
Trends on Crowdsourcing JavaScript Small Tasks

Ioannis Zozas a, Iason Anagnostou and Stamatia Bibi b
Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani, Greece

Keywords: JavaScript, Crowdsourcing, Small Tasks, Bountify.

Abstract: Crowdsourcing has become a popular alternative model for software development, aiming at assigning tasks
to developers through an open call for participation. The major challenge when crowdsourcing software tasks,
is to appropriately orient the tasks to ensure the participation of the community and increase the chances of
getting a high-quality solution. Especially in constantly evolving development environments, such as
JavaScript (JS) programming language and its applications, it is of high importance to be aware of the skills
that can be acquired by the community, to successfully invest in crowdsourcing. In the current paper, we aim
to explore trends when crowdsourcing small JS development tasks in an attempt to unveil a) the core
technological skills that are more frequently required in the crowdsourced tasks, b) the functionalities that are
more frequently crowdsourced, and c) the relationship between the technological skills and the functionalities
crowdsourced. For this reason, we analysed 8-year contest data collected from Bountify crowdsourcing
platform. The results showed that JS small task development does not focus on a single technology but on a
series of technologies, frameworks and libraries that in most cases either overlap or complement each other.

1 INTRODUCTION

Crowdsourcing in Software Engineering focuses on
overcoming task requirements acquisition by
crowdsourcing them to stakeholders with a specific
skill or domain knowledge (Wang, 2014). The
crowdsourced software development model aims at
recruiting stakeholders for software engineering tasks
to reduce time-to-market, increase parallelism, lower
cost and defect rates, and most importantly, alleviate
the knowledge gap in a form of collective intelligence
(Bibi, 2010) (Lakhani, 2010). This model enables
extreme scalability for small tasks or self-contained
microtasks, which is considered more reliable and
efficient than a large task development scheme
(LaToza, 2016). Industries can handle small tasks by
crowdsourcing them to acquire missing knowledge
and expertise, rather than outsourcing the whole
development as one big task, which may risk the
success of the project (Zanatta, 2018). As an
emerging market, major software companies rely on
crowdsourcing, boosting the popularity of
crowdsourcing platforms with most notably Amazon
Mechanical Turk, uTest, StackOverflow, TopCoder

a https://orcid.org/0000-0003-2159-1332
b https://orcid.org/0000-0003-4248-3752

and Bountify. TopCoder has hosted more than 400
million competitions, uTest incorporated more than
100 thousand testers, and more than 16 million
programming-related tasks have been answered in
StackOverflow.

JavaScript (JS) on the other hand is today among
the most popular programming languages for all-
purpose development (Chatzimparmpas, 2019),
presenting a constantly expanding development eco-
system including front-end, client-side, server-side
and Internet-of-things applications. It is a high-level
dynamic, object-based, multi-paradigm, interpreted
and weakly type language, which leverages a variety
of libraries, frameworks and technologies. Large
numbers of difficult to handle small tasks are based
on JS due to the prementioned evolving and
expanding ecosystem, as well as the fragmentation of
required skills and technologies related. A common
practice to deal with these small tasks is distributing
them to an arbitrarily larger crowd via crowdsourcing
(Guittard, 2015).

Under this scope, this study explores JS small task
development, considering that the task is described in
the form of a unique crowdsourced task that does not

Zozas, I., Anagnostou, I. and Bibi, S.
Trends on Crowdsourcing JavaScript Small Tasks.
DOI: 10.5220/0011035800003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 85-94
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

85

belong to a network of micro-tasks on a project that
is being crowdsourced. By analyzing the data derived
from crowdsourced tasks our goal is to:
 Explore the trends related to a) the technology

(i.e., frameworks) and the associated
programming languages that these tasks use, and
b) the functionality that the tasks implement and
the platforms (i.e., operating systems,
applications) on which these tasks are deployed.

 Associate JS technologies to domain
functionality, in an attempt to optimize small task
completion efficiency. In the case of the volatile
JS development eco-system, trends can provide
further information on the language current and
future domain utilization (Mao, 2017) as well as
reveal industrial requirement skills for developers
to master (LaToza, 2016).
In the current study, we decided to shed focus on

Bountify as a platform providing small tasks to the
participants covering a variety of required
programming languages, including JS. Bountify is a
popular question-and-answer platform, that has been
employed to improve crowdsourced small coding
tasks, seeking to provide only code solutions and
crowd-based support with an optional requirement of
a payment or charity donation as a form or reward.
We selected this platform among others as it currently
hosts small crowdsourced task, it is open source, with
free access, and easy access to the task database with
tag-based filter. Bountify promoted crowdsourcing
small task that lack the cognitive requirement to
belong to a large project (LaToza, 2016).

The rest of the paper is structured as follows.
Section 2 reviews the current related work regarding
investigating trends in JS small tasks. Section 3
presents the case study design we utilized to locate
and analyze trends. In Section 4 we present the results
of the statistical analysis process while in Section 5
we discuss the results, implications to researchers and
practitioners, as well as threads to validity. Finally,
Section 6 concludes the paper.

