
Energy-Aware Deep Learning for Green Cyber-Physical Systems

Supadchaya Puangpontip a and Rattikorn Hewett b
Department of Computer Science, Texas Tech University, Lubbock, U.S.A.

Keywords: Green Computing, Energy-Aware, Energy Modelling, Smart Cyber-Physical Systems, Edge Deep Learning.

Abstract: Today's green computing has to deal with prevalent Cyber-Physical Systems (CPSs), engineered systems that
tightly integrate computation and physical components. Green CPS aims to use electronic/computer devices
and resources to perform operations as efficiently and eco-friendly as possible. With the rise of smart
technology combining with Artificial Intelligence Deep Learning (DL) in Internet of Things and CPSs,
continuing use of these compute intensive CPS software like DL can negatively impact energy resources and
environments. Much research has advanced green hardware and physical component development. Our
research aims to develop green CPSs by making them energy aware. To do this, we propose an analytical
modelling approach to quantifying energy consumption of software artifacts in the CPS. The paper describes
the approach through energy consumption modelling of DL in distributed CPS due to the popular deployment
of DL in many modern CPSs. However, the approach is general and can be applied to any CPS. The paper
illustrates the application of our approach for energy management in scaling and designing smart farming
CPS that monitors crop health.

1 INTRODUCTION

Increasing use of electronic/computer devices and its
impacts on environments are inevitable. Green
computing addresses how to use computers and their
resources in an eco-friendly way. This includes
designing, manufacturing, using, and disposing these
devices to reduce electronic waste and power
consumption with the goal to utilize the energy to
perform operations as efficiently as possible (Dhaini
et al., 2021; Ortiz et al., 2020).

In today's world, cyber-physical systems (CPSs),
or engineered systems that tightly integrate
computation and physical components (Yu et al.,
2020), are everywhere. CPSs drive innovations and
enable numerous applications from autonomous
vehicles to smart cities and agricultures (Estevez &
Wu, 2017; Liang et al., 2018; Yu et al., 2020). With
the recent rise of smart technology combining with
Artificial Intelligence Deep Learning (DL) in Internet
of Things and CPSs, continuing use of these
sophisticated computationally intensive CPS
software like DL can no longer be ignored as they can
unknowingly have negative impacts on energy

a https://orcid.org/0000-0002-7025-4941
b https://orcid.org/0000-0002-9021-7777

resources and environments (Estevez & Wu, 2017;
Inderwildi et al., 2020). There is a need to develop
green computing for CPS.

Research has been studied extensively to develop
green CPSs including improving infrastructures (e.g.,
cloud and data centers) (Ortiz et al., 2020) and finding
energy-efficient solutions (e.g., lightweight protocols
(Haseeb et al., 2020), energy harvesting (Zeng et al.,
2020), or optimizing scheduling (Fu et al., 2019;
Liang et al., 2018)) to reduce energy waste and
consumption. Some deals with estimating energy
consumption (Horcas et al., 2019; Liang et al., 2018)
and some (Bouguera et al., 2018) focuses on energy
usage of certain communication protocols and sensor
devices. While much work has advanced green
hardware and physical component development, it
appears that green computing software has lagged. To
build and sustain green computing systems, the
ability to monitor and quantify energy usage of
software is as crucial as that of hardware artifacts.
The estimated energy consumption can be useful for
managing energy resources, planning and designing
greener systems, or identifying possible
power/energy savings.

32
Puangpontip, S. and Hewett, R.
Energy-Aware Deep Learning for Green Cyber-Physical Systems.
DOI: 10.5220/0011035500003203
In Proceedings of the 11th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS 2022), pages 32-43
ISBN: 978-989-758-572-2; ISSN: 2184-4968
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Existing approaches employ power measurement
tools (Faviola Rodrigues et al., 2018; Horcas et al.,
2019; Li et al., 2016; Mitchell et al., 2018), simulation
(Yang et al., 2018) and analytical modeling (Yang et
al., 2018). Although these tool-based technique is
simple, it is system-specific and relies on probing that
may not always be accessible. Using simulation
requires understanding of computational behavior of
the system and can also take a long time to run.

Our research aims to develop green CPSs by
making them energy aware. To do this, we propose
an analytical modelling approach to quantifying
energy consumption of software artifacts in the CPS.
Unlike previous analytical approach by Yang et. al,
our approach shows explicit modelling using two
basic core elements, namely number of MAC
operations and frequencies of data access. The paper
describes the energy quantification approach through
energy consumption modelling of DL in distributed
CPS due to the popular deployment of DL in many
modern CPSs. The approach is general and can be
applied to any CPS. The paper illustrates the
application of our approach for energy management
in scaling and designing smart farming CPS that
monitors crop health.

In summary, the paper has the following
contributions: (1) a foundation for energy modeling
of software components using primitive basic
elements relying on data computation and movement,
(2) energy quantification of DL, specifically
convolution and artificial neural nets, and (3)
application of the DL energy models in designing and
scaling smart farming CPS for crop health monitoring.

The rest of the paper is organized as follows.
Section 2 discusses related work and Section 3
presents the proposed approach. Section 4 gives
details of the approach on specific computing units,
particularly, the execution of the trained deep
learning model. Our illustration of energy modeling
approach on smart farming, including experimental
design and setup, is given in Section 5, followed by
experimental results in Section 6. The paper
concludes in Section 7.

