
Performance of Databases Used in Data Stream Processing Environments

Manuel Weißbach and Thomas Springer
Faculty of Computer Science, Technische Universität Dresden, Germany

Keywords: Stream Processing, Benchmarking, Database Benchmark, Big Data, Performance.

Abstract: Data stream processing (DSP) is being used in more and more fields to process large amounts of data with min-
imal latency and high throughput. In typical setups, a stream processing engine is combined with additional
components, especially database systems to implement complex use cases, which might cause a significant
decrease of processing performance. In this paper we examine the specific data access patterns caused by
data stream processing and benchmark database systems with typical use cases derived from a real-world
application. Our tests involve popular databases in combination with Apache Flink to identify the system
combinations with the highest processing performance. Our results show that the choice of a database is
highly dependent on the data access pattern of the particular use case. In one of our benchmarks, we found a
throughput difference of a factor of 46.2 between the best and the worst performing database. From our expe-
rience in implementing a complex real-world application, we have derived a set of performance optimization
recommendations to help system developers to select an appropriate database for their use case and to find a
high-performing system configuration.

1 INTRODUCTION

In almost all areas of the economy, digitization is
progressing rapidly. Larger and larger amounts of
data have to be processed in shorter and shorter pe-
riods of time. These data sets grow continuously, i.e.,
they are unbounded and thus, require new process-
ing paradigms since they are never completed. For
this purpose, Stream Processing Engines are often
adopted, that work according to the paradigm of Data
Stream Processing (DSP). Incoming data is processed
immediately upon arrival and thus remains in constant
flow. This is also referred to as one-at-a-time process-
ing. In contrast to classic batch processing methods,
which collect data and process it in bursts, very low
processing latencies can be achieved.

Data stream processing architectures contain a
so called Data Stream Processing Engine (SPE) as
well as other components such as message queues
and databases. Although the latter contradicts the
paradigm of always keeping the data from the un-
bounded data stream flowing (as described in (Stone-
braker et al., 2005)), the volumes of data to be pro-
cessed are in many cases too large to be kept in RAM,
so that the use of a persistence layer is unavoidable.

During our work on a research project in which
we process crowdsensed data of hundreds of thou-

sands of cyclists (partly live) using DSP, the inter-
action of the SPE and the database (DB) came into
our focus. In a first performance study (Weißbach
et al., 2020) we analyzed the data management perfor-
mance of Cassandra, HBase, MariaDB, MongoDB,
and PostgreSQL while using them in combination
with the SPEs Apache Apex, Apache Flink, and
Apache Spark Streaming. The results clearly showed
that both, the choice of DB and the choice of SPE
have significant impact on the overall processing per-
formance of the architecture. Apache Flink interacted
by far the best with the DBs systems we studied.
This finding led us to continue our implementations
based on this framework. With regard to the DB,
we did not get such a clear picture. Benchmark re-
sults appeared to be somewhat ”unpredictable” since
a database with superior performance in one experi-
ment often had a much worse performance in other
experiments. From the results we concluded that an
appropriate DB should be selected based on the most
frequently used access pattern generated by the spe-
cific use case and by the size of the data sets to be
processed. In addition, we derived the assumption,
that the algorithmic concepts used in Data Stream
Processing lead to particular query patterns when ac-
cessing the involved DB. These, however, are usually
not explicitly designed and optimized for use in DSP

Weißbach, M. and Springer, T.
Performance of Databases Used in Data Stream Processing Environments.
DOI: 10.5220/0011018300003200
In Proceedings of the 12th International Conference on Cloud Computing and Services Science (CLOSER 2022), pages 15-26
ISBN: 978-989-758-570-8; ISSN: 2184-5042
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

