
AV-AFL: A Vulnerability Detection Fuzzing Approach by Proving
Non-reachable Vulnerabilities using Sound Static Analyser

Sangharatna Godboley a, Kanika Gupta and G. Monika Rani b

Department of CSE, NIT Warangal, Telangana, India

Keywords: Fuzzing, Static Analyzer, Vulnerability Detection.

Abstract: The correctness of software depends on how well the vulnerabilities of the program are detected before the
actual release of the software. Fuzzing is an effective method for vulnerability detection but it also comes with
its drawback. The traditional fuzzing tools are less efficient in terms of speed and code coverage. In this paper,
we demonstrate how a fuzzer works more efficiently when the input to it is given based on static analysis of
the source code. We introduce the Alarmed Vulnerabilities-based American Fuzzy Lop (AV-AFL) tool that
eliminates the unreachable targets from the program by analyzing the source code using the FRAMA-C tool
(a sound static analyzer). The method uses Evolved Value Analysis (EVA) plugged-in with FRAMA-C tool
to report alarms of possible run-time errors and gives the improvised program as an input to the AFL fuzzer.
Experimental results show that the AV-AFL produces better results in total 71.11% of 45 programs than AFL
in terms of vulnerability detection.

1 INTRODUCTION

Software Testing is the process of evaluating the us-
ability or capability of a program. It is a process
where maximum errors need to be found as the ex-
ecution of a program proceeds which aims at getting
zero-defect software. Software testing is an important
phase in software development for assessing the qual-
ity (Godboley et al., 2015; Godboley et al., 2017a;
Godboley et al., 2016; Godboley et al., 2021; Godbo-
ley et al., 2017b; Godboley et al., 2018a; Godboley
et al., 2018b). Software testing involves verification,
validation, and error detection. These techniques are
involved so that software can be made more secure
and problem-less.

Research has been done to overcome these vulner-
abilities by early detection(Iorga et al., 2020). There
can be various types of analysis made on the software
to detect the vulnerabilities, like static analysis, dy-
namic analysis, fuzzing etc. Fuzzing is a better tech-
nique than most of the methods because it is easy to
use and execute, highly scalable, and can work in the
absence of source code (provided with the executable
code).

The traditional fuzzers are incapable of finding the

a https://orcid.org/0000-0002-6169-6334
b https://orcid.org/0000-0002-1662-5764

unreachable targets1 and, as a result AFL attempts
to explore all possible edges, which requires non-
essential execution time. On the other hand, the static
code analysis tools are useful in knowing the behav-
ior of the source code without executing the program.
The static analysis gives the potential vulnerabilities
in the program but fails to infer concrete test cases
triggering those bugs.

Thus, in this paper we present a method Alarmed
Vulnerability based American Fuzzy Lop (AV-AFL),
that leverages the static analysis of the code to pro-
duce an efficient result output from the fuzzer. The
tool first obtains the locations which are unreachable
and eliminates them from the original source code,
the new and improvised source code is supplied to the
fuzzer which uses random and minimized seed gener-
ation to generate the seeds to trigger the vulnerabili-
ties at the point of concerns. In this way, unnecessary
attempts of edge exploration are avoided.

We use Frama-c (potassium)2 for static analysis of
the code. Frama-c is a sound static analyzer tool that
helps in reporting the possible runtime errors in form
of alarms. The value analysis (EVA plug-in) in the
Frama-c (Baudin et al., 2021) to report alarms of pos-

1Vulnerabilities and Targets have been interchangeably
used in this paper.

2https://frama-c.com/html/installations/potassium.html

Godboley, S., Gupta, K. and G. Monika, .
AV-AFL: A Vulnerability Detection Fuzzing Approach by Proving Non-reachable Vulnerabilities using Sound Static Analyser.
DOI: 10.5220/0011032900003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 301-308
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

301

sible run-time errors thereby deducing the unreach-
able errors for the program. The new improvised in-
put is generated based on the Frama-c output, this is
supplied as an input to the AFL3 along with the ran-
dom seed generation mechanism. The program pro-
posed uses the minimized corpora for vulnerability
detection. In other words, we reduce the searching
tasks for the fuzzer by eliminating unreachable vul-
nerabilities from the code as a result we expose more
reachable vulnerabilities. Finally, we report the sta-
tus of each vulnerability whether Known or Unknown.
We have observed that AV-AFL could report a good
number of Known targets as compared to AFL.