2 RELATED WORK

Most research on energy-related issues in CPSs
includes energy management (Ortiz et al., 2020; Zhu
et al., 2021), improving infrastructures such as cloud
and data centers (Ortiz et al., 2020), energy harvesting
(Zeng et al., 2020), and energy efficient solutions.
The latter includes scheduling optimization (Fu et al.,
2019; Liang et al., 2018; Zhu et al., 2021), energy

optimization strategies (Horcas et al., 2019; Hossain
et al., 2020) and energy efficient protocols (Haseeb et
al., 2020). While useful, all of these approaches,
however, either does not estimate energy
consumption (Zeng et al., 2020; Zhu et al., 2021) or
does that of physical components (Fu et al., 2019;
Hossain et al., 2020; Liang et al., 2018). Unlike these
studies, we consider energy consumption of software
or computing units.

Research in estimating energy consumption of
software components uses various techniques. Most
rely on power measurement tools e.g., hardware
sensors (Mitchell et al., 2018; Zhu et al., 2021),
WattsUp? Pro (Horcas et al., 2019), Intel’s Running
Average Power Limit (RAPL) interface and/or
nvidia-smi (Li et al., 2016), and the Streamline
Performance Analyser (Faviola Rodrigues et al.,
2018). These tools are used to measure actual energy
consumption, then report energy usage or build
energy model. However, these tool-based approach
can be hardware specific and can only measure
energy at the device level. They are unable to measure
specific software computation.

Another technique uses simulation to estimate
energy consumption of software units (Yang et al.,
2018). It estimates energy consumption of deep
learning based on two factors: number of Multiply-
and-Accumulate (MAC) operations and data
movement in the hierarchy. The number of MACs
and data accesses are obtained through simulation. In
general, although the approach gives accurate results,
it requires long runtime for large software
component. Moreover, it requires a knowledge of and
is specific to certain hardware system.

To overcome the above limitations, few studies
employ analytical approach (Mo & Xu, 2020; Yang
et al., 2018; Z. Yang et al., 2021). Work in (Mo & Xu,
2020; Z. Yang et al., 2021) presents a mathematical
model to estimate software computing units based on
numbers of CPU cycles, CPU frequency, and
floating-point operations. They do not consider
energy consumed by data movement within memory
hierarchy which is rather significant to the overall
consumption. Work in (Yang et al., 2018) presents a
tool for estimating software component using
analytical modeling approach. However, there is no
details on the analytical models employed. Our work
is most similar to (Yang et al., 2018) in applying basic
elements of MACs and data movement. Specifically,
both (Yang et al., 2018) and our approach present
energy modeling of energy consumption during deep
learning execution (i.e., testing of deep learning
model). However, this work differs from ours in that
it does not show how the core elements (i.e., the

Energy-Aware Deep Learning for Green Cyber-Physical Systems

33

number of MACs and data movement) are obtained,
whereas we do. Our model explicitly defines how to
calculate number of MAC operations as well as
frequencies of data access to quantify energy
consumption of deep learning.

3 ENERGY MODELING FOR
COMPUTING UNITS IN CPS

Figure 1 shows a conceptual architecture of CPS,
where cyber and physical systems are tightly
integrated. The physical system sends data to the
cyber system (via sensors). The cyber system takes
sensed data as inputs and computes and produces
output to the physical system (via actuator). The
interactions can be intensive and may be required at
different system granularities, thus CPS needs a tight
component integration for efficiency.

Figure 1: Conceptual architecture of CPS.

Physical systems (or components/units) include
human engineered systems (e.g., manufacturing,
building) and natural systems (e.g., solar, climate,
habitat, environments) and Cyber (or Software)
systems (or components/units) include computing
artifacts as well as relevant infrastructures (e.g., data
storage and transmission network). We refer to
sensors and actuators as interface devices and use the
term “computing units” and “cyber/software
components” synonymously.

Although some objects are of physical system
(e.g., sensors, network cables), in estimating energy
consumption of computing units in a CPS, we include
energy consumption consumed by relevant physical
components in computation and data transmission (or
communication). Thus, energy consumption includes
energy consumed by a sensor for sensing and
transmitting the data to a server.

In this section, we describe our approach to
estimating energy consumption of computing units in
CPS. We start with the methodology to estimate
consumption per unit in Section 3.1 then present the
estimation of the system in Section 3.2.

3.1 Unit Energy Estimation

Energy consumption of a computing unit consists of:
(1) energy consumed from computation (Ecomp), (2)
energy consumed from the associated data movement
(Edata) and (3) energy consumed from transmission to
other units (Etrans), i.e.,

E = Ecomp + Edata+Etrans (1)

Figure 2 summarizes an overall concept of how to
compute E in (1).

Figure 2: Energy consumption methodology of a computing
unit.

Details on the modeling the energy from
computation, data access, and transmission are
presented below in Subsections 3.1.1, 3.1.2, and
3.1.3, respectively.

3.1.1 Computation Energy

Figure 3: A MAC operation.

The fundamental element of the computation is a
multiply-and-accumulate (MAC) operation (Yang et
al., 2018). Suppose we want to compute ∑ wixi

n
 i=0 .

Figure 3 depicts a MAC operation, where for each
iteration i, two inputs wi and xi are multiplied and the
result is added to the (accumulated) partial sum pi,
producing an updated partial sum pi+1 for the next
iteration (or the accumulated sum of the
multiplication pairs so far). This accounts for one
MAC operation in one iteration. Since the final
summation is a result of n iterations of MACs, we say
it takes n MACs. As a result, computation energy
depends on the number of MACs, giving

Ecomp = αc (2)

SMARTGREENS 2022 - 11th International Conference on Smart Cities and Green ICT Systems

34

where c is the number of MACs and α is hardware
energy cost per one MAC operation.