2 RELATED WORK

Crowdsourcing software development is a research
topic that concentrated the interest of the community
the recent years. Yuen et. al. (2011) was the first to
perform a survey on crowdsourcing development
models and categorized them into four types;
application, algorithm, performance and dataset.
Hetmak (2013) conducted a systematic literature
review in the domain of crowdsourcing systems to
gain a better understanding of what crowdsourcing

systems are and what typical design aspects are
considered in the development of such systems. In
addition, Alt et. al. (2010) described the concept of
crowdsourcing by designing and implementing a
crowdsourcing platform that integrates location as a
parameter for distributing tasks to workers. In his
concept, small tasks are broadcasted to a crowd in the
form of open calls for solutions, concluding that as a
concept is feasible. On the crowdsourcing task
decomposition problem, Tong et. al. (2019) focused
on how the desired reliability is achieved at a minimal
cost. The authors proposed a series of efficient
approximation algorithms using the greedy strategy
and the optimal priority queue data structure to
discover near-optimal solution based on cost and time
(but not skills). The majority of papers focus on small
tasks and most mainly on Amazon’s Mechanical Turk
micro-task market. Kittur et. al. (2008) examined the
Amazon platform as a potential paradigm for
engaging a large number of users for minimizing
monetary costs and shortening time-to market.
However, he pinpointed that further work is needed
to understand the kinds of experiments that are well-
suited to user testing via micro-task markets and
determining effective techniques for promoting
useful user participation and overall effectiveness.
Moreover, Weidema et. al. (2016) concluded that
many participants on the same platform find the
crowdsourced tasks to be difficult despite the fact
they are of limited scope.

With respect to the allocation of tasks to the
crowd, Boutsis et. al. (2014) presented a
crowdsourcing system that addresses the challenge of
determining the most efficient allocation of tasks to
the human crowd. This study concluded that
crowdsourcing systems assign a varying task
workload to a set of humans with different skills and
characteristics. Furthermore, Bibi et al. (2010)
analyzed among others the profiles, competencies and
relative performance of the task participants with
respect to the application domain of the crowdsourced
task. On a different perspective, Machado et. al.
(2017) conducted an empirical study to identify the
difficulty in tally stakeholder programming skills and
domain tasks. Kittur et. al. (2013) indicated the
potential danger to replace some forms of skilled
labor with unskilled labor in the task decomposition
process. The authors concluded that task assignment
in relation to each stakeholder’s ability is an
important issue for crowdsourcing labor economics,
affecting efficiency, quality, overall cost and job
satisfaction (Sun, 2017).

On the other hand, research on trends related to JS
application development, is growing mainly due to

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

86

the popularity of the language. Gude et al. (2014)
performed an empirical study on JS feature utilization
and suggested possible future directions. Delcev et.
al. (2018) performed a survey on frameworks and
recorded trends in JS emerging web technologies.
Sun et. al. (2017) and Rauschmayer (2012) explored
both JS programming as well research trends. While
research effort exists on JS trends, to our knowledge,
there isn’t currently any research on trends and
common practices when it comes to crowdsourcing
JS tasks.

3 CASE STUDY DESIGN

To empirically investigate and detect trends in
crowdsourcing JS small tasks, we performed a case
study on 771 JS coding tasks posted on Bountify
platform between 2014-2021. The case study is
performed according to the guidelines of Runeson et
al. (2009).

3.1 Research Questions

The overall goal of the case study is formulated to the
following three research questions:
 RQ1: Which are the JS frameworks and

technologies mostly used by the crowdsourced
tasks?

The purpose of this RQ is twofold: a) to identify
trends regarding the development frameworks and the
technologies (i.e., programming languages) when
crowdsourcing JS tasks and b) to explore whether the
success of JS crowdsourced tasks presents significant
differences with respect to the technologies and
programming languages used.
 RQ2: Which types of functionalities do the

crowdsourced tasks mostly implement?
The purpose of this RQ is also twofold: a) to identify
trends related to the functionalities that are mostly
implemented by the crowdsourced tasks and the
platforms on which the tasks will operate (i.e.,
operating systems, container applications-facebook,
wordpress, etc.) b) to explore whether the success of
JS crowdsourced tasks presents significant
differences with respect to the functionalities required
and the platform with which they are related to.
 RQ3: Is there a correlation between the JS

frameworks and technologies used by the
crowdsourced tasks and the functionalities
implemented?

In the third research question, we investigate whether
there is a significant correlation between frameworks
and technologies, as well as functionalities and

platforms. Our goal is to identify trends in the
technologies that are selected to implement particular
types of functionalities and see whether the
combination of technologies with functionalities can
be successful when being crowdsourced.

3.2 Data Collection and Units of
Analysis

For the purpose of our research, we collected data
from tasks crowdsourced in the Bountify platform
during the period from 2014 to March 2021. The
collection process was performed by a data crawler
developed by the second author.

Figure 1: Overview of Data Collection and Analysis
process.

In total, we collected data from 3,263 tasks. For each
individual task, several variables were recorded:

 Title
 Tag
 Winner
 Number of solutions
 Year of announcement

In order to isolate tasks related to JS technology, we
examined the tags and the titles of the tasks, and kept
the tasks that included related keywords (i.e., js,
javascript). The process was performed by two
individual researchers of our team in order to ensure
the accuracy of the results. This resulted in a total of
771 tasks.