Rest of the article is organized as follows. We ex-
plain a few important basic concepts to understand
our work in Section 2. We survey the related work
in Section 3. Subsequently, we discuss our proposed
approach in Section 4. Followed by this we show our
experimental results in Section 5. Finally, we con-
clude in Section 6.

2 BASIC CONCEPTS

In this section, we explain some important basic con-
cepts which are required to understand this paper.

Definition 2.1 (Fuzzing). Fuzzing is one of the soft-
ware testing techniques which is used to discover
errors and security loopholes in the software code.
Fuzzer proceeds by taking input value known as seed,
mutates it to generate inputs and analyze the program
for crashes due to them.

Definition 2.2 (Static Analysis). In this type of code
analysis, the source code is required and the code is
not executed. But, it is interpreted using formal means
to get valuable information regarding the source code.
The Frama-C code is used in this project to carry out
the static analysis.

Definition 2.3 (Targets). The bugs in the source code
which can be a threat to the security of the system
and can be used by the hackers for malicious use are
known as Targets. For example, div by zero is a target
that can be exploited.

Definition 2.4 (Reachable Targets). Reachable tar-
gets are the bugs in the source code which are reach-
able. These bugs are threat to the security of the pro-
gram since they can lead to any crashes. To avoid ex-
ploitation from attackers using these vulnerabilities,
the detection of such targets is important.

Definition 2.5 (Unreachable Targets). Unreachable
targets are the bugs in the source code which are not

3https://github.com/google/AFL

reachable. These bugs are not a threat to the security
of the program but searching and its unknown status
leads to loss of searching time. These targets are not
useful during the fuzzing process since they cannot
lead to any crashes. Elimination of Unreachable tar-
gets from source code prioritize the searching of re-
maining targets.

Definition 2.6 (Alarmed Targets). Alarmed targets
are the bugs in the source code which can be reach-
able or unreachable. The alarms are reported by a
sound static analyzer which confirms that the targets
which have not been alarmed are surely unreachable.

Definition 2.7 (Unknown Targets). Unknown targets
are the bugs in the source code which are neither
proved as reachable or unreachable. After using
sound static analyzer and fuzzer till time budget, the
targets whose state remains unspecified are called as
Unknown targets.

3 RELATED WORK

There can be various types of analysis made on the
software to detect the vulnerabilities, like static anal-
ysis, dynamic analysis, fuzzing, etc.

Flinder-SCA (Kiss et al., 2015) is a method that
is a combined verification tool for the detection of
security bugs. The paper presents the application of
the tool for the OpenSSL/HeartBeat Heartbleed vul-
nerability which is noticed in the network when there
is a check done to note whether the server is up and
running or not and is able to encipher the incoming
packets using SSL techniques. It is a combination of
static analysis and dynamic analysis. It works in dif-
ferent phases, the first phase uses Frama-c to reports
the alarms using value, then the program is sliced.
This process is taint analysis. The final step is the
fuzzing which proves the potential alarms.

CURSOR (Signoles, 2021) is a method that uses
static analysis and runtime checking of the assertions
in order to make the source code attack resistant in
an efficient way. It produces counter measure that are
used at runtime to strengthen the program. The tool
is tested by using the Frama-C framework, the results
are shown based on real-life example of Apache web-
server. CURSOR is proved to present a counter for
some attacks based on Common Weakness Enumera-
tion (CWE) entries. CURSOR identifies the function-
alities that are to be analyzed to make the program
stronger. Then, the Frama-c plugin value is used to
get alarms. An intermediate code with CWE alarms
is then produced and then after instrumentation the
code is made CWE proof.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

302

BugMiner (Rustamov, 2021) is a target-oriented
hybrid fuzzing that combines the fuzzing and dy-
namic symbolic execution, which is used to enhance
the directed fuzzing process. It aims to mutate the
input quickly and cover the path that consists of hard-
to-reach vulnerabilities.