15

environments. As a consequence, the processing per-
formance of the DBs often falls short of expectations
while different component compositions of SPE and
DB interact better with each other than others. So
far, our research in (Weißbach et al., 2020) only cov-
ered binary, non-typed data management, in which the
DBs were only used as a pure storage medium and
not for data analysis. To find out which DBs are best
suited with respect to our sensor data processing use
cases, we extended our benchmarking. In this paper,
we present our research results on typed data manage-
ment. Here, Apache Ignite, Cassandra, HBase, Mari-
aDB, MongoDB, and PostgreSQL as well as the in-
memory database Redis were included in the analysis.
In addition, the in-memory data grid Hazelcast was
tested as a cache and write buffer in combination with
Cassandra, HBase, MariaDB, MongoDB, and Post-
greSQL. All experiments were based on a DSP imple-
mentation for Apache Flink. During our work on this
topic, we made many optimizations to achieve solid,
high-performance data processing. At the end of the
paper, we want to pass on our resulting knowledge in
the form of recommendations for architecture design
to help developers to achieve their goals more quickly.
In summary, the following contributions are included
in this paper:

• We illustrate and characterize the typical access
patterns that arise from the use of windowing in
DSP processing.

• With benchmarks based on a real-world sen-
sor data processing use case we show which
databases achieved the best performance for dif-
ferent access types and discuss why.

• We make fundamental recommendations for
building a DSP architecture with an integrated
database.
The paper is organized as follows. In section 2

we present related work dealing with database bench-
marking and in section 3 the software systems used
in our experiments. In section 4 we characterize the
specific data access patterns we identified for DSP. In
section 5 we describe our benchmark setup and in sec-
tion 6 we present and interpret the benchmarking re-
sults. The lessons learned we derived from optimizing
our DSP architecture and the related benchmarks are
described in section 7. Finally, section 8 briefly sum-
marizes the contents of the paper and provides infor-
mation on our plans to continue the research.

2 RELATED WORK

The performance of SQL and NoSQL databases for
Big Data processing has been investigated from vari-

ous perspectives. The Yahoo! Cloud Serving Bench-
mark (YCSB) (Cooper et al., 2010) is frequently used
to test storage solutions against predefined workloads.
It is extensible in terms of workloads and connectors
to storage solutions and can therefore serve as a basis
for comparative benchmarks.

In (Cooper et al., 2010), YCSB was used to bench-
mark Cassandra, HBase, PNUTS, and MySQL as rep-
resentatives of DBs with different architectural con-
cepts. Hypothetical compromises derived from archi-
tecture decisions were confirmed in practice. Cassan-
dra and HBase showed higher read latencies for high-
read workloads than PNUTS and MySQL, while the
update latencies for high-write workloads were lower.
While YCSB is designed to be extensible, the YCSB
client directly accesses the database interface layer.
Therefore, it does not provide facilities for an easy in-
tegration into a stream processing benchmark. Conse-
quently, we have implemented our own test environ-
ment.

The authors of (Abramova and Bernardino, 2013)
studied the impact of the data size on the query per-
formance of MongoDB and Cassandra in non-cluster
setups. A modified version of YCSB with six work-
loads was used. Their findings showed that as data
size increased, MongoDB’s performance decreased,
while Cassandra’s performance increased. In most
experiments, Cassandra performed better than Mon-
goDB.

In (Nelubin and Engber, 2013) a study of the per-
formance of Aerospike, Cassandra, MongoDB, and
Couchbase was presented with respect to the differ-
ences between using SSDs as persistent storage and
pure in-memory data management. They also used
the YCSB benchmark, with a cluster of four nodes.
Aerospike showed the best write performance in dis-
tributed use with SSDs with ACID guarantees ap-
plied. The authors themselves state, however, that
this result is partly due to the test conditions, which
matched the conditions for which Aerospike was op-
timized.

The performance of the distributed NoSQL
databases Cassandra, MongoDB, and Riak has been
investigated in (Klein et al., 2015). A setup of nine
production database servers optimized for processing
medical data with a high number of reads and updates
of single health records served as the basis for the
study. Different workloads were tested using YCSB
to collect results for both strong and eventual con-
sistency. Cassandra and Riak showed slightly lower
throughput for strong consistency (not all experiments
could be run for MongoDB). The Cassandra DB pro-
vided best overall performance in terms of throughput
in all experiments, but had the highest average access

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

16

latencies.
In (Fiannaca, 2015) the authors investigated which

DB achieves the best throughput when querying
events from a robot execution log. They exam-
ined SQLite, MongoDB, and PostgreSQL, and rec-
ommended the use of MongoDB because of its good
throughput and usability for robot setups with a small
number of nodes or only a single node.