To be able to perform the statistical analysis we
quantified the absence or appearance of each tag in
every task collected, by using a Boolean
representation (0 or 1 correspondingly). A total
number of 328 individual tags were recorded for all
tasks. As tags were freely declared by each task
provider, a significant number of similar tags were
traced targeting the same (e.g., angular, angularjs) or
different versions of software (e.g., bootstrap-3,
bootstrap). Therefore, a manual grouping process was
performed to summarize tags with the same meaning,

Trends on Crowdsourcing JavaScript Small Tasks

87

producing 61 individual tags counting 1,218
appearances in all tasks, as presented in Tables 2 and
3.
Additionally, for each task, we calculated the variable
task success which is a Boolean variable that
indicates whether at least one winning contribution
exists, for the task under study. A successful posted
task is considered a fulfilled task that has at least one
winning contributor to it. For each unique tag then we
calculated the success percentage that is described in
Equation (1), where Nsolved is the total occurrences of
the particular tag in the tasks that acquire at least one
acceptable solution, and Ntotal is the total tag
occurrences of the particular tag in all contests
analyzed.

𝑆𝑢𝑐𝑐𝑒𝑠𝑠% ൌ 𝑁௦௩ௗ/𝑁௧௧ (1)

The final step of the data collection process is to
classify the tags into four groups: frameworks (JS
frameworks), technologies (programming languages),
functionalities (i.e., visualization, data handling,
security), and platforms (operating systems, container
applications). An overview of the Data Collection and
Analysis process is presented in Figure 1.

3.3 Data Analysis Methods

The applied methodology follows common statistical
methods used by literature. To answer the first two
RQ, we have calculated standard descriptive
statistics, observations, and frequencies, and
performed a chi-square test (IEEE, 2009) to
determine whether each tag is associated with success
as described by equation (1). To answer the third RQ,
we performed Exploratory Factor Analysis (EFA)
(Snook, 1989), to determine the underlying
dimensionality of tags based on the correlation among
them. EFA is a statistical approach used to examine
the internal reliability of a measure and investigate
the theoretical constructs, or factors, that might be
represented by a set of items. For this purpose, we
performed Principal Component Analysis (PCA) to
decide the total number of factors. The approach is
used to discover the factor structure of a measure and
to examine its internal reliability, usually when no
hypotheses exist about the nature of the underlying
factor structure of their measure (Difallah, 2015). In
order to perform EFA and determine components of
related tags in the context of JS crowdsourced
development, we followed the steps described in
(Papoutsoglou, 2017). We performed PCA factoring
extraction with the adaption of the Varimax rotation
of the data. In order to determine the number of
factors, we selected all factors with an eigenvalue

higher than 1. The commonality of each variable was
examined with a cutoff value of 0.5, whereas in the
cases where the cut-off values were lower than 0.5 the
model was refitted. Additionally, for RQ3 we
performed Spearman correlation in order to explore
potential correlations between the derived
frameworks and technologies factors, and the
functionality and platform factors.

4 RESULTS

In the current section, we present the results of the
case study performed to answer the three research
questions.

4.1 RQ1

In this RQ we want to explore which JS frameworks
and technologies (i.e., programming languages
related to JS) are mostly used by crowdsourced small
tasks and whether these tasks are successful. In order
to answer this RQ, we analyzed the tags that are used
by the contest providers to describe each
crowdsourced task and define the skills required to
address it. Table 1 presents the frequency, the
percentage frequency, and the success percentage for
each tag identified along with the results of the chi-
squared test performed for each tag and the success
variable.

In the case of frameworks, we identified a large
diversity of both client and server-side technologies.
The dominant development framework is “jQuery”
followed by “bootstrap”. When analyzing the
frameworks tag frequencies, we observed that there is
a variety of frameworks used just one time (i.e.,
Parsley.js, Popper.js, Chart.js, etc.) which were all
merged in “jslibrary” tag. However, the combined
frequency of all these frameworks is high, indicating
the wide diversity in framework usage. The frequency
of each individual library is mere below 2 instances
for each one. A future further analysis with a larger
dataset should indicate whether these libraries should
be merged or not for further identification. To
summarize with framework usage, special emphasis
should be placed upon “nodejs” which seems to be
very popular probably due to the fact that it supports
server-side scripting.

When it comes to programming languages, we
can see that “css” and “html” scripting languages are
often used complementary within JS applications.
This finding can be explained by the fact that many
tasks are not implemented in any framework. Most
frameworks are oriented to directly manipulate the

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

88

output and as a consequence, the absence of a
framework requires, most of the time, the existence
of code implemented in the relevant output formatting
languages (CSS, HTML). Regarding JS
interoperability with other full-stack development
programming languages, “php” is the most
prominent, followed by “ruby” and “python”.

Table 1: JS Frameworks & technologies tags.