Orthrus (Shastry, 2017) a tool that make use of
smart fuzzing by taking the information from the
static analysis of the source code. It proves to be more
effective than the modern fuzzers. It pre-processes the
input to the fuzzer to increase the quality of the result.
The output of the static analysis is the input dictionar-
ies which is derived by the static analysis of the pro-
gram. Based on this dictionary the fuzzer is guided to
increase the test coverage. The results are produced
by the experiment on network application nDPI and
tcpdump.

AFLGo (Böhme et al., 2017) It is a Directed gray-
box fuzzing tool. In this, the input generation is done
so that they are able to reach a given set of target lo-
cations. Therefore there is a need for deterministic
strategies for specified vulnerabilities. AFLGo is ex-
perimentally proven to outperform directed symbolic
execution fuzzing and traditional gray-box fuzzing.
However, Directed gray-box fuzzing is useful only
when bugs are defined and not when they are un-
known.

All the above work proves to be beneficial for the
security of the program. The previous works do not
take into consideration the ineffective fuzzing that is
done while executing and testing the unreachable tar-
gets. Thus, this paper focuses on those vulnerabili-
ties which unnecessarily increase the execution time
of fuzzer and delay the crash detection. The method
proposed in this system effectively detects crashes by
only considering the sensible vulnerabilities i.e. the
alarmed vulnerabilities.

4 PROPOSED APPROACH

In this section, we discuss our proposed approach in
detail. First, we discuss the overall framework of AV-
AFL in details, algorithmic description, followed by
one working example.

4.1 Framework

Fig. 1 shows the framework of AV-AFL. The pro-
posed approach AV-AFL is the integration of the static
analysis of the source code along with the fuzzing
methodology to detect vulnerabilities efficiently. The
flow of the model begins with the original C-Program
being supplied to the sound static analyser i.e. Frama-

C (Baudin et al., 2021) which uses the EVA plug-in to
get the detail of Alarms from the original C-Program.
For Frama-C all the targets were annotated as “div-
by-zero” errors. Later for fuzz, we replace the error
with assert(0). The locations of alarmed vulnerabili-
ties are used to target for Fuzzing. It means the non-
alarmed targets from C-Program have been proved as
Unreachable targets. So, the component Code Refiner
takes C-Program and List of Alarms and produces Re-
fined C-Program. This is an improvised version of
the original program since it contains only meaning-
ful targets.

The Refined C-Program is then supplied to AFL
along with random Seeds. AFL produces Test In-
puts (crashes, hangs, and queue) and Fuzz Statis-
tics (fuzzer stats, fuzz bitmap, and plot data). Next,
Crash Triage which is an AFL utility to produce the
detailed log with all Crash Details. AFL might pro-
duce unique crashes but, a crash could be reported
from different paths, hence the crash details might
have duplication of crashes. The component Unique
Target Extractor searches for the crashes caused by
the target located at the unique line in Refined C-
Program. If such targets detected by AFL then they
are Reachable targets. Also, Unique Target Extractor
takes the list of alarms that have been already proved
as Unreachable targets. This component adds both
Reachable targets and Unreachable targets and calls
them as Known targets. Since this component takes
original C-Program as input, where the total number
of targets exists, so a total number of UnKnown tar-
gets can be computed.

For example, we consider a program named sam-
ple.c (22 LOCs) as shown in Listing 1. There are a to-
tal of 5 targets (injected as Div-by-Zero error) at line
numbers 8, 10, 13, 17, and 20 as shown in Listing
1. This sample.c program is supplied into Frama-C
and a report is generated as shown in Listing 2. If
we observe the report then we can see that Frama-
C reports an alarm of division-by-zero at line 8 for
sample.c program. Since, Frama-C is a sound static
analyser it means that the other injected targets are
confirmed unreachable. Now, we will use our pro-
posed and implemented Code Refiner to reproduce
the program with only alarmed targets as shown in
Listing 3 named as sample-refined.c. So, there is only
1 alarmed target at line number 8, it means other tar-
gets can be disabled or commented for further exe-
cution (4 targets got commented). Now this sample-
refined.c program is supplied into AFL to produce re-
port. We ran sample-refined.c using AFL for 600 sec
the target enabled at line number 8 as assert(0) has
been detected as a crash. So, finally there were 5
targets out of which 5 targets have known status, 4

