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Abstract: Clinical decision support tools mining speech signals for Parkinson’s Disease (PD) applications typically rely 
on relatively small numbers of participants, having collected data under highly controlled acoustic conditions. 
We recently reported on the Parkinson’s Voice Initiative (PVI), a large international project leading to the 
collection of 19,000+ sustained vowel phonations (control and PD groups) across seven countries, where 
participants were self-selected and provided phonations over the standard telephone network. In this study, 
we explored sustained vowels in a balanced subset of the US-speaking cohort in PVI comprising 3000 
participants (1500 PD and 1500 controls). The aim was to investigate feature selection and feature 
transformation techniques towards improving binary differentiation of controls and PD and obtaining new 
insights in a lower dimensional space. We acoustically characterized each sustained vowel /a/ phonation using 
307 dysphonia measures which had previously been successfully employed in speech-PD applications. We 
explored five different feature selection and two manifold embedding techniques to project data into new 
feature spaces which might be more predictive of the binary outcome, and presented those into a Random 
Forest. We assessed the performance of the resulting models using internal 10-fold Cross-Validation (CV). 
We report classification accuracy of 67% and provide tentative interpretation by comparing the different 
feature subsets identified using different methods. Collectively, these findings provide new insights towards 
developing parsimonious feature subsets to facilitate the development of a large-scale tool for PD screening 
at minimal cost using telephone-based sustained vowels. 

1 INTRODUCTION 

Parkinson’s Disease (PD) is a progressive 
neurodegenerative disorder straining national health 
systems globally (Dorsey et al., 2013). Prevalence 
rates have been constantly increasing over the last 
years: there were approximately 2.5 million People 
diagnosed with PD (PwP) in 1990, rising to 6.1 
million PwP by 2016 (GBD, 2018). More recently, a 
large global burden of disease study highlighted PD 
as one of the top five leading causes of death from 
neurological disorders in the US (GBD Neurological 
Disorders Collaborators, 2021). Cardinal PD 
symptoms include tremor, rigidity, bradykinesia, and 
postural stability, within the broader remit of motor, 
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cognitive, and neuropsychiatric symptoms (Olanow, 
Stern, Sethi 2009).  

The use of speech signals to assess PD has been 
very well described in the research literature (Titze, 
2000; Tsanas 2012). It is revealing that 29% of PwP 
consider vocal performance degradation as one of 
their most debilitating symptoms (Hartelius and 
Svensson, 1994). Recent studies have demonstrated 
the enormous potential of capitalizing on speech 
signals in neurodegenerative applications and PD in 
particular. For example, research work has explored: 
(1) differentiating PwP from age- and gender-
matched controls with almost 99% accuracy (Tsanas 
et al., 2012); (2) accurately replicating the Unified 
Parkinson’s Disease Rating Scale (UPDRS) (Tsanas 
et al., 2010a; 2010b; 2010c; 2011; 2021), which is the 
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standard clinical tool to provide an overall PD 
symptom assessment; (3) automatically assessing 
voice rehabilitation (Tsanas et al., 2014a); (4) 
providing early biomarkers in PD with gene 
mutations and other PD precursors (Arora et al., 
2018; Arora et al. 2021); (5) clustering PD 
participants towards developing more personalized 
monitoring and treatment approaches (Tsanas and 
Arora, 2020; 2021); and (6) speech articulation 
kinematic models to characterize PD dysarthria thus 
providing tentative insights into the underlying 
physiology (Gomez et al., 2019). 

Typically, reseach into speech-PD has focused on 
single-site findings and has been limited in terms of 
study paticipants. A large multi-site trial, the 
Parkinson’s Voice Initiative (PVI) (Arora, Baghai-
Ravary, Tsanas, 2019; Arora and Tsanas, 2021) is the 
first of its kind study, inviting people to self-enrol and 
donate their voices to facilitate large scale analysis of 
PD. Overall, PVI collected more than 19,000 
sustained vowel /a/ samples from people across seven 
countries. Although the data collected in PVI is 
clearly not of the same high quality as data collected 
under carefully controlled acoustic conditions, the 
large number of samples facilitates new explorations 
in different directions. 

The aim of this study was to explore different 
feature selection and feature transformation 
techniques towards facilitating the binary 
differentiation of control participants and PD 
participants in a subset of the PVI data, thus building 
on our previous work with this dataset (Arora, 
Baghai-Ravary and Tsanas 2019; Arora and Tsanas, 
2021a). The ultimate goal is to develop a clinical 
decision support tool to facilitate PD screening at 
large at practically no cost.   