3.1.2 Data Access Energy

For each computation, data of different types (e.g.,
input and output) need to be stored in the memory. In
particular, as shown in Figure 3, each MAC performs
four data accesses, three reads (i.e., two inputs wi and
xi and one previous accumulated partial result pi) and
one write (i.e., new partial result pi+1). Since energy
spent accessing different levels of memory hierarchy
are significantly different, data movement energy
depends on how data moves in the memory hierarchy
(Yang et al., 2018).

Let M be a memory hierarchy level, V be a set of
data types (e.g., input, output, weight), βm be a
hardware energy cost per data access in the memory
level m, av,m be the number of data accesses for data
of type v accessed at memory level m, and p be a
precision in terms of number of bits for data
representation (e.g., 8, 16). We can estimate the
energy consumption corresponding to data movement
based on the number of data accesses and access
location in the memory as shown below.

Edata = ∑ ∑ βmav,m

M
m=1v∈V p (3)

Note that we express βcache and βDRAM in terms of

energy cost of a MAC operation α, resulting in βcache
= 6α and βDRAM = 200α, used in (Yang et al., 2018).

In this study, without loss of generality, we
consider data moves between two memory levels:
cache (m = 1) and DRAM (m = 2) with a cache hit
rate h. Data are looked up in the cache first. If they
are not found (cache miss), they will be fetched from
DRAM and stored in cache. As a result, we can
simplify data movement energy to be as follows.

Edata= ∑ (βcacheav+ βDRAM(1-h)av) pv∈V (4)

As seen in (4), in the best-case scenario (h = 1),

all data are fetched from cache, whereas in the worst
case (h = 0), all data have to be fetched from DRAM
as expected.

3.1.3 Transmission Energy

Transmission energy (Etrans) of a computing unit can
be calculated from transmission power p scaled by
transmission time t (Mo & Xu, 2020; Z. Yang et al.,
2021). The transmission time can be obtained from
dividing the total number of bits to be transmitted s
by the achievable rate r.

Etrans = pt = p (s/r) (5)

Depending on communication protocols, the

achievable rate r can be calculated differently. For
example, in Frequency Division Multiple Access
protocol (FDMA) (Z. Yang et al., 2021), r can be
achieved by:

r = b log ቀ1+
ph

N0b
ቁ (6)

where b is bandwidth, p is transmission power of the
edge node, h is channel power gain and N0 is power
spectral density of the Gaussian noise. Similarly, in
non-orthogonal multiple access (NOMA) protocol
(Mo & Xu, 2020), r can be found by:

r = B log ൬
σ2+ ∑ pihi

n
i=1

σ2+ ∑ pihi
n-1
i=1

൰ (7)

where B is bandwidth, p is transmission power, h is
channel power gain, n is the number of edge nodes
and 𝜎ଶ is a variance for the additive white Gaussian
noise (AWGN).

3.2 System Energy Estimation

Figure 4: Sensor-based CPS network.

Once we quantify energy for each computing unit as
in Section 3.1, this section combines the energy of all
computing units in a system. Figure 4 shows an
example of a sensor-based distributed system
consisting of two computing units, each is a network
of sensors (or sensing nodes) and distributed server
(or server or edge node). Total energy consumption
of the system can be expressed by

Enetwork = Nsense (Esense)+Nserver(E) (8)

where Nsense, Nserver is the number of sensors and
servers, respectively. Esense is energy consumed by
each sensing node, which includes consumption
during all sensor operations e.g., sensing, logging and
transmission (Bouguera et al., 2018). Finally, E is

Energy-Aware Deep Learning for Green Cyber-Physical Systems

35

energy consumed by each server obtained by
modeling approach discussed in the previous section.

4 DEEP LEARNING MODELING

To further explain energy modeling of computing
units in more details (i.e., to show how one can count
the number of MACs and data access in the memory),
we need to work on specific software units. Here we
choose a relatively difficult computing unit of a
popular Deep learning or deep neural network
(DNN). DNN has been widely used in CPS for
various tasks such as control, automation, detection,
and monitoring. This section further describes the
methodology in Section 3.1 to estimate energy of
DNN computation. Specifically, we focus on energy
consumption of computation and data access during
the execution of the trained DNN model on one data
instance. That is, we do not deal with energy usage
for training DNN.

Background of DNN and how to assess the number
of MACs and the number of data access from the
DNN model are described in Subsections 4.1, 4.2, 4.3,
respectively.

4.1 Background on DNN

Artificial neural networks (ANN) are a computational
model consisting of layers of neurons. Each output is
obtained by computing a weighted sum of all inputs,
adding a bias, and (optionally) applying an activation
function as shown in (9). Examples of activation
functions are sigmoid function and Rectified Linear
United (ReLU).

 y = f(∑ wixi
n
i=0 +b) (9)

where y, xi, wi, b and n are the output, inputs, weights,
bias and number of inputs, and f(.) is an activation
function (Sze et al., 2017).

A convolution neural networks (CNN) is a type of
DNN that has been successfully applied to image
analysis and computer vision (e.g., face recognition,
object classification). Figure 5 shows a typical CNN
architecture where multiple convolution (CONV)
layers are used for feature extraction and fully
connected (FC) layers are used for classification.
Since CNN usually deals with images with high
dimensions, pooling (POOL) layers are used to
reduce the dimensionality using pooling operations
(e.g., max, average). As shown in Figure 5, the POOL
layer selects the maximum element of an input region
and reduces dimension of a 4x4 input to a 2x2 output.