Framework N % Success χ2 p .05

jquery 182 23.61 96.70 1.93 0.16
bootstrap 79 10.25 94.94 0.01 0.91
jslibrary 61 7.91 93.44 0.20 0.65
nodejs 42 5.45 83.33 11.36 0.01
angular 20 2.59 85.00 3.82 0.05
react 18 2.33 83.33 4.71 0.03
meteor 12 1.56 91.67 0.22 0.63
typescript 9 1.17 77.77 5.16 0.02
vue 7 0.91 100 0.39 0.52

Languages N % Success χ2 p .05

css 123 15.95 93.50 0.40 0.52
html 108 14.01 94.44 0.01 0.90
php 37 4.80 86.49 5.18 0.02
json 27 3.50 92.59 0.24 0.62
ajax 14 1.82 92.86 0.09 0.75
xm1 9 1.17 100 0.51 0.47
ruby 8 1.04 77.78 6.22 0.01
python 7 0.91 100 0.39 0.52
java 5 0.65 60.00 12.02 0.01
perl 3 0.39 100 0.16 0.68
c 2 0.26 100 0.11 0.73

Finally, concerning data manipulation, “json” and
“xml” are the most common technologies used for
data retrieval. Figure 2 presents a relative
representation of the 10 most frequently appearing
framework and technology tags from 2012 to 2020.
We can notice that the use of React is increasing while
all others decrease (especially in the dominant case of
jQuery).

Figure 2: Analysis of small tasks framework utilization.

Regarding the success rate we can observe that tasks
related to “typescript”, “jquery” and “bootstrap”
frameworks present high percentages of success,
followed by tasks implemented in “nodejs”, “react”
and “angular.js”. We can observe that the least
successful tasks are related to “ruby” and “python”
programming languages and “vue.js” framework. In
order to examine whether the tasks implemented in
the various frameworks and technologies present a
significant difference with respect to success, we
conducted a chi-square test for each related tag and
the success variable. For most tasks, we calculate a
χ2 value with an asymptotic 2-sided significance p-
value over 0.05. The only frameworks that present a
significant difference with respect to success are
“nodejs”, “react” and “typescript”, while for
languages “php”, “ruby” and “java”. This leads to
the conclusion that regarding RQ1, there are no
significant differences in success percentages of the
tasks regardless of the frameworks and programming
languages implemented.

4.2 RQ2

In this RQ we will first identify trends related to the
types of applications and the functionalities that are
crowdsourced in JS tasks and then explore whether
the success of the tasks presents significant
differences within each type of functionality, an
application implemented, and platform. In Table 2 we
present the descriptive statistics of the tags along with
the results of the chi-square tests. In Figure 3 we
present the 10 most frequent platform and
functionality tags from 2012 to 2020.

Figure 3: Comparison of top 10 tag frequency of each
category.

In the case of platforms and applications, “wordpress” is
the dominant content management platform confirming the
largest market share to other content management systems
(“cms”) observed, while “google” is the dominant service
provider. We observe that the demand concerning
operating systems (such as “windows”, “linux”, “android”
and “ios”) is very limited. Probably this can be explained

Trends on Crowdsourcing JavaScript Small Tasks

89

by the shift towards the cloud computing paradigm where
Software-as-a-Service operational models override the
client operating system (Sharma, 2011). On the other hand,
in the case of core functionality, the dominant functionality
is visual representation (“layout”, “canvas”, “image”,
“design”, “table”).

Table 2: Tags analysis.

Platform &
Application

N % Success χ2 p .05

wordpress 24 3.11 91.7 0.44 0.50
google 23 2.98 91.3 0.53 0.46
browser 14 1.82 92.9 0.09 0.75
cms 11 1.43 81.8 3.66 0.05
mobile 10 1.30 90.0 0.44 0.50
android 7 0.91 85.7 1.12 0.28
evnote 7 0.91 100 0.39 0.52
facebook 6 0.78 100 0.34 0.56
ios 6 0.78 83.3 1.54 0.21
excel 6 0.78 100 0.34 0.56
youtube 5 0.65 100 0.28 0.59
linux 5 0.65 80.0 2.15 0.14
web 5 0.65 80.0 2.15 0.14
videogame 4 0.52 100 0.22 0.63
pdf 3 0.39 100 0.16 0.68
windows 3 0.39 66.6 4.69 0.03
twitter 1 0.13 100 0.05 0.81

Core
functionality

N % Success χ2 p .05

layout 34 4.41 100 1.99 0.15
canvas 26 3.37 96.2 0.11 0.73
database 24 3.11 83.3 6.33 0.01
image 21 2.72 90.5 0.75 0.38
epayments 19 2.46 94.7 0.00 0.99
form 16 2.08 93.8 0.02 0.86
design 15 1.95 93.3 0.05 0.81
table 14 1.82 100 0.80 0.37
algorithm 18 2.33 83.3 4.71 0.03
regex 21 2.72 100 1.21 0.27
video 12 1.56 100 0.68 0.08
security 10 1.30 90.0 0.44 0.50
analytics 9 1.17 100 0.51 0.47
geolocation 8 1.04 75.00 6.22 0.01
responsive 8 1.04 100 0.45 0.50
sales 8 1.04 87.5 0.82 0.36
api 7 0.91 100 0.39 0.52
audio 7 0.91 100 0.39 0.52
messaging 7 0.91 71.4 7.58 0.00
datatransfer 6 0.78 100 0.34 0.56
graphics 6 0.78 100 0.34 0.56
performance 5 0.65 100 0.28 0.59
mail 4 0.52 100 0.22 0.63