2 DATA 

The PVI study invited people call on a dedicated 
region-specific phone number and contribute their 
voices to facilitate clinical research into PD. Data 
were collected across seven major geographical 
locations (Argentina, Brazil, Canada, Mexico, Spain, 
USA, and the UK) using servers by Aculab for the 
needs of this project. People called a dedicated phone 
number that was closest to their geographical location 
and were not compensated in any way for 
participating in the study. Participants followed aural 
instructions in the native language for the region, and 
were asked to provide basic demographic information 
(age, gender), self-report whether they had received a 
clinical PD diagnosis, and record two sustained vowel 

/a/ phonations. The instruction was to sustain vowel 
/a/ for as long and as steadily as possible, following 
standard widely speech collection protocols (Titze, 
2000). The speech recordings were sampled at 8 kHz 
at 16 bits or resolution. In total, the PVI study 
collected more than 19,000 phonations. 

In this study we processed data from the single 
largest collection site, Boston to ovecome differences 
in voices from people coming from different 
linguistic backgrounds, even when comparing UK-
English and US-English (Tsanas and Arora, 2021b). 
Specifically, we processed data from 1078 PD 
participants (age 62.7±12.0, 566 male) and 5453 
controls (49.2±15.9, 2976 male). We do not have 
detailed information regarding PD-symptom specific 
aspects, for example whether participants self-
enrolled when they were “on” or “off” medication, or 
clinically validated metrics such as UPDRS. For 
further details on PVI including detailed 
demographics we refer readers to our previous work 
(Arora, Baghai-Ravary, Tsanas, 2019; Tsanas and 
Arora, 2019; Arora and Tsanas 2021). 

3 METHODS 

3.1 Data Pre-Processing 

We developed a speech recognition software which 
automatically transcribed the participants’ responses 
over the phone regarding age, gender, and self-
reported PD assessment. Randomly selected 
recordings were aurally inspected for voice quality to 
ensure the transcription was correct. Moreover, we 
inspected recordings where the automated speech 
recognition algorithm had less than 90% confidence 
in the transcript output. For further details on 
preprocessing and removing faulty phonations we 
refer to (Arora, Baghai-Ravary, Tsanas, 2019).  

3.2 Acoustic Characterization of 
Sustained Vowel /a/ Phonations 

We used the Voice Analysis Toolbox (freely 
available from https://www.darth-group.com/ 
software and also from https://github.com/Thanasis 
Tsanas/VoiceAnalysisToolbox) to acoustically 
characterize each sustained vowel /a/ phonation. The 
toolbox computes 307 dysphonia measures, which 
have been developed specifically to characterize 
sustained vowel /a/ phonations extensively validated 
across diverse PD datasets (Tsanas et al., 2010a; 
Tsanas et al., 2010b; Tsanas et al., 2011; Tsanas et al.,  
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Table 1: Breakdown of the dysphonia measures used in the study. 

Family of acoustic measures Brief description Number of 
measures

Jitter variants F0 perturbation  28 
Shimmer variants Amplitude perturbation 21 
Harmonics to Noise Ratio (HNR) and 
Noise to Harmonics Ratio (NHR) 

Signal to noise, and noise to signal ratios computed using 
standard approaches relying on autocorrelation 4 

Glottis Quotient (GQ) 
Vocal fold cycle duration changes, quantified by focusing 
on specific glottal opening and glottal closure periods, 
quantified using DYPSA (Naylor et al., 2007) 

3 

Glottal to Noise Excitation (GNE) Extent of noise in speech using energy and nonlinear energy 
concepts 6 

Vocal Fold Excitation Ratio (VFER) Extent of noise in speech using energy, nonlinear energy, 
and entropy concepts 9 

Empirical Mode Decomposition 
Excitation Ratio (EMD-ER) 

Signal to noise ratios using EMD-based energy, nonlinear 
energy, and entropy 6 

Mel Frequency Cepstral Coefficients 
(MFCC) 

Amplitude and spectral fluctuations on the Mel scale 
quantifying envelope and high frequency aspects 39 

F0 related Comparisons of F0 against age and gender matched 
controls, including probabilistic variabilities 3 

Wavelet-based coefficients 

Amplitude, scale, and envelope fluctuations quantified 
using wavelet coefficients, and processing with entropy, 
Teager-Kaiser Energy, signal energy, and signal to noise 
ratios 

182 

Pitch Period Entropy (PPE) Variability of F0 expressing inefficiency of F0 stability 
over and above the variability exhibited by healthy controls 1 

Detrended Fluctuation Analysis (DFA) Stochastic self-similarity of turbulent noise 1 
Recurrence Period Density Entropy 
(RPDE) Uncertainty in estimation of F0 1 

Algorithmic expressions for the dysphonia measures summarized above are described in detail in (Tsanas, 2012; Tsanas, 2013). The 
MATLAB source code for the computation of the dysphonia measures is freely available from https://www.darth-group.com/software and 
also from https://github.com/ThanasisTsanas/VoiceAnalysisToolbox). F0 refers to fundamental frequency estimates, here computed using 
SWIPE (Camacho and Harris, 2008). 