AV-AFL: A Vulnerability Detection Fuzzing Approach by Proving Non-reachable Vulnerabilities using Sound Static Analyser

303

Frama-C

AFL

C-Program Alarms

Code Refiner

Refined C-Program

crashes hangs queue

Test Inputs

Seeds

fuzzer_stats fuzz_bitmap plot_data

Fuzz StatisticsCrash Triage

Crash Details

Unique
Target

Extracter

Known
Targets

UnKnown
Targets

AV-AFL

Figure 1: Framework for AV-AFL.

targets are unreachable and 1 target is reachable as
shown in Listing 4. There were no targets which have
unknown status, so in this manner fuzzing can be con-
sidered as complete.

Listing 1: A sample program: sample.c.

1 #include <stdio.h>
2 #include <assert.h>
3 int main(){
4 int arg1, arg2;
5 int kappa = 0;
6 scanf("%d",&arg1);
7 scanf("%d",&arg2);
8 kappa = kappa / 0; kappa = 0;
9 if (arg1 < arg2 && arg2 > 90) {

10 kappa = kappa / 0; kappa = 0;
11 printf("The value of arg2 is

greater than 90");
12 if (kappa < 0) {
13 kappa = kappa / 0; kappa = 0;
14 if (arg1 < 0) {
15 printf("The value of arg1 is

negative");}
16 else {
17 kappa = kappa / 0; kappa = 0;
18 printf("The value of arg1 is

positive");}}
19 else {
20 kappa = kappa / 0; kappa = 0;
21 printf("The value of kappa is not

a negative number");}
22 }
23 return 0;
24 }

Listing 2: Fram-C report for sample.c.

1 ...
2 [eva:alarm] sample.c:8: Warning:

division by zero. assert 0 != 0;
3 ...

Listing 3: A refined program sample-refined.c.

1 #include <stdio.h>
2 #include <assert.h>
3 int main(){
4 int arg1, arg2;
5 int kappa = 0;
6 scanf("%d",&arg1);
7 scanf("%d",&arg2);
8 assert(0);
9 if (arg1 < arg2 && arg2 > 90) {

10 //assert(0);
11 ...

Listing 4: AFL report for sample-refined.c.

1 **Final Result Report from AFL**
2 Total number Injected Errors =:5
3 Total number Unreachable Errors =:4
4 Total number Detected Errors =:1
5 Total number Undetected Errors =:0

4.2 Algorithmic Description

In this section, we explain the algorithmic description
of AV-AFL. We generate a report for the input pro-
gram P. We supply the program to the fuzzer after
eliminating the unreachable vulnerabilities and con-

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

304

sidering only alarmed vulnerabilities. In this way the
generated program is an improvised program in terms
of number vulnerabilities that are to be processed.
The Algorithm 1 shows the reporting of Known Tar-
gets (#KT) and UnKnown Targets (#UT) for the in-
put C-Program (P) to AV-AFL. Line 1 in Algorithm
1 invocation of Frama-C which is a static analyser,
this gives information of the Alarmed Vulnerabili-
ties (#AV). Line 2 in Algorithm 1 shows the con-
version of the input C-Program i.e. P into P′ using
CODE REFINER component that takes P and #AV
as inputs. Line 3 in Algorithm 1 invokes American
Fuzzy Lop (AFL) tool by supplying P′ along with
Random Seeds (RS) generated using random seed
generation procedure, it then produces Fuzz Statistics
(FS) and Test Suite (TS). Line 4 in Algorithm 1 calls
CRASH TRIAGE component by supplying P′, FS,
and TS and produces Crash Details Log (CLog). Line
4 in Algorithm 1 invokes Unique Target Extracter
component by supplying P, #AV, and CLog to pro-
duce #KT, and #UT. Finally, #KT and #UT are re-
turned at Line 6 in Algorithm 1. The Algorithm 2

