensure the 
interoperability of these technologies. We should 
mention that the above technologies also pose a trend 
in mobile data operations and mobile platforms, most 
notably Android. An interesting output is that 
concerning the mobile platform development, for 
Android, most preferred JS technologies are Node.JS, 
Meteor, React, and TypeScript, while for iOS, above 
the prementioned, Bootstrap, jQuery, and Angular.  

In Section 4.3 we conclude that the expanded eco-
system of JS crowdsourced micro-tasks is not focused 
on a single technology but rather on a series of 
technologies, frameworks, and libraries that in most 
cases either overlap or complement each other. Also, 
we can say that JS micro-tasks are related to the 
implementation of a variety of functionalities the 
most successful of which are user-interface handling, 
layout tasks, and regular expression manipulation. 
All these tasks can be considered small light-weight 
tasks. Tasks that can be considered more demanding, 
in the sense that they require more specialized skills, 
such as tasks related to operating systems, business 
logic, and algorithms tend to present lower success 
percentages, but still above 80% in most of the cases. 

5.2 Implications to Researchers and 
Practitioners 

The results of the current study can be used both by 
researchers and practitioners. The current findings 
indicate that crowdsourcing JS small tasks can be 
particularly successful since most contests are able to 
acquire a winning solution. This is an indication that 
researchers can work on models for decomposing 
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larger JS applications into a series of small tasks that 
can be successfully and easily crowdsourced. 
Additionally, we can observe that particular JS 
functionality such as regular expression 
manipulation, video, and audio handling has been 
crowdsourced with a variety of programming 
languages and frameworks as presented in Table 5. 
This is a sign that there is a need to create libraries or 
frameworks that can handle such functionalities.  
Furthermore, while crowdsourcing has been a popular 
research topic, researching crowdsourcing small tasks 
has been mostly based on the Amazon Mechanical 
Turk platform (Kittur, 2008).  Future comparison of 
different small tasks crowdsourcing platforms, tasks, 
and contributors could further reveal trends in JS 
technologies and functionalities. Regarding 
Practitioners, the current findings on trends in JS 
development indicate indirectly demands for skills 
and domain professionality in the job market. By 
recording the technologies and the related 
functionalities that are mostly crowdsourced in JS 
micro-tasks practitioners can benefit by acquiring the 
related skills to be able to correspond to present and 
future industry demands. 

5.3 Threats to Validity 

Based on the categorization of Runeson et. al. (2009), 
we will discuss the threats to validity identified in this 
study. Regarding Construct Validity, we should 
mention that the current metrics as described (and 
currently the tags of each small task) may affect the 
outcome of the overall findings. We cannot deny that 
the evaluation of alternative metrics that have not 
been participated in our study should not be included 
in the future. Such metrics may include developer 
experience, skills, and trends in JS development 
technologies (Meldrum, 2017). Regarding Internal 
Validity, our study attempts to detect trends. 
However, we do not claim that the presented results 
are from any form of causality rather than trends. 
Regarding Reliability, the process followed in our 
study has been thoroughly documented in the Case 
Study Design section in order to be easily reproduced. 
Thus, we believe that the replication of our study is 
safe and the reliability is ensured. Regarding External 
Validity, changes in the findings might occur in cases 
of either small task dataset alternations or the use of 
different small task platforms. Future replication of 
the current study would be valuable to verify our 
findings and support the generalizability supposition. 

6 CONCLUSIONS 

In the current study, we explored trends in 
crowdsourcing small tasks developed in JS. Our aim 
is to associate domain functionality and JS-related 
technology and frameworks. In total we have 
analysed 771 JS small tasks, crowdsourced in the 
Bountify platform. The results show that the JS 
crowdsourced tasks are successful in their majority 
and that a series of frameworks (jQuery, Bootstrap, 
Node.JS) and languages (HTML, CSS, XML) are 
employed for implementing tasks related to 
visualization (user interfaces, layout), data 
manipulation (security, databases, algorithms) and 
platform deployment (iOS, Windows, Android).  
Overall, we conclude that the expanded eco-system of 
JS crowdsourced micro-tasks is not focused on a 
single technology but rather on a series of 
technologies, frameworks, and libraries that in most 
cases either overlap or complement each other. 

REFERENCES 

Alt, F., Shirazi, A., Schmidt, A., Kramer, U., Nawaz, Z. 
(2010). Location-based crowdsourcing: extending 
crowdsourcing to the real world, 6th Nordic Conf. on 
Human-Computer Interaction, Association for 
Computing Machinery, NY, USA, 13–22. 

Archak, N. (2010). Money, glory and cheap talk: Analyzing 
strategic behavior of contestants in simultaneous 
crowdsourcing contests on TopCoder.com, 19th 
International Conference on WWW, NY, USA, 21–30. 

Bibi, S., Zozas, I., Ampatzoglou, A., Sarigiannidis, P. G., 
Kalampokis, G., Stamelos, I. (2020). Crowdsourcing in 
Software Development, IEEE Access, vol. 8, 58094-
58117. 

Boutsis, I., Kalogeraki, V. (2014). On Task Assignment for 
Real-Time Reliable Crowdsourcing, IEEE 34th Int. 
Conf. on Distributed Comp. Systems, Spain, 1-10. 

Chatzimparmpas, A., Bibi, S., Zozas, I., Kerren, A. (2019). 
Analyzing the Evolution of Javascript Applications. 
14th International Conference on Evaluation of Novel 
Approaches to Software Engineering, vol. 1, 359-366. 