Although there are JS frameworks that can easily
support this functionality, it seems that the absence of
a framework, in most contests, contributes to these
high frequencies that are reported. A significant
functionality group is logic-related, including
“algorithms” and regular expressions (“regex”) that
support web application development. Lastly,
“epayments” and “sales” also present high
frequencies, indicating that JS client-side
technologies are used to minimize data transitions to
servers and ensure data safety and privacy. Regarding
the demand for specific functionalities and
applications over years, as presented in Figure 3 we
can see that this does not remain stable. The popular
tags tend to present a declining trend while new tags
appear over years that concentrate the attention (i.e
“responsive”).

4.3 RQ3

Our purpose in this RQ is to explore whether we can
form components of related tags with respect to a) the
different technology, platform and framework used b)
the different functionality and application
implemented. In the end, our target is to examine if
these components are correlated.

Table 3: Frameworks and Technologies factor analysis.

C
om

p
on

en
t

Initial Eigenvalues
S

u
cc

es
s

%

 Tags

T
ot

al

%
 V

ar
ia

n
ce

C
u

m
u

la
ti

ve
 %

1 1.76 8.39 8.39 100 python, perl, c
2 1.60 7.62 16.01 94.3 xml, json
3 1.48 7.06 23.08 93.3 html, css, java
4 1.42 6.77 29.86 85.4 nodejs, meteor
5 1.29 6.14 36.00 87.0 react, typescript
6 1.19 5.69 41.70 89.4 perl, c, php, ajax
7 1.18 5.65 47.35 95.6 bootstrap, jquery,

angular, java
8 1.06 5.08 52.44 87.8 c,ajax, ruby, angular
9 1.02 4.89 57.33 91.5 jslibrary, java, vue

The components of JS frameworks and technologies
and the related success percentages for each
component are presented in Table 3. The success
percentage is derived according to Equation (1), and
as each task includes multiple tags, for each tag,
success is based on the success task in which it is
included. The calculation of each tag success is based
on the mean of cumulative success rates of each task
containing at least the corresponding tag. The tag

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

90

inclusion in each task is based on the process
described in Section 3.2.

The components are presented in descending
order of importance based on the percentage of the
explained variance. The cumulative coverage for
frameworks and technologies consists of 9
components explaining 57.33% of the total variance.
The Kaiser-Meyer-Olkin (KMO) measure of
sampling adequacy was 0.521. All sampling
adequacies were above the commonly recommended
value of 0.5, while the Bartlett’s test of sphericity was
statistically significant x2(210) = 1,046.96 for p <
0.001. We also note that all eigenvalues score high on
success over 87%. Factors revealed distinguishable
and highly related frameworks and technologies
found in tasks.

Table 4: Functionalities factor analysis.

In Table 4 we present the results of PCA analysis
performed to identify factors based on the types of
functionalities and applications implemented. In total
20 components are identified explaining 65.26% of
variance. Each eigenvalue consists of at least one tag
to a maximum of four. Concerning Functionalities,

the KMO measure of sampling adequacy was 0.527.
All sampling adequacies were above the
recommended value of 0.5, while Bartlett’s test of
sphericity was statistically significant x2(780) =
3,499.98 for p < 0.001. We note that all eigenvalues
score high on success over 82%.

Table 5: Tag component correlation analysis.

JS Frameworks and
Technologies Functionalities

rh
o

S
u

cc
es

s

C1
Tags C2 Tags

9 jslibrary, java, vue 13
layout, image,
youtube, canvas .287 95.0

6 perl, c, php, ajax 6
sales, database,
security .241 90.4

4 nodejs, meteor 6
sales, database,
security .214 86.6

5 react, typescript 8 analytics, algorithm .214 86.0

4 nodejs, meteor 2
windows, linux,
android, ios .187 87.9

5 react, typescript 1 table, browser .187 91.1

1 python, perl, c 20 pdf .186 100

2 xml, json, evernote 14
mobile, ios, security,
evernote .179 91.5

1 python, perl, c 19 regex, audio .173 100

1 python, perl, c 2
windows, linux,
android, ios .152 95.6

4 nodejs, meteor 14
mobile, ios, security,
evernote .138 87.5

5 react, typescript 13
layout, image,
youtube, canvas .138 94.3

1 python, perl, c 17 wordpress, regex .128 96.0

1 python, perl, c 4
android, mobile,
datatransfer, ios .124 93.3

7
bootstrap, java,
jquery, angular

19 regex, audio -.113 95.9

4 nodejs, meteor 4
android, mobile,
datatransfer, ios .112 87.8

5 react, typescript 4
android, mobile,
datatransfer, ios .112 88.1

4 nodejs, meteor 15 messaging, cms .107 86.8

5 react, typescript 14
mobile, ios, security,
evernote .107 87.7

3 html, css, java 19 regex, audio -.106 94.1

8
c, ajax, ruby,
angular

6
sales, database,
security .105 89.0

1 python, perl, c 14
mobile, ios, security,
evernote .100 92.1

6 perl, c, php, ajax 7 google, api .099 89.8

7
bootstrap, java,
jquery, angular

14
mobile, ios, security,
evernote -.096 94.9

a. P < 0.001, C for Component

As a next step, we performed correlation analysis to
identify significant correlations between framework
and technology components, and, functionality and
application components. The analysis indicated
statistical significance (Spearman's rho coefficient for