Algorithm 1: AV-AFL.
Input: P, RS
Output: {#KT,#UT}
1: #AV← FRAMAC(P)
2: P′← CODE REFINER(P,#AV)
3: {FS,TS} ← AFL(P′,RS)
4: CLog← CRASH TRIAGE(P′,FS,TS)
5: {#KT,#UT} ←
Unique Target Extracter(P,#AV,CLog)

6: return {#KT,#UT}

Algorithm 2: CODE REFINER.
Input: P,#AV
Output: {P′}
1: LINES← LINE-EXTRACTION(#AV)
2: IP← REMOVAL(P)
3: P′← INCLUSION(IP,LINES)
3: return {P′}

shows the working of intermediate CODE REFINER
component which takes input as C-Program i.e. P and
Alarmed Vulnerabilities #AV. From #AV it extracts the
line number of the vulnerabilities and outputs a list of
line number LINES in Line 1. In Line 2 the algorithm
removes all the targets from the original C-program
using the REMOVAL function and outputs a new in-
termediate C-program IP. In Line 3 it takes the inter-
mediate C-program IP and the output of line 1 LINES
and include out all those lines from IP using the IN-

CLUSION function and outputs a final C-program P′.

5 EXPERIMENTAL RESULTS

In this section, we discuss the setup, benchmarks
tested, results evaluation, and discussion on results.

5.1 The Set Up

We used an Intel Core i5-1135G7 CPU @ 2.40GHz
Linux box (32-bit Ubuntu 16.04) with 2 GB RAM.
All the input programs considered for our study are
written in ANSI-C format. For result comparison, we
consider AFL as our baseline because it is a state-of-
the-art tool. We have provided 1 Hr time budget to
each program for running AFL and AV-AFL. the eval-
uation of the result is based on the guidelines men-
tioned in “Evaluating Fuzz Testing” (et al.,). It is to
be noted that Frame-C and Code Refiners were com-
pleted in approx 1 minute only on an average of 45
programs which is negligible. We considered Ran-
dom seed for AFL and AV-AFL.

5.2 Benchmarks Tested

Reactive systems appear everywhere, e.g. as Web
services, decision support systems, or logical con-
trollers. Since the approach mentioned requires a
C-program therefore we are considering RERS pro-
grams that replicate the real-world applications from
Avionics, Banking, Medical, Railways, etc. They
are from RERS challenge competition in years 2019
(RERS, 2019b; RERS, 2019a), and 2020 (RERS,
2020). These programs are from the small and moder-
ate size group and easy to hard categories. The codes
contain a lot of Boolean expressions, plain assign-
ments, arithmetic operations, and data structures.

5.3 Working Example

We take Problem18-R20 program from our experi-
mental study reported in Sections 5.4 and 5.5.

Problem18-R20 is supplied to AFL and AV-AFL
both to observe the status of targets. The AFL has Un-
reachable Targets as 0 because there is no such mech-
anism in fuzzing to prove non-reachabilty of a target.
Thus it has to explore for all the targets in original
program given. In case of AFL the search space is
large in comparison to AV-AFL. It is observed that out
of 100 targets, AFL is able to detect only 18 unique
crashes in 1 Hr time budget. Thus, making the to-
tal Known Targets as 18 and Unknown Targets as
82. On the other hand, it is observed that total targets

AV-AFL: A Vulnerability Detection Fuzzing Approach by Proving Non-reachable Vulnerabilities using Sound Static Analyser

305

Table 1: Experimental results on 45 RERS programs.
AFL AV-AFL

#Unreachable #Reachable #Known #UnKnown #Unreachable #Reachable #Known #UnKnownPrograms LOCs #Targets
Targets Targets Targets Targets Targets Targets Targets Targets

m22 Reach 5002 100 0 14 14 86 0 12 12 88
m24 Reach 23125 100 0 4 4 96 0 6 6 94
m27 Reach 18645 100 0 2 2 98 6 5 11 89
m41 Reach 3144 100 0 65 65 35 3 43 46 54
m45 Reach 14344 100 0 15 15 85 0 8 8 92
m49 Reach 18680 100 0 17 17 83 0 18 18 82
m54 Reach 2554 100 0 79 79 21 0 88 88 12
m55 Reach 19721 100 0 0 0 100 3 1 4 96
m 76Reach 18620 100 0 14 14 86 3 14 17 83
m 95Reach 3500 100 0 9 9 91 8 8 16 84