Figure 5: A Convolutional Neural Network (CNN).

The CONV layer, a building block of CNN,
consists of high-dimensional convolutions. Equation
(10) defines the computation of each CONV layer.
For each layer, an input (also called input feature
map) is a set of 2-dimensional matrices, each of
which is called a channel. Each channel is convolved
with a distinct filter channel (i.e., 2-dimensional
weights). As seen at the bottom of Figure 5, a
convolution starts with the 2-dim filter slides over a
region of the 2-dim input of the same size, performing
pointwise multiplication and summing the results into
a single value. The convolution results are summed
across all channels (3rd dimension of input block).
The bias b can be added to the result, yielding the
single output value z (as shown in (10)).

zs,f,m,n= (∑ ∑ ∑ wf,c,i,jxs,c,m+i,n+jjic) + bf (10)

where zs,f,m,n is the output feature map of layer l, batch
s, channel f and location (m, n), w is the weight of
filter f, channel c and location (i, j), x is the input and
b is bias. The filter repeats this process as it slides
over all the input regions, yielding a filled output
matrix. The process then repeats for all F filters. Each
of the output values (LHS of (10)) then goes through
an activation function and becomes an input to the
next layer (Sze et al., 2017).

Since a DNN model consists of multiple layers of
different types (e.g., convolution, pooling and fully
connected), the total consumption of the DNN is the
summation of computation and data access energy
from all layers. Next, we provide a per-layer
estimation of number of MACs (for computation
energy) and data access (for data access energy)

4.2 Estimation of Number of MACs

Since different type of layers require different
computation, we provide estimation of number of
MACs for each layer as follows.

4.2.1 Fully Connected (FC) Layer

Consider Figure 6 representing a FC layer l of n
neurons, each of which is connected with every

SMARTGREENS 2022 - 11th International Conference on Smart Cities and Green ICT Systems

36

neuron of an FC’s input layer (or previous layer) of m
neurons. (Note that if the FC’s previous layer is a
convolution or pooling layer whose output is
represented in a stack of h 2-dimensional square
planes, say k×k then the input layer of FC has m =
h×k×k neurons).

Figure 6: Computation and associated data in FC layer.

As shown in Figure 6, for each of n neurons in the
FC layer, we compute m weighted sums (as in f’s
argument) and one activation (by function f). Thus, c,
the total number of MACs in the FC layer is shown
below in (11).

c = mn + cact n (11)

where cact is the number of MACs used in the
activation function which will be determined later.

4.2.2 Convolutional (CONV) Layer

Figure 7: Computation and associated data in CONV layer.

The convolution layer aims to extract features by
means of weights in filters. It results in a large number
of computations and corresponding data movements.
An input of n1 width and height and m channels is
convoluted with f filters, each of dimension n2 x n2 x
m, and results in an output of size k x k x f.

As shown in Figure 7, the convolution process
starts with a pointwise multiplication of a filter and an
input region where the results are summed across all
channels. To obtain this one output value (e.g., the top
leftmost cell of the output), it takes n2

2m MACs (A in
Figure 7). The convolution process continues for the
rest of the input region, yielding the output of size k
by k yielding the number of MACs (B in Figure 7).
The process then repeats for the rest of the f filters,
ultimately producing f outputs and taking n2

2mk2f
MACs, shown as C. Note that the output value can go

through to an activation function which takes another
cact MACs. In other words, to obtain each output
value, it takes n2

2m and cact MACs. The operation
repeats k2f time for all output values giving the total
number of MACs in the CONV layer as:

c = (n2

2m)(k2f) + cact (k2f) (12)

4.2.3 Pooling Layer

The energy consumption of a pooling layer depends
on the type of the pooling operation. We consider the
two popular types: max pooling and average pooling.

In max pooling, the filter slides over input region,
the maximum element in the region is selected as an
output value. Since no MAC operation is used, we
obtain c = 0.

Similar operation is done in average pooling, but
instead of selecting the maximum value of the input
region, the operation averages the values in the
region. Each operation is estimated to use one MAC.
Since the number of pooling operations in a layer is
equal to the size of the output, number of MACs
operation can be expressed as:

c = n2

2m (13)

4.2.4 Activation Functions

We estimate computation of different activation
functions in terms of number of MACs to be used in
the earlier layer-wise analysis. We denote cact as
number of MACs required to compute an activation
function.

1. Linear function: f(z) = z requires no MAC giving,
cact = 0.

2. Sigmoid function: σ(z)= 1/(1+e-z) takes one MAC
(for a division) with extra computation γ for
exponential function. This gives cact = 1 + γ.

3. ReLU function: R(z) = max(0,z). It is a non-linear
function and is widely used in both convolutional
layer and fully connected layer. The computation
does not require MAC, giving cact = 0.

4. Softmax function: S(z) = ez/(∑ ezim
i=1), where m is

a number of classes. The function is typically used
in the output layer for classification. We estimate
the number of MACs to be m+1 (m for product
sum and one for a division) with extra computation
γm (i.e., γ for each of m computations of
exponential function). As a result, we get
cact = 1 + m + γm.

Energy-Aware Deep Learning for Green Cyber-Physical Systems

37

4.3 Estimation of Number of Data Access

Since computation in each type of layers differs,
number of data access also varies. Therefore, we
provide estimation of number of data access for each
layer as follows.