C
om

p
on

en
t

Initial
Eigenvalues

S
u

cc
es

s
%

 Tags T
ot

al

%
 V

ar
ia

n
ce

C
u

m
u

la
ti

ve
 %

1 2.44 6.11 6.11 93.3 table, browser
2 1.88 4.70 10.81 94.1 windows, linux,

android, ios
3 1.62 4.05 14.86 93.8 design,responsive
4 1.47 3.68 18.54 91.3 android,datatransfer

mobile, ios
5 1.41 3.52 22.07 98.0 layout, excel, form
6 1.37 3.44 25.52 89.5 sales, database,

security
7 1.32 3.31 28.83 92.6 google, api
8 1.30 3.25 32.09 87.5 analytics, algorithm
9 1.23 3.09 35.18 100 api, performance,

graphics
10 1.21 3.03 38.22 100 facebook, mail
11 1.20 3.01 41.23 94.7 tweeter, epayments
12 1.15 2.88 44.12 100 videogame,graphics
13 1.14 2.85 46.97 96.1 layout, image,

youtube, canvas
14 1.12 2.82 49.79 90.3 mobile, ios,security,

evnote
15 1.08 2.70 52.50 82.4 messaging, cms
16 1.05 2.64 55.14 85.7 web, geolocation
17 1.02 2.56 57.70 95.6 wordpress, regex
18 1.01 2.52 60.23 100 video
19 1.00 2.51 62.74 100 regex, audio
20 1.00 2.50 65.25 100 pdf

Trends on Crowdsourcing JavaScript Small Tasks

91

p < 0.001) as presented in Table 5 revealing twenty
statistically significant correlations.
From the examination of the statistically significant
correlations, we can derive some interesting findings:
 C1.1 component (“python”, “perl”, “c”) is the

most correlated component from the framework
and technology components, as it is associated
with 6 functionality and application components.
It seems that these three programming languages
are used supplementary with JS language to
perform a variety of functionalities related to
operating systems (C2.1, C2.2, C2.14), regular
expressions (C2.17) and mobile data transferring
and security handling (C2.4, C2.14).

 C1.4 (“nodejs”, “meteor”) and C1.5 (“react,
“typescript”) are both correlated to mobile data
transfer functionalities (C2.4). C1.4 is also
related to back-office operations (C2.6) and
content management (C2.15). C1.5 is also related
to user interface functionalities (C2.1, C2.13)
and to more demanding tasks related to analytics
and algorithms (C2.8).

 C1.6 component (“perl”, “c”, “php”, “ajax”)
correlates to back-office functionalities (C2.6)
and functionalities related to the interaction with
external sources (C2.7). C1.7 (“bootstrap”,
“java”, “jquery”, “angular”) correlates to
functionalities related to regular expressions.

 We should note that all correlations are over 84%
successful, meaning that the contests that are
related to the technologies and functionalities
that are present in the components have managed
to acquire a winning solution. Specifically
component C1.1 (“perl”, “python”, “c”) when
combined with component C2.17 (“regex”,
“audio”) or component C2.20 (“pdf”) it presents
100% success.

5 DISCUSSIO1N

5.1 Interpretations of Results

Based on the above results in Section 4.1, we can
identify several trends when crowdsourcing JS micro-
tasks. With respect to JS frameworks and
technologies, Node.JS and Meteor technologies are
widely used for crowdsourcing a variety of tasks,
including business and data-oriented tasks for several
platforms. These frameworks are also found when
crowdsourcing mobile deployment and security-
related tasks. On the other hand, React and
TypeScript are also used in multiple platform

development, but emphasize more in layout and user
interface micro-tasks. A number of programming
languages have been often utilized supplementary
with JS for development. These include Python, Perl
and C languages. In these cases, these languages are
used to handle tasks related to operating systems and
for regular expression manipulation.

In Section 4.2 with respect to the JS
functionalities and applications that are mostly
crowdsourced, we observe that tasks related to mobile
applications and security are common and they are
implemented by a disperse variety of technologies.
These may include other programming languages like
Python or JS frameworks like React and Bootstrap, as
well as technologies to distribute data as XML and
JSON. Sales transactions, database manipulation and
security tasks rely on server-side technologies like
Node.JS and Meteor, as well as on other
programming languages in conjunction with JS like
C, PHP, and AJAX. In these cases, we assume that
AJAX calls act as an intermediate to ensure the
interoperability of these technologies. We should
mention that the above technologies also pose a trend
in mobile data operations and mobile platforms, most
notably Android. An interesting output is that
concerning the mobile platform development, for
Android, most preferred JS technologies are Node.JS,
Meteor, React, and TypeScript, while for iOS, above
the prementioned, Bootstrap, jQuery, and Angular.