Delcev, S., Draskovic, D. (2018). Modern JavaScript 
frameworks: A Survey Study, Zooming Innovation in 
Consumer Technologies Conference, Serbia, 106-109. 

Difallah, D., Catasta, M., Demartini, G., Ipeirotis, P., 
Cudré-Mauroux, P. (2015). The Dynamics of Micro-
Task Crowdsourcing: The Case of Amazon MTurk, 
24th Int. Conf. on WWW, Switzerland, 238–247. 

Gude, S., Hafiz, M., Wirfs-Brock, A. (2014). JavaScript: 
The Used Parts, IEEE 38th Annual Computer Software 
and Applications Conference, Sweden, 466-475 

Guittard C., Schenk E., Burger-Helmchen T. (2015). 
Crowdsourcing and the Evolution of a Business 
Ecosystem. Advances in Crowdsourcing. Springer. 

Trends on Crowdsourcing JavaScript Small Tasks

93



Hetmank, L. (2013). Components and Functions of 
Crowdsourcing Systems – A Systematic Literature 
Review. Wirtschaftsinformatik Proceedings, 4. 

1061-1998: IEEE Standard for a Software Quality Metrics 
Methodology, IEEE Standards, IEEE Computer 
Society, 31 December 1998 (reaf. 9 December 2009). 

Kittur, A., Chi, E., Suh, B. (2008). Crowdsourcing user 
studies with Mechanical Turk. Conference on Human 
Factors in Computing Systems, NY, USA, 453–456. 

Kittur, A., Nickerson, J., Bernstein, M., Gerber, E., Shaw, 
A., Zimmerman, J., Lease, M., Horton, J. (2013). The 
future of crowd work. Conference on Computer 
supported cooperative work. Association for 
Computing Machinery, NY, USA, 1301–1318. 

Lakhani, K., Garvin, D., Lonstein, E. (2010). TopCoder(A): 
Developing software through crowdsourcing. Harvard 
Business School Case 

LaToza, T., Van der Hoek, A. (2016). Crowdsourcing in 
Software Engineering: Models, Motivations, and 
Challenges, IEEE Software, vol. 33, 1, 74-80, Jan.-Feb. 

Machado, M., Zanatta, A., Marczack, S., Prikladnicki, R. 
(2017). The Good, the Bad and the Ugly: An Onboard 
Journey in Software Crowdsourcing Competitive 
Model, 4th Int. Workshop on Crowd Sourcing in Soft. 
Engin., Buenos Aires, Argentina, 2-8. 

Mao, K., Capra, L., Harman, M., Jia, Y. (2017). A survey 
of the use of crowdsourcing in software engineering. 
Journal of Systems and Software, Vol. 126, 57-84 

Meldrum, S., Licorish, S., Savarimuthu, B. (2017). 
Crowdsourced Knowledge on Stack Overflow. 21st Int. 
Conf. on Evaluation and Assessment in Software 
Engineering. Association for Computing Machinery, 
NY, USA, 180–185. 

Papoutsoglou, M., Mittas, N., Angelis, L. (2017). Mining 
People Analytics from StackOverflow Job 
Advertisements, 43rd Euromicro Conf. on Soft. Eng. 
and Advanced Applications, Austria, 108-115. 

Rauschmayer, A. (2012). The Past, Present, and Future of 
JavaScript. O'Reilly Media, Inc. 

Runeson, P., Höst, M. (2009). Guidelines for conducting 
and reporting case study research in software 
engineering. Empir Software Eng 14, 131. 

Sharma R., Sood M. (2011). Cloud SaaS: Models and 
Transformation. Advances in Digital Image Processing 
and Information Technology. Communications in 
Computer and Information Science, vol 205. Springer. 

Snook, S., Gorsuch, R.  (1989).  Principal component 
analysis versus common factor analysis:  A Monte 
Carlo study.  Psychological Bulletin, 106, 148-154. 

Sun, K., Ryu, S. (2017). Analysis of JavaScript Programs: 
Challenges and Research Trends. ACM Comput. Surv. 
50, 4, Article 59 (November 2017), 34. 

Tong, Y., Chen, L., Zhou, Z., Jagadish, H.V., Shou, L., Lv, 
W. (2019). SLADE: A smart large-scale task 
decomposer in crowdsourcing. 35th IEEE Int. Conf. on 
Data Engin., ICDE Macau, China. 2133-2134 

Wang, H., Wang, Y., Wang, J. (2014). A participant 
recruitment framework for crowdsourcing-based 
software requirement acquisition, 9th IEEE Int. 
Conference on Global Software Engineering,65–73. 

Weidema, E., López, C., Nayebaziz, S., Spanghero, G., Van 
der Hoek, A. (2016). Toward microtask crowdsourcing 
software design work, 3rd Int. Workshop on Crowd 
Sourcing in Soft. Engin., NY, USA, 2016, 41–44. 

Yuen, M., King, I., Leung, K. (2011). A Survey of 
Crowdsourcing Systems, 3rd Int. Conf. on Privacy, 
Security, Risk & Trust, MA, USA, 766-773. 

Zanatta, A., Machado, L., Steinmacher, I. (2018). 
Competence, Collaboration, and Time Management: 
Barriers and Recommendations for Crowdworkers, 5th 
Int. Workshop on Crowd Sourcing in Soft. Engin. (CSI-
SE), Gothenburg, Sweden, 9-16. 

 

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

94