m106 Reach 4197 100 0 1 1 99 0 1 1 99
m131 Reach 88800 100 0 7 7 93 0 7 7 93
m135 Reach 2989 100 0 2 2 98 4 2 6 94
m158 Reach 2048 100 0 9 9 91 5 12 17 83
m159 Reach 2328 100 0 9 9 91 0 9 9 91
m164 Reach 2482 100 0 31 31 69 6 24 30 70
m167 Reach 7719 100 0 1 1 99 10 8 18 82
m172 Reach 6083 100 0 4 4 96 3 31 34 66
m173 Reach 55859 100 0 20 20 80 1 22 23 77
m181 Reach 522136 100 0 MO 0 100 0 MO 0 100
m182 Reach 142430 100 0 10 10 90 1 9 10 90
m183 Reach 1656 100 0 70 70 30 1 71 72 28
m185 Reach 13215 100 0 0 0 100 3 0 3 97
m189 Reach 42707 100 0 0 0 100 1 0 1 99
m190 Reach 192855 100 0 12 12 88 0 11 11 89
m196 Reach 10444 100 0 74 74 26 1 84 85 15
m199 Reach 2358 100 0 7 7 93 1 27 28 72

problem11-R19 1143 100 0 15 15 85 56 16 72 28
problem12-R19 2061 100 0 0 0 100 45 0 45 55
problem13-R19 1877 100 0 14 14 86 49 14 63 37
problem14-R19 4691 100 0 24 24 76 53 24 77 23
problem15-R19 13213 100 0 0 0 100 15 0 15 85
problem16-R19 88617 100 0 0 0 100 0 0 0 100
problem17-R19 17342 100 0 39 39 61 34 38 72 28
problem18-R19 61608 100 0 0 0 100 11 0 11 89
problem19-R19 793391 100 0 MO 0 100 0 MO 0 100
problem-11-R20 1168 100 0 17 17 83 68 17 85 15
problem-12-R20 2298 100 0 0 0 100 49 0 49 51
problem-13-R20 2190 100 0 19 19 81 27 19 46 54
problem-14-R20 4183 100 0 4 4 96 46 4 50 50
problem-15-R20 26205 100 0 39 39 61 16 38 54 46
problem-16-R20 113733 100 0 11 11 89 2 11 13 87
problem-17-R20 18040 100 0 30 30 70 38 30 68 32
problem-18-R20 127848 100 0 18 18 82 19 27 46 54
problem-19-R20 518567 100 0 MO 0 100 0 MO 0 100

for Problem18-R20 are 100, out of which the targets
are present only at 81 locations, thus bring down the
unreachable targets to 19. Thus the search space for
fuzzer reduces from 100 to 81 Out of these 81 targets
AV-AFL is able to detect crashes for 27 targets in 1 Hr
of given time budget. Thus making the total Known
Targets as 46 and Unknown Targets as 54.

Fig. 2 shows the crash report charts for
Problem18-R20 program using AFL and AV-AFL. As
we already discussed the proving of unreachable tar-
gets using a sound static analyser, we claim that the
task overhead gets reduced once we refine the pro-
gram by removing the unreachable targets and only
searching for alarmed targets. Figures 2a and 2b show
the crash status over the time of 1 Hr. Since, the
searching for targets are less in AV-AFL so the speed
of fuzzing is higher as compared to AFL as shown in

Figures 2a and 2b. For example, if we consider mid-
time of the fuzzing i.e. 30 minutes so we can observe
that AFL identifies 32 uniq crashes. It is to be noted
that these uniq crashes have the redundancy from dif-
ferent paths, the final unique reachable targets have
been reported in Sections 5.4 and 5.5, whereas AV-
AFL identifies 40 uniq crashes These results show
our claims for AV-AFL.

5.4 Results Evaluation

Table 1 shows the experimental results on 45 RERS
programs we tested. The Column1 shows the name
of programs. The programs with suffix * Reach are
taken from Industrial Reachability Problems, RERS-
2019. The programs with suffix *-R19 are taken from
Sequential Reachability Problems, RERS-2019. The

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

306

(a) AFL

(b) AV-AFL
Figure 2: Crash report charts for Problem18-R20.