4.3.1 Fully Connected (FC) Layer

For data movement energy in FC layer, we consider
m input neurons, mn weights, n biases and n neurons
in FC layer (or output layer). Let ax be the number of
data accesses for x. As shown in computation of Ai’s
in Figure6, each input xi is read n times while each
weight and each bias are each read once. Thus, a total
number of data accesses for input, weight and bias
would be mn, mn, and n, respectively. These results
are shown in (14)-(16). As shown in Figure 6, each
output Ai includes read/write accesses of m products,
yielding 2m data accesses. Since there are n output
neurons, a total of number of data accesses for output
would be 2mn as given in (17).

ainput = m(n) (14)

aweight = m(n) (15)

abias = n (16)

aoutput = n(2m) (17)

Next section shows how to compute MACs and
data movement energy in CONV layers.

4.3.2 Convolutional (CONV) Layer

Data movement energy in this layer involves input,
filters (i.e., weights), biases and output. As shown in
Figure 7, each input data is accessed at least once for
each filter requiring n1

2 m MACs. As the filter slides
over the input, some of the input data are being
accessed again (i.e., being reused). Let t be the
maximum bound of the number of reuses and ri be the
number of data that are reused i times. Thus, for f
filters, number of input data accesses is shown in (18).

Similarly, each weight in the filter and each bias is
accessed once to calculate one output value. To
complete the output for one filter of size k2, as circled
in blue in Figure 7., the weights and bias hence are
accessed k2 times. Since there are n2

2m weights and 1
bias for one filter, with f filters, total number of
weight and bias data access can be expressed in (19)
and (20), respectively. As labeled as A in the Figure
7, each of the output value takes n2

2 m iterations of
MAC. This means the output value is being accessed
2 n2

2 m times accounting for data read and write.

Since there are k2f output values, number of output
data access can be expressed as shown in (21).

ainput = (n1
2m+ ∑ rii

t
i=2) · f (18)

aweight = n2
2 m f k2 (19)

abias = fk2 (20)

aoutput = k2f (2n2
2 m) (21)

4.3.3 Pooling Layer

Data movement energy for max pooling and average
pooling involves only input and output. The input
data access depends on the size of the filter (i.e.,
pooling size) and stride. Similar to how (18) is
obtained, number of input data access can be
determined by (22). In addition, stride is sometimes
set to be equal to the size of the filter. As a result, the
input region is not overlapped, causing each the input
value to be accessed only once. In this case, the
second term of (23) is zero. In this layer, each output
data is accessed once, which accounts for data write.

ainput = (n1
2m+ ∑ rii

t
i=2) (22)

aoutput = n2
2m (23)

where n1 is the width and height of the input, m is
number of channels, n2 is the width and height of the
output. Note that, n2 is derived from the input, pooling
size k and stride s (i.e., n2= (n1 k/s) + 1).

5 ILLUSTRATIONS

This section illustrates how the model can be applied
in practice to help the design and management of
CPS, particularly in a smart agriculture system.
Section 5.1 describes the system and the unit under
study. Section 5.2 gives experiments and results.

5.1 Smart Agriculture Systems

Smart agriculture systems include smart farming and
smart CPS for controlled environments for precision
agriculture and food security supply (Rajasekaran &
Anandamurugan, 2019). These systems typically
employ sensors to collect data from the field and use
them for various tasks (e.g., crop health monitoring,
and management of soil nutrients, pesticides,
fertilizer, and irrigation) to increase the crop yields.
To sustain such a system, one needs to manage cost
derived from energy consumption from computation
in these units.

SMARTGREENS 2022 - 11th International Conference on Smart Cities and Green ICT Systems

38

Consider a crop health monitoring subsystem of
the smart agriculture CPS. The subsystem includes a
disease detection unit that deploys a trained DNN
model to analyze plant images sent from neighboring
cameras (sensing nodes) in the field. The server in the
disease detection unit executes the DNN model to
detect if the plant has a disease or to classify the
disease type. It then transmits those images with
corresponding results to the cloud for backup and
further analysis or to be alerted by another unit.

Suppose a farm owner wants to expand the farm to
grow more plants, cover larger area with more sensors
and disease detection computing units. This will lead
to higher energy consumption. The farm owner or the
smart agriculture system engineer needs to manage
energy resource constraint as well as appropriate
structures to maximize the overall net gain to the
farm. Planning for resource management to make
such a smart agriculture system sustainable can be
challenging. In this paper, we limit the scope of our
investigation to energy consumptions of computing
units to identify appropriate scale and structure for a
design of a sustainable future system.

5.2 Experiments and Initial Setup

We consider two CPS network structures: star and
mesh. The left of Figure 8 shows two stars, each of
which has four sensing nodes, where each directly
connects to its assigned distributed server. The right
of Figure 8 shows two meshes, each of which also has
four sensing nodes, all of which are directly
connected to one another. Sensing nodes sense and
transmit their own data but also serve as repeaters that
relay data from other nodes. For examples, sensing
nodes that are not connected to the distributed server
will send their data to their neighbors which will
forward the data to the distributed server. Distributed
servers in both structures connect to the cloud to store
their data.

Figure 8: Star and Mesh Topology.

Since in each star or mesh 80% of nodes are
sensing nodes and 20% of nodes are distributed
server, we use the same ratio between sensing nodes
and distributed servers when we scale total number of
nodes from 100 to 10,000 nodes in our experiments.
Note that each star or mesh maintains 4 sensing nodes

and one distributed server. From this point on, we use
server to mean distributed server, unless it is
specified differently.