2012; Tsanas, 2012; Tsanas et al., 2014a; Arora, 
Baghai-Ravary, Tsanas, 2019; Tsanas et al., 2021), 
and other applications, e.g. processing voice fillers 
(Tsanas and Gomez-Vilda, 2013; San Segundo, 
Tsanas, Gomez-Vilda, 2017). We have described in 
detail previously the background, rationale, and 
detailed algorithmic expressions for the computation 
of the dysphonia measures (Tsanas, 2012; Tsanas, 
2013). A concise summary of the extracted dysphonia 
measures is summarized in Table 1 including the 
number of dysphonia measures for each algorithmic 
family and a brief description. 

The fundamental frequency (F0) is a key speech 
characteristic, and its estimation is a prerequisite for 
the computation of many dysphonia measures, e.g. 

for jitter, and Pitch Period Entropy (PPE). There are 
many algorithms in the research literature for F0 
estimation (Roark, 2006; Tsanas et al., 2014b); in this 
study, we used the Sawtooth Waveform Inspired 
Pitch Estimator (SWIPE) algorithm (Camacho and 
Harris, 2008), which we had previously demonstrated 
is the most accurate F0 estimation algorithm for 
sustained vowel /a/ phonations (Tsanas et al., 2014b).  

Applying the dysphonia measures to each 
sustained vowel /a/ phonation gives rise to 307 
features which are continuous random variables. 
Therefore, we have a 11,942×304 data matrix that we 
aim to process further to map onto the binary outcome 
(0 was used to denote controls and 1 to denote PwP). 
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3.3 Dimensionality Reduction 

A high dimensional dataset may lead to statistical 
learning performance degradation and obfuscates the 
understanding of clear patterns in a dataset. This well-
known problem is often referred to as the curse of 
dimensionality (Guyon et al. 2006; Hastie, Tibshirani, 
Friedman, 2009). Following Occam’s razor, we would 
prefer a predictive model which is as simple as 
possible, i.e. with a low dimensionality. This approach 
is typically referred to as dimensionality reduction, and 
can be achieved either by feature transformation 
(transforming the features to populate a new, lower 
dimensional space), or by feature selection (choosing a 
subset of features). Feature selection is often more 
suitable in clinical settings to retain the interpretability 
of the original features (Guyon et al., 2006; Tsanas, 
Little, McSharry, 2013), although in some applications 
linear feature transformation techniques may operate 
well and lead also to interpretable embedded (derived) 
features where the computed latent variables may be 
interpretable (van der Maaten et al., 2008a; Tsanas et 
al., 2017).  

Here, we explored both feature selection and 
feature transformation approaches. Specifically, we 
applied Principal Component Analysis (PCA) and 
Independent Component Analysis (ICA), two 
commonly used feature transformation methods 
which aim to project the original data onto a new 
feature space, which might lead to better prediction 
performance (see van der Maaten et al., 2008a for 
details). Whereas in PCA the resulting components 
are ranked in terms of explaining the variance in the 
dataset, in ICA there is no direct ranking that we 
could use to understand which components should be 
selected first. Therefore, the transformed features that 
were computed using ICA were fed into the feature 
selection algorithms (described in the next paragraph) 
to decide on the transformed features to be presented 
into the statistical learner. For ICA we used the 
fastICA implementation. 

For feature selection, we used (1) GSO; (2) 
LOGO (Sun et al., 2010), a feature weighting 
algorithm which implicitly also provides an estimate 
of the “importance” of each feature to obtain the 
ranked features; (3) minimal Redundancy Maximal 
Relevance (mRMR) (Peng et al., 2005); (4) L1-LSMI 
(Jitkrittum et al., 2013), and (5) SPECCMI (. In all 
cases we aimed to process the top-50 selected features 
from each of the algorithms. We remark that we used 
GSO in the original study (Arora, Baghai-Ravary and 
Tsanas, 2019) so here wanted to experiment with 
different feature selection algorithms to explore 
whether they bring any performance improvement. 

Feature were selected using 90% of the data and 
finally applying a feature selection voting strategy as 
described in previous studies (Tsanas, 2012; Tsanas 
et al., 2014a). We aimed to use diverse feature 
selection algorithms which have been used in 
different applications both to assess how stable 
findings across the different feature selection 
algorithms are, and also to determine whether any of 
these lead to better overall classifier performance (see 
the following section). 