In Section 4.3 we conclude that the expanded eco-
system of JS crowdsourced micro-tasks is not focused
on a single technology but rather on a series of
technologies, frameworks, and libraries that in most
cases either overlap or complement each other. Also,
we can say that JS micro-tasks are related to the
implementation of a variety of functionalities the
most successful of which are user-interface handling,
layout tasks, and regular expression manipulation.
All these tasks can be considered small light-weight
tasks. Tasks that can be considered more demanding,
in the sense that they require more specialized skills,
such as tasks related to operating systems, business
logic, and algorithms tend to present lower success
percentages, but still above 80% in most of the cases.

5.2 Implications to Researchers and
Practitioners

The results of the current study can be used both by
researchers and practitioners. The current findings
indicate that crowdsourcing JS small tasks can be
particularly successful since most contests are able to
acquire a winning solution. This is an indication that
researchers can work on models for decomposing

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

92

larger JS applications into a series of small tasks that
can be successfully and easily crowdsourced.
Additionally, we can observe that particular JS
functionality such as regular expression
manipulation, video, and audio handling has been
crowdsourced with a variety of programming
languages and frameworks as presented in Table 5.
This is a sign that there is a need to create libraries or
frameworks that can handle such functionalities.
Furthermore, while crowdsourcing has been a popular
research topic, researching crowdsourcing small tasks
has been mostly based on the Amazon Mechanical
Turk platform (Kittur, 2008). Future comparison of
different small tasks crowdsourcing platforms, tasks,
and contributors could further reveal trends in JS
technologies and functionalities. Regarding
Practitioners, the current findings on trends in JS
development indicate indirectly demands for skills
and domain professionality in the job market. By
recording the technologies and the related
functionalities that are mostly crowdsourced in JS
micro-tasks practitioners can benefit by acquiring the
related skills to be able to correspond to present and
future industry demands.

5.3 Threats to Validity

Based on the categorization of Runeson et. al. (2009),
we will discuss the threats to validity identified in this
study. Regarding Construct Validity, we should
mention that the current metrics as described (and
currently the tags of each small task) may affect the
outcome of the overall findings. We cannot deny that
the evaluation of alternative metrics that have not
been participated in our study should not be included
in the future. Such metrics may include developer
experience, skills, and trends in JS development
technologies (Meldrum, 2017). Regarding Internal
Validity, our study attempts to detect trends.
However, we do not claim that the presented results
are from any form of causality rather than trends.
Regarding Reliability, the process followed in our
study has been thoroughly documented in the Case
Study Design section in order to be easily reproduced.
Thus, we believe that the replication of our study is
safe and the reliability is ensured. Regarding External
Validity, changes in the findings might occur in cases
of either small task dataset alternations or the use of
different small task platforms. Future replication of
the current study would be valuable to verify our
findings and support the generalizability supposition.

6 CONCLUSIONS

In the current study, we explored trends in
crowdsourcing small tasks developed in JS. Our aim
is to associate domain functionality and JS-related
technology and frameworks. In total we have
analysed 771 JS small tasks, crowdsourced in the
Bountify platform. The results show that the JS
crowdsourced tasks are successful in their majority
and that a series of frameworks (jQuery, Bootstrap,
Node.JS) and languages (HTML, CSS, XML) are
employed for implementing tasks related to
visualization (user interfaces, layout), data
manipulation (security, databases, algorithms) and
platform deployment (iOS, Windows, Android).
Overall, we conclude that the expanded eco-system of
JS crowdsourced micro-tasks is not focused on a
single technology but rather on a series of
technologies, frameworks, and libraries that in most
cases either overlap or complement each other.

REFERENCES

Alt, F., Shirazi, A., Schmidt, A., Kramer, U., Nawaz, Z.
(2010). Location-based crowdsourcing: extending
crowdsourcing to the real world, 6th Nordic Conf. on
Human-Computer Interaction, Association for
Computing Machinery, NY, USA, 13–22.

Archak, N. (2010). Money, glory and cheap talk: Analyzing
strategic behavior of contestants in simultaneous
crowdsourcing contests on TopCoder.com, 19th
International Conference on WWW, NY, USA, 21–30.

Bibi, S., Zozas, I., Ampatzoglou, A., Sarigiannidis, P. G.,
Kalampokis, G., Stamelos, I. (2020). Crowdsourcing in
Software Development, IEEE Access, vol. 8, 58094-
58117.

Boutsis, I., Kalogeraki, V. (2014). On Task Assignment for
Real-Time Reliable Crowdsourcing, IEEE 34th Int.
Conf. on Distributed Comp. Systems, Spain, 1-10.

Chatzimparmpas, A., Bibi, S., Zozas, I., Kerren, A. (2019).
Analyzing the Evolution of Javascript Applications.
14th International Conference on Evaluation of Novel
Approaches to Software Engineering, vol. 1, 359-366.