For a deep learning model deployed at the server
of each structure, we choose Alexnet (Krizhevsky et
al., 2017), a CNN model to be deployed at the server
due to its popularity and successful use in many smart
agriculture applications (Gikunda & Jouandeau,
2019). Alexnet’s architecture contains 5 convolution
layers with ReLu activation, 3 pooling layers and 3
fully connected layer with Softmax for classification.

In our illustration, data are fetched from cache and
DRAM at 50% cache hit rate. Data precision is 16
bits. The energy consumption is expressed in terms of
the number of MAC operations as it directly
translates to energy usage. We also assume that each
MAC operation consumes about 10 pJ (picojoules).

Table 1: Experimental Setup.

Variable Type/Values

Structure Star, mesh

DL model Alexnet (CNN model)

Data Access Cache (hit rate), DRAM

Communication Protocol FDMA

% No. Servers 20%

% No. Sensors 80%

Bandwidth 500k Hz and 2M Hz

For a communication protocol, we use FDMA
(Frequency Division Multiple Accesses) (Z. Yang et
al., 2021). Bandwidth is set to 500k Hz and 2MHz to
represent low and normal bandwidth scenarios.
Transmission power for each central server is set to
that of a standard laptop at 32 mW while the sensing
node’s is halved (16 mW). Distance between nodes is
set to 100. For sensor energy consumption, the power
and sensing time are 10.5 mW and 25 ms as reported
by (Bouguera et al., 2018). The frequency of the
operation (i.e., the sensing node captures picture and
transmits the data) is set to be every hour. A summary
of experimental setups is shown in Table 1.

Three sets of experiments are performed to help
gain understanding of sources of energy consumption
of the computing units of the smart agriculture
system. The designer of the crop health monitoring
units might ask the following: (1) Does different
structure matter to energy consumption? (2) How
does the number of sensors in each structure effect
energy consumption? (3) Which of the task between
computation or communication consumes more
energy? (4) How much does the bandwidth effect
total energy consumption? Our experiments aim to
answer these questions with respect to scales (i.e.,
number of nodes) of the smart agriculture system.

Energy-Aware Deep Learning for Green Cyber-Physical Systems

39

6 EXPERIMENTAL RESULTS

The results of the experiments along with some
explanations are discussed in three sections below.
The results should help the farm owner or the smart
agriculture system engineer in designing and
selecting appropriate structures and scale to sustain
energy usage of the new smart disease detection
computing units.

6.1 Effects from Network Structures

We use our analytical energy model to estimate
energy consumptions of two structures: star and mesh
when scaling the number of nodes (i.e., sensors and
distributed servers) up to 10,000 nodes.

Figure 9: Energy consumption of star and mesh networks.

As shown in Figure 9, as we increase number of
nodes, energy consumption linearly increases for both
structures (or topologies) as expected as execution of
each unit requires approximately the same energy
usage in a normal situation (i.e., no transmission
delays). However, the mesh structure consumes
slightly higher energy consumption than the star
structure. This is due to the differences in energy
consumption by data transmissions to be investigated
in more details below.

Figure 10 compares energy consumed by sensing
nodes and (distributed) servers (or edge node) of both
star and mesh structure. In both topologies, shown in
Figure 10, the servers consume significantly higher
energy than the sensors. This is mainly due to high
energy consumption from deep learning execution.
Moreover, as shown in Figure 10, energy
consumption at the servers in both topologies are the
same. This is because the servers in both topologies
perform approximately the same amount of deep

learning computation and transmit the same amount
of data.

Figure 10: Energy consumption of sensors vs. distributed
servers (edge nodes).

On the other hand, Figure 10 shows that the
transmission (or communication) energy at sensing
nodes of the mesh is higher than that of the star. As
the number of nodes increases, the differences in
transmission energy grow. This is because, as
opposed to direct transmission in the star structure,
sensing nodes in the mesh that are not connected to
its designated server require multi-hop transmission.
Since some nodes need to send not only their data but
also data from other nodes, more energy is consumed.
Consequently, the mesh structure has higher
transmission energy and higher total energy
consumption. In our experiments, we consider at most
2-hop data forwarding as depicted in Figure 8. If more
hops are needed to reach the distributed server, even
higher energy consumption is expected.

In general, despite being simple and cheaper in
terms of energy, the star structure has limitation in the
maximum transmission range between the sensing
node and the server. Since sensing node and the
server must be in transmission coverage of one
another, having more sensing nodes may not mean
increased coverage area. Using communication
technology such as LoRa can overcome this issue as
it enables long range transmission with low power
consumption, but it has a low bandwidth. Mesh
topology does not have the same issue as the sensing
nodes can relay data from other nodes and hence can
be anywhere as far as they are connected to another
node. Moreover, it can provide better reliability since
data can be rerouted using different paths in case a
node fails. The smart farming designer has to take
these tradeoffs into consideration along with energy
consumption effects.

SMARTGREENS 2022 - 11th International Conference on Smart Cities and Green ICT Systems

40

6.2 Effects from Bandwidths

This section explores impact of bandwidth to energy
consumption by computing units. Since the results
between star and mesh networks are similar, we only
show the results from the star network here. We focus
on energy consumption by the distributed servers
rather than sensors since their energy consumption
has much higher contribution to the overall system.
Figure 11 and Figure 12 shows energy consumption
of the distributed server with bandwidth capacity of
2MHz and 500kHz, respectively.