Programs

K
no

w
n

Ta
rg

et
s

0

25

50

75

100

AFL AV-AFL

Figure 3: Results showing the Known Targets.

programs with suffix *-R20 are taken from Sequential
Reachability Problems, RERS-2020. Column2 shows
the size of programs in LOCs. This ranges from 1143
to 793391. Column3 shows number of targets present
in the programs. We can observe that all the programs
have 100 targets in each program. The Columns 4 and
5 are the results for AFL and AV-AFL. Both columns
further divided into four columns viz. #Unreachable,
#Reachable, #Known, and #UnKnown targets.

Column #Unreachable Targets under AFL has 0
targets, because traditional AFL has no capabilities
to prove the unreachable targets, because fuzzing
in principle cannot finish the execution. Columns
#Reachable and #Known Targets under AFL has to-
tal number of unique crashes (it means the actual line
number identified where the targets were existing).
Column #UnKnown targets under AFL can be com-
puted from #Targets - #Known targets.

Similarly, Column #Unreachable Targets under
AV-AFL have been computed from the Sound Static
Analyser i.e. Frama-C (#Targets - #Alarmed Targets).

There are 32 out of 45 programs for which Frama-C
has proved > 0 unreachable targets. Column #Reach-
able Targets under AV-AFL have been identified as
actual unique crashes after eliminating #Unreachable
Targets from the programs. Column #Known Targets
under AV-AFL have been computed as #Unreachable
+ #Reachable Targets. #UnKnown targets under AV-
AFL can be computed from #Targets - #Known tar-
gets under AV-AFL.

5.5 Discussion on Results

There are total 32 out of 45 programs (Highlighted
with green color in Table 1 to show winning situa-
tions) for which our proposed approach AV-AFL has
more number of #Known Targets as compared to the
baseline AFL. Fig. 3 shows the results of known tar-
gets for AFL and AV-AFL. It can be observed that
red-stars (AV-AFL) dominate blue-triangles (AFL) in
terms of showing the known status of the targets
present in programs. There are 29 out of these 32
programs where AV-AFL had at least 1 #Unreachable
Target. Also, there are 6 out of 32 programs where
AV-AFL had at least 1 #Unreachable Target. AV-AFL
has more #Reachable Targets for 14 programs, how-
ever, for 19 programs the #Reachable Targets were
the same as compared to AFL. This shows the clear
picture that AV-AFL is superior. There are 3 out of
45 programs for which both AFL and AV-AFL have
Memory Out (MO) error, so we could not prove any
targets hence all were #UnKnown targets. For the rest
programs, AV-AFL has ineffective results.

There were 45 programs with 4500 existing tar-
gets. For AFL, in total 706 targets were known and
3794 targets were unknown. Next, AV-AFL shows

AV-AFL: A Vulnerability Detection Fuzzing Approach by Proving Non-reachable Vulnerabilities using Sound Static Analyser

307

total 1347 targets as known and 3153 unknown. Fi-
nally, AV-AFL is able to show the known status for
641 extra targets in comparison to AFL.

The main drawback of AFL remains its inability
to distinguish and segregate the unreachable vulnera-
bilities from the group of vulnerabilities. We have ex-
perimentally proven that the AV-AFL overcomes this
inability successfully by alarming only the reachable
vulnerabilities. It has been observed through results
that the performance of AV-AFL for the same time
period is highly improved in comparison to AFL due
to reduced search space.

6 CONCLUSION

The AV-AFL approach presented in this paper facili-
ties the smart detection of crashes by eliminating the
unreachable targets by the fuzzing mechanism. It has
been observed from the literature of the fuzzing do-
main that vulnerability detection is a forever running
process. Use of fuzzing enables us to detect the vul-
nerabilities so that attackers may not misuse them to
exploit the system. But, this detection will continue
because of the unknown status of the vulnerabilities.
If fuzzer could be able to show that the vulnerabilities
it is searching for are not required and the time can
be spent on other vulnerabilities which could lead to
a crash, then the fuzzer will be efficient to perform
the fuzzing fast. AV-AFL provides this environment
using sound static analyzer Frama-C. It is experimen-
tally observed that the proposed AV-AFL detects the
vulnerabilities effectively in comparison to the base-
line AFL. In total AV-AFL shows 641 extra as known
targets in contrast to AFL. AV-AFL has better results
in total 71.11% of 45 programs. It shows that AV-
AFL is superior.