3.4 Statistical Exploration and 
Mapping 

We explored the statistical associations in the dataset 
using standard Spearman correlation coefficients, 
considering a relationship statistically strong if the 
magnitude of the correlation coefficient was at least 
0.3, following standard recommendation in the 
medical field (Tsanas et al., 2013). This was towards 
exploring both the original features and also the 
transformed features from PCA and ICA to determine 
whether the transformation has led to substantial 
improvement in terms of feature association with the 
response. 

Subsequently, we used a Random Forest (RF) 
algorithm, which is known to be very robust and has 
been described as ‘best off-the-shelf’ algorithm for 
statistical learning (Hastie, Tibshirani, Friedman, 
2009). We used the default parameters (500 trees, the 
number of features over which to search for the 
optimal split was the square root of the number of 
features, and in the end used majority voting to 
determine the RF output). 

3.5 Model Validation 

Given the dataset is highly unbalanced ( >80% 
samples belong to the dominant class, control 
participants) a setting which is known to be 
particularly challenging for statistical learning 
models (Hastie, Tibshirani, Friedman, 2009), we 
wanted to focus on a balanced dataset to avoid class 
dominance problems. Specifically, we randomly 
selected 1500 samples from PwP and 1500 samples 
from controls to create a balanced binary 
classification dataset (n=3000 samples) which will be 
used to select features (or transform features), and 
train the RF. We used the selected feature subset 
applying standard 10-fold Cross Validation (CV) to 
empirically compare performance as a function of the 
number of features presented into RF.  
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Table 2: Summary of selected features in descending order for each of the feature selection algorithms. 

GSO LOGO mRMR L1-LSMI SPECCMI 

Jitter->F0_TKEO_prc25 det_entropy_log_6_coef Jitter->F0_TKEO_prc95 DFA det_LT_TKEO_mean_7_coef 

MFCC_4th coef MFCC_2nd coef 6th delta 6th delta det_LT_TKEO_std_7_coef 

6th delta MFCC_4th coef Jitter->pitch_TKEO_prc5 det_entropy_log_6_coef det_LT_entropy_shannon_7_coef

MFCC_0th coef Jitter->F0_TKEO_prc95 VFER->SNR_SEO det_LT_entropy_log_3_coef Jitter->F0_TKEO_prc5 

det_entropy_log_6_coef MFCC_0th coef VFER->std MFCC_2nd coef det_TKEO_mean_7_coef 

app_TKEO_std_2_coef 6th delta DFA app_LT_entropy_log_3_coef app_entropy_log_5_coef 

MFCC_9th coef app_LT_entropy_log_4_coef Jitter->pitch_PQ5_classical_Baken MFCC_5th coef app_LT_entropy_log_1_coef 

IMF->NSR_TKEO app_LT_entropy_log_5_coef IMF->NSR_TKEO MFCC_4th coef det_LT_entropy_shannon_6_coef

Jitter->pitch_TKEO_prc25 MFCC_6th coef Jitter->F0_TKEO_prc5 app_LT_entropy_log_2_coef det_entropy_shannon_6_coef 

MFCC_6th coef app_LT_entropy_log_3_coef MFCC_9th coef IMF->NSR_TKEO det_entropy_log_6_coef 

For brevity we only present the top-10 selected features using the feature selection algorithms. For further explanation on these dysphonia 
measures we refer to Tsanas (2012) and the associated toolbox freely available from https://www.darth-group.com/software and also from 
https://github.com/ThanasisTsanas/VoiceAnalysisToolbox). 

4 RESULTS 

We started analysis by computing the correlation 
coefficients of the original features. Overall, the 
highest correlation coefficient was 0.14, which 
already indicates this is a challenging binary 
classification task. Next we computed the 
transformed features using PCA and ICA and 
computed the correlation coefficients: we found that 
there was some minor improvement with a few more 
variables exhibiting correlation coefficients with a 
magnitude over 0.1, however again the highest 
correlation coefficient we obtained was 0.16. 

Then, we applied the feature selection algorithms 
to determine the top-50 features for each algorithm. 
Results are summarized in Table 2, where for brevity 
we only included the top-10 features for the five feature 
selection algorithms. We remark that the feature sets 
obtained are quite different, although some of the 
MFCCs appear to be consistently selected indicating 
this is an algorithmic family that contributes to the 
binary differentiation task. Similarly, many of the 
wavelet features appear regularly across the feature 
selection algorithms, which suggests this generic 
approach of quantifying signal properties is also well-
suited to differentiating PwP from controls. 