Figure 11: Energy consumption where bandwidth is 2MHz.

Figure 12: Energy consumption where bandwidth is 500kHz.

As shown in Figure 11, with a high bandwidth of
2 MHz, deep learning energy consumption dominates
that of data transmission. Also, total energy
consumption contributed by the DL computation and
data transmission of the distributed server is scalable.
However, this is not the case with a lower bandwidth.

As shown in Figure 12, when there are more than
7,000 nodes, transmission energy starts to dominate
deep learning computation energy. This is because
bandwidth is shared among the nodes. When there are

nodes, higher traffic is expected. This results in
longer transmission time and thus higher energy
consumption. Thus, in the scenario of this experiment
with low bandwidth, the system should not grow
more than 7000 nodes, otherwise, more energy will
be wasted on transmissions instead of actions to gain
productivity (i.e., more images being analyzed). For
the system designer, the ability to estimate energy
consumption per computing units prior to
implementation can give insights on the scale of the
smart farm system to fit the energy budget constraint
or to determine investment on bandwidth capacity.

6.3 Effects from Sensors and Servers Ratios

Results obtained in Section 6.1 indicate that
structures (i.e., mesh, star) of the computing units do
not appear to impact energy consumption that much.
In our previous experiments, the number of sensors in
each structure is set to be four. We want to investigate
further the number of sensors in each structure
impacts energy consumption. This section considers
only the star structure as it is baseline energy
consumption of the two structures.

We consider two sets of sensors, 10 and 100.
Table 2 shows comparison of energy consumption
between having ten and a hundred sensors sending
data to one server. The ratio difference in the last
column represents the ratio of energy consumption in
the 100-sensor case over that in the 10-sensor case.
Thus, it gives a multiplying factor of the former to the
latter. As shown in the first line of Table 1, since the
number of sensors increases 10 times, sensing energy
consumption increases 10 times as expected.
Similarly, at the distributed server, more number of
sensors means more number of images being
processed. Thus, the server has to do 10 times more
image analysis and thus, the energy consumption of
DL execution increases 10 times as it should be.

Table 2: Effect of number of sensors in a star-structured group.

Energy
Consumption

10 sensors +
1 edge node

100 sensors +
1 edge node

Ratio
Difference

Sensing 0.06 0.63 10.00

Sensor Transm. 173.06 2,376.75 13.73

Total at Sensor 173.13 2,377.38 13.73

DL execution 11,624.73 116,247.29 10.00

Edge Transm. 181.67 3,003.42 16.53

Total at Server 11,806.40 119,250.71 10.10

Nevertheless, transmission cost does not
necessarily increase linearly. Transmission energy of
the 100-sensor case is about 13.7 times more than that

Energy-Aware Deep Learning for Green Cyber-Physical Systems

41

of the 10-sensor case. This is due to higher traffic
which in turns increases the latency and energy.
Similarly, the transmission cost at the server is over
16 times more expensive. Since the server transmits
larger data size than the sensors, this causes heavier
transmission traffic and results in much higher energy
consumption. With the results shown here we make a
conjecture that the number of sensors in each
structure can lead to larger difference of energy
consumption produced by mesh and star topologies.

Overall, our experiments and results aim to show
methodology to help the farm owner or engineer
design a sustainable smart farming system based on
estimated energy consumption of computing units.

7 LIMITATION AND DISCUSSION

This paper focuses on a method for quantifying the
energy consumption of software artifacts in CPS and
illustrates its use for deep learning software. The
evaluation of the resulting models of the deep
learning software are limited to theoretical models.
Proper evaluation of the resulting models requires
further empirical work on real-world systems. This is
beyond the scope of our work in this paper. However,
we show initial findings of our theoretical evaluation
of our resulting models below.

Table 3: Alexnet computation energy.

Method CONV FC Total

Ours 666M 58.6M 724M

Sze et al., 2017 666M 58.6M 724M

T. J. Yang et al., 2018 528M 58.6M 586M

Specifically, we compared energy consumed by
Alexnet and compared with published results in (Sze
et al., 2017) as well as those obtained by an online
analytical tool (T. J. Yang et al., 2018).

In Table 3, assuming that the data movement of the
computation in all the three methods are the same, the
energy consumptions are compared based on the
number of MACs. As shown in Table 3, our results
match those reported by Sze et al. The estimates from
Yang et al., however, are about 21% less than those
of ours and Sze et al.'s. This preliminary result gives
a theoretical comparison of our models with existing
work. However, to complete the theoretical evaluation,
we need to relax the assumption on data movement.
To fully evaluate our approach, we need to
experiment our method with different software
computation in CPS and obtain energy models to be
compared with actual energy obtained by power

measuring tools in real systems. These are potentials
of our future work.

8 CONCLUSIONS

This paper presents an analytical approach to
quantifying energy consumption of software artifacts
in CPSs. For clarity and due to the increasing use of
deep learning in CPSs, the approach is described
using the deep learning computation process. While
the model is specific to deep learning in distributed
networks, the proposed approach provides a building
block concept that is general in that it can be applied
to any software computation (e.g., other machine
learning or data analysis algorithms) in the CPS other
than deep learning. The paper also illustrates how the
resulting energy model can be applied in practice
including methodology in analyses to help the design
and management of CPS. This contributes to a
fundamental approach towards the development of
green computing CPS, particularly in the aspects of
planning of energy resources.