Delcev, S., Draskovic, D. (2018). Modern JavaScript
frameworks: A Survey Study, Zooming Innovation in
Consumer Technologies Conference, Serbia, 106-109.

Difallah, D., Catasta, M., Demartini, G., Ipeirotis, P.,
Cudré-Mauroux, P. (2015). The Dynamics of Micro-
Task Crowdsourcing: The Case of Amazon MTurk,
24th Int. Conf. on WWW, Switzerland, 238–247.

Gude, S., Hafiz, M., Wirfs-Brock, A. (2014). JavaScript:
The Used Parts, IEEE 38th Annual Computer Software
and Applications Conference, Sweden, 466-475

Guittard C., Schenk E., Burger-Helmchen T. (2015).
Crowdsourcing and the Evolution of a Business
Ecosystem. Advances in Crowdsourcing. Springer.

Trends on Crowdsourcing JavaScript Small Tasks

93

Hetmank, L. (2013). Components and Functions of
Crowdsourcing Systems – A Systematic Literature
Review. Wirtschaftsinformatik Proceedings, 4.

1061-1998: IEEE Standard for a Software Quality Metrics
Methodology, IEEE Standards, IEEE Computer
Society, 31 December 1998 (reaf. 9 December 2009).

Kittur, A., Chi, E., Suh, B. (2008). Crowdsourcing user
studies with Mechanical Turk. Conference on Human
Factors in Computing Systems, NY, USA, 453–456.

Kittur, A., Nickerson, J., Bernstein, M., Gerber, E., Shaw,
A., Zimmerman, J., Lease, M., Horton, J. (2013). The
future of crowd work. Conference on Computer
supported cooperative work. Association for
Computing Machinery, NY, USA, 1301–1318.

Lakhani, K., Garvin, D., Lonstein, E. (2010). TopCoder(A):
Developing software through crowdsourcing. Harvard
Business School Case

LaToza, T., Van der Hoek, A. (2016). Crowdsourcing in
Software Engineering: Models, Motivations, and
Challenges, IEEE Software, vol. 33, 1, 74-80, Jan.-Feb.

Machado, M., Zanatta, A., Marczack, S., Prikladnicki, R.
(2017). The Good, the Bad and the Ugly: An Onboard
Journey in Software Crowdsourcing Competitive
Model, 4th Int. Workshop on Crowd Sourcing in Soft.
Engin., Buenos Aires, Argentina, 2-8.

Mao, K., Capra, L., Harman, M., Jia, Y. (2017). A survey
of the use of crowdsourcing in software engineering.
Journal of Systems and Software, Vol. 126, 57-84

Meldrum, S., Licorish, S., Savarimuthu, B. (2017).
Crowdsourced Knowledge on Stack Overflow. 21st Int.
Conf. on Evaluation and Assessment in Software
Engineering. Association for Computing Machinery,
NY, USA, 180–185.

Papoutsoglou, M., Mittas, N., Angelis, L. (2017). Mining
People Analytics from StackOverflow Job
Advertisements, 43rd Euromicro Conf. on Soft. Eng.
and Advanced Applications, Austria, 108-115.

Rauschmayer, A. (2012). The Past, Present, and Future of
JavaScript. O'Reilly Media, Inc.

Runeson, P., Höst, M. (2009). Guidelines for conducting
and reporting case study research in software
engineering. Empir Software Eng 14, 131.

Sharma R., Sood M. (2011). Cloud SaaS: Models and
Transformation. Advances in Digital Image Processing
and Information Technology. Communications in
Computer and Information Science, vol 205. Springer.

Snook, S., Gorsuch, R. (1989). Principal component
analysis versus common factor analysis: A Monte
Carlo study. Psychological Bulletin, 106, 148-154.

Sun, K., Ryu, S. (2017). Analysis of JavaScript Programs:
Challenges and Research Trends. ACM Comput. Surv.
50, 4, Article 59 (November 2017), 34.

Tong, Y., Chen, L., Zhou, Z., Jagadish, H.V., Shou, L., Lv,
W. (2019). SLADE: A smart large-scale task
decomposer in crowdsourcing. 35th IEEE Int. Conf. on
Data Engin., ICDE Macau, China. 2133-2134

Wang, H., Wang, Y., Wang, J. (2014). A participant
recruitment framework for crowdsourcing-based
software requirement acquisition, 9th IEEE Int.
Conference on Global Software Engineering,65–73.

Weidema, E., López, C., Nayebaziz, S., Spanghero, G., Van
der Hoek, A. (2016). Toward microtask crowdsourcing
software design work, 3rd Int. Workshop on Crowd
Sourcing in Soft. Engin., NY, USA, 2016, 41–44.

Yuen, M., King, I., Leung, K. (2011). A Survey of
Crowdsourcing Systems, 3rd Int. Conf. on Privacy,
Security, Risk & Trust, MA, USA, 766-773.

Zanatta, A., Machado, L., Steinmacher, I. (2018).
Competence, Collaboration, and Time Management:
Barriers and Recommendations for Crowdworkers, 5th
Int. Workshop on Crowd Sourcing in Soft. Engin. (CSI-
SE), Gothenburg, Sweden, 9-16.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

94