Next, we present in Figure 1 the out of sample 
performance as a function of the number of features 
presented into the RF for the feature selection 
algorithms. This enables the exploration of different 
combinations and also towards identifying a 
parsimonious model where the inclusion of additional 
features is not contributing to improving the model  
 

 
Figure 1: Out of sample performance as a function of the 
presented features into the RF, for each of the five feature 
selection algorithms. 

performance (or indeed leads to performance 
degradation). 

The results in Figure 1 suggest that we can 
differentiate PwP from controls with 67.5% accuracy 
using 35 features selected using either mRMR or L1-
LSMI. We remark that L1-LSMI generally performs 
very well in this dataset, whereas SPECCMI clearly 
underperforms by comparison. 

When we tried using the transformed features into 
the RF classifier the best performance obtained was 
66.5%, so for this particular dataset it appears that 
feature transformation has not provided any 
additional benefits to improve performance. 
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5 DISCUSSION 

We investigated the potential of differentiating PwP 
and controls using telephone-recorded speech 
collected under acoustically non-controlled 
conditions exploring different feature selection and 
feature transformation methods. We found that the 
most frequently used feature transformation methods, 
PCA and ICA do not appear to provide any 
improvement in the classification accuracy compared 
to the investigated feature selection approaches. 
Overall, we found that we can differentiate the two 
groups with about 67% accuracy, which improves on 
(Arora, Baghai-Ravary and Tsanas, 2019).  

Compared to the earlier study (Arora, Baghai-
Ravary and Tsanas, 2019) which pooled together all 
the available data in PVI, here we focused only on a 
balanced subset of 3000 participants from the Boston 
cohort in PVI. The underlying reason is that focusing 
on participants coming from the same linguistic 
background, even when only processing sustained 
vowel /a/ phonations, would mitigate potential 
differences. Moreover, by selecting a balanced subset 
of the data we overcome the common challenging 
setting where the dominant class may skew the 
classifier’s outputs. This has indeed led to some 
performance improvement (previously the best 
performing model in (Arora, Baghai-Ravary and 
Tsanas, 2019) led to 63.7% balanced accuracy, 
whereas here we report 67% accuracy (which by 
definition coincides with the balanced accuracy given 
we have a balanced dataset). 

We found that although the feature transformation 
methods explored herein (PCA and ICA) led to some 
transformed features that univariately were slightly 
better correlated with the response compared to the 
original features, when taken jointly they did not lead 
to better classification outcomes. Therefore, we did 
not pursue this further since feature transformation 
methods also have the disadvantage that the resulting 
models are less interpretable. It is possible that some 
more convoluted feature transformation methods 
(e.g. see van der Maaten et al., 2008a) might perform 
better here, and this is an area that needs to be 
explored in further work. Also, we did not explore 
further data visualization approaches to explore 
projected feature subsets, which may provide 
tentative insights into the differences of samples 
between classes (van der Maaten et al., 2008b). 

Previous work that used the entire PVI dataset 
(Arora, Baghai-Ravary and Tsanas, 2019) and GSO 
to determine the best performing feature subset using 
the same methodology as explored in this study led to 
quite different features. This likely supports earlier 

findings that even for sustained vowels there may be 
subtle differences given the linguistic background of 
participants. In turn, this has important implications 
towards developing generalizable tools across 
cohorts of participants coming from different 
linguistic backgrounds. 

We found that substantially different feature 
subsets (using mRMR and L1-LSMI) lead to very 
similar performance in the RF. This likely indicates 
the presence of different Markov blankets in the 
dataset, where quite different features lead to similar 
out of sample performance. This is in accordance to 
previous findings in this field with different speech-
PD datasets (e.g. see Tsanas 2012) and possibly 
underlines the fact there may be different underlying 
combinations of features which essentially can jointly 
capture the key acoustic characteristics towards 
differentiating PwP from controls. 

We remark that although the reported 
performance is comparably low to apply this tool in 
clinical practice currently, it is possible that it could 
be used as an early indicator, particularly given there 
is practically no cost to deploy the use of sustained 
vowels in practice and collect data through standard 
telephone networks. It is likely that in combination 
with additional signal modalities (e.g. walking) and 
other tests that can be collected using smartphones 
(e.g., see Tsanas et al., 2020; Woodward et al., in 
press), we will be able to develop an affordable and 
practical tool to change contemporary PD screening 
and facilitate early diagnosis. 

Collectively, this study’s findings are a step 
towards developing a robust, effective and cost-
efficient tool to screen for PD at large. 
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