Future work includes (1) applying the proposed
approach to other real-world CPS software
components, and (2) expanding the energy
consumption modelling to manage CPS resources in
multiple contexts (e.g., economy, energy,
computation, quality of service, environment, and
sustainability).

REFERENCES

Bouguera, T., Diouris, J., Chaillout, J., & Andrieux, G.
(2018). Energy consumption modeling for
communicating sensors using LoRa technology. 2018
IEEE Conference on Antenna Measurements &
Applications (CAMA), 1–4.

Dhaini, M., Jaber, M., Fakhereldine, A., Hamdan, S., &
Haraty, R. A. (2021). Green Computing Approaches-A
Survey. Informatica, 45(1).

Estevez, C., & Wu, J. (2017). Chapter 15 - Green Cyber-
Physical Systems. In H. Song, D. B. Rawat, S. Jeschke,
& C. B. T.-C.-P. S. Brecher (Eds.), Intelligent Data-
Centric Systems (pp. 225–237). Academic Press.

Faviola Rodrigues, C., Riley, G., & Luján, M. (2018).
SyNERGY: An energy measurement and prediction
framework for Convolutional Neural Networks on
Jetson TX1. Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), 375–382.

Fu, H., Sharif-Khodaei, Z., & Aliabadi, M. H. F. (2019). An
energy-efficient cyber-physical system for wireless on-
board aircraft structural health monitoring. Mechanical
Systems and Signal Processing, 128, 352–368.

SMARTGREENS 2022 - 11th International Conference on Smart Cities and Green ICT Systems

42

Gikunda, P. K., & Jouandeau, N. (2019). State-of-the-Art
Convolutional Neural Networks for Smart Farms: A
Review. Advances in Intelligent Systems and
Computing, 997, 763–775.

Haseeb, K., Ud Din, I., Almogren, A., & Islam, N. (2020).
An Energy Efficient and Secure IoT-Based WSN
Framework: An Application to Smart Agriculture.
Sensors, 20(7).

Horcas, J. M., Pinto, M., & Fuentes, L. (2019). Context-
Aware Energy-Efficient Applications for Cyber-
Physical Systems. Ad Hoc Networks, 82, 15–30.

Hossain, M. S., Rahman, M. A., & Muhammad, G. (2020).
Towards energy-aware cloud-oriented cyber-physical
therapy system. Future Generation Computer Systems,
105, 800–813.

Inderwildi, O., Zhang, C., Wang, X., & Kraft, M. (2020).
The impact of intelligent cyber-physical systems on the
decarbonization of energy. Energy \& Environmental
Science, 13(3), 744–771.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017).
ImageNet Classification with Deep Convolutional
Neural Networks. Commun. ACM, 60(6), 84–90.

Li, D., Chen, X., Becchi, M., & Zong, Z. (2016). Evaluating
the Energy Efficiency of Deep Convolutional Neural
Networks on CPUs and GPUs. 2016 IEEE
International Conferences on Big Data and Cloud
Computing (BDCloud), Social Computing and
Networking (SocialCom), Sustainable Computing and
Communications (SustainCom) (BDCloud-SocialCom-
SustainCom), 477–484.

Liang, Y. C., Lu, X., Li, W. D., & Wang, S. (2018). Cyber
Physical System and Big Data enabled energy efficient
machining optimisation. Journal of Cleaner
Production, 187, 46–62.

Mitchell, W., Westberg, S., Reiling, A., Taha, T., Balster,
E., & Hill, K. (2018). Generalized Power Modeling for
Deep Learning. NAECON 2018 - IEEE National
Aerospace and Electronics Conference, 391–394.

Mo, X., & Xu, J. (2020). Energy-Efficient Federated Edge
Learning with Joint Communication and Computation
Design.

Ortiz, J. H., Varela, F. V., & Ahmed, B. T. (2020). Energy
Consumption Model for Green Computing. In Mobile
Computing. IntechOpen.

Rajasekaran, T., & Anandamurugan, S. (2019). Challenges
and Applications of Wireless Sensor Networks in Smart
Farming—A Survey BT - Advances in Big Data and
Cloud Computing (J. D. Peter, A. H. Alavi, & B. Javadi
(eds.); pp. 353–361). Springer Singapore.

Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017).
Efficient Processing of Deep Neural Networks: A
Tutorial and Survey. Proceedings of the IEEE, 105(12),
2295–2329.

Yang, T. J., Chen, Y. H., Emer, J., & Sze, V. (2018). A
method to estimate the energy consumption of deep
neural networks. Conference Record of 51st Asilomar
Conference on Signals, Systems and Computers,
ACSSC 2017, 2017-Octob, 1916–1920.

Yang, Z., Chen, M., Saad, W., Hong, C. S., & Shikh-
Bahaei, M. (2021). Energy Efficient Federated

Learning over Wireless Communication Networks.
IEEE Transactions on Wireless Communications,
20(3), 1935–1949.

Yu, B., Zhou, J., & Hu, S. (2020). Cyber-physical systems:
An overview. Big Data Analytics for Cyber-Physical
Systems, 1–11.

Zeng, D., Gu, L., & Yao, H. (2020). Towards energy
efficient service composition in green energy powered
Cyber–Physical Fog Systems. Future Generation
Computer Systems, 105, 757–765.

Zhu, S., Ota, K., & Dong, M. (2021). Green AI for IIoT:
Energy Efficient Intelligent Edge Computing for
Industrial Internet of Things. IEEE Transactions on
Green Communications and Networking, 1.

Energy-Aware Deep Learning for Green Cyber-Physical Systems

43