In the future, we will extend AV-AFL with a new
seed generation technique to improvise the vulnera-
bility detection process. We will try to embed the
model checker technique with AFL to prove the un-
known cases at last.

REFERENCES

Baudin, P., Bobot, F., Bühler, D., Correnson, L., Kirchner,
F., Kosmatov, N., Maroneze, A., Perrelle, V., Prevosto,
V., Signoles, J., et al. (2021). The dogged pursuit of
bug-free c programs: the frama-c software analysis
platform. Communications of the ACM, 64(8):56–68.

Böhme, M., Pham, T., Nguyen, M.-D., and Roychoudhury,
A. (2017). Directed greybox fuzzing. pages 2329–
2344.

et al., K. Evaluating fuzz testing. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Commu-
nications Security.

Godboley, S., Dutta, A., Mohapatra, D. P., Das, A., and
Mall, R. (2016). Making a concolic tester achieve in-
creased mc/dc. Innovations in systems and software
engineering, 12(4):319–332.

Godboley, S., Dutta, A., Mohapatra, D. P., and Mall, R.
(2017a). J3 model: a novel framework for improved
modified condition/decision coverage analysis. Com-
puter Standards & Interfaces, 50:1–17.

Godboley, S., Dutta, A., Mohapatra, D. P., and Mall, R.
(2018a). Gecojap: A novel source-code preprocess-
ing technique to improve code coverage. Computer
Standards & Interfaces, 55:27–46.

Godboley, S., Dutta, A., Mohapatra, D. P., and Mall, R.
(2018b). Scaling modified condition/decision cov-
erage using distributed concolic testing for java pro-
grams. Computer Standards & Interfaces, 59:61–86.

Godboley, S., Jaffar, J., Maghareh, R., and Dutta, A. (2021).
Toward optimal mc/dc test case generation. ISSTA
2021, page 505–516, New York, NY, USA. Associa-
tion for Computing Machinery.

Godboley, S., Mohapatra, D. P., Das, A., and Mall, R.
(2017b). An improved distributed concolic test-
ing approach. Software: Practice and Experience,
47(2):311–342.

Godboley, S., Sahani, A., and Mohapatra, D. P. (2015).
Abce: A novel framework for improved branch cover-
age analysis. In SCSE, pages 266–273.

Iorga, D., Corlătescu, D., Grigorescu, O., Săndescu, C.,
Dascălu, M., and Rughiniş, R. (2020). Early detection
of vulnerabilities from news websites using machine
learning models. In RoEduNet, pages 1–6. IEEE.

Kiss, B., Kosmatov, N., Pariente, D., and Puccetti, A.
(2015). Combining static and dynamic analyses for
vulnerability detection: Illustration on heartbleed. In
Piterman, N., editor, Hardware and Software: Verifi-
cation and Testing, pages 39–50, Cham. Springer.

RERS (2019a). RERS19:Industrial Reachability Prob-
lems. http://rers-challenge.org/2019/index.php?page=
industrialProblemsReachability.

RERS (2019b). RERS19:Sequential Reachability Prob-
lems. http://rers-challenge.org/2019/index.php?page=
reachProblems.

RERS (2020). RERS20:Sequential Reachability Prob-
lems. http://rers-challenge.org/2020/index.php?page=
reachProblems.

Rustamov, F. e. a. (2021). Bugminer: Mining the hard-
to-reach software vulnerabilities through the target-
oriented hybrid fuzzer. Electronics, 10(1).

Shastry, B. e. a. (2017). Static program analysis as a
fuzzing aid. In International Symposium on Research
in Attacks, Intrusions, and Defenses, pages 26–47.
Springer.

Signoles, J. (2021). The e-acsl perspective on runtime as-
sertion checking. VORTEX 2021, page 8–12. Associ-
ation for Computing Machinery.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

308