Cassandra, HBase, and MongoDB were bench-
marked in (Ahamed, 2016) with different cluster sizes
for various workloads. Cassandra consistently deliv-
ered the lowest access latency and highest throughput,
followed by HBase and MongoDB.

The performance of processing queries on
mobile users’ trajectory data was investigated
in(Niyizamwiyitira and Lundberg, 2017) using three
datasets from a telecom company. The study included
Cassandra, CouchDB, MongoDB, PostgreSQL, and
RethinkDB running on a cluster of four nodes
with four location-based queries and three datasets
of different sizes. Cassandra achieved the high-
est write throughput in distributed operation, while
PostgreSQL showed the lowest latency and highest
throughput in single-node setup. The lowest read la-
tency was achieved by MongoDB for all query types,
but it did not reach such a high throughput as Cassan-
dra. Furthermore, it was found that the read through-
put decreased with increasing data set size, especially
for random accesses.

While all studies examined the performance of
DBs in specific scenarios and domains, none of them
explicitly addressed how well they perform within
stream processing environments. To the best of our
knowledge, there are currently no studies that ex-
plicitly address this topic. However, such a context-
specific view is highly important as the data stream
processing leads to particular query patterns that may
have a significant impact on the performance of the
DBs. Thus, our study is conducted to fill this gap.

3 SOFTWARE

In the following, we introduce the used data stream
processing engine, Apache Flink, and the database
systems we studied.

Apache Flink is a DSP framework provided
under the Apache license 2.0 that supports batch
and stream processing in a hybrid fashion. Flink
implements data processing based on an operator
model that can be represented as a directed acyclic
graph. The individual operators can hold different
types of state information, depending on the require-

ments of the given use case, which is saved cyclically
using checkpointing based on a persistent storage
(e.g. HDFS or RocksDB). The operators of a Flink
application are executed in TaskSlots on worker
nodes, each of which has a TaskManager that handles
the node’s processing. For each application, there
is a JobManager that controls the execution of the
application and assigns corresponding tasks to the
TaskManagers. In order to run Flink highly available,
without a single point of failure, ZooKeeper is
additionally required. The service is used to store
status information of the JobManager so that it can
be replaced after a crash. Flink applications can op-
tionally be executed with at-most-once, at-least-once,
or exactly-once error semantics. For our use case, we
used exactly-once processing.

Apache Ignite is a distributed DB which was
designed for high-performance data analysis. Ignite
uses main memory as the primary storage medium
and thus enables particularly fast data accesses, since
there are no delays due to input and output operations
for fixed memory access. The use of persistent mem-
ory is optional. In cluster mode, Ignite uses sharding
to distribute datasets managed as key-value pairs
among available nodes. The concept is based on the
so-called ”shared nothing architecture”, in which all
nodes of the cluster act completely independently and
can perform their own tasks without the involvement
of other nodes, since all the resources required are
available locally. Ignite clusters consist of two differ-
ent types of nodes, data nodes known as ”servers”,
that can manage data sets and indexes and perform
calculations on the data, and ”client” nodes, which
are used to establish connections between external
applications and the data servers. Data is distributed
across the cluster using the ”rendevouz” hashing
algorithm and, depending on the configuration, may
be replicated as many times as desired or not at all.
When a node joins or leaves the cluster, the data is
rebalanced. Ignite provides various interfaces with
different abstraction levels, which can be used to
implement and use the DB in a variety of ways.
For example, it is possible to communicate with the
system on the basis of the SQL query language.

Apache Cassandra is a NoSQL DB that man-
ages data according to the ”wide-column store”
concept. Data is stored and queried based on a key-
value approach, whereby the data types of the stored
objects can differ. Cassandra was developed for high
scalability and reliability. Thus, the DB can manage
data volumes of several petabytes across several
thousand nodes and multiple data centers (Westoby,

Performance of Databases Used in Data Stream Processing Environments

17

2019). Cassandra supports various replication and
sharding methods in which the data is distributed to
the available nodes based on the hash sums of the
key values of the stored data. From client side, the
data can be managed using a custom query language
called ”Cassandra Query Language” (CQL), which is
similar to SQL.

Apache HBase is a non-relational DB devel-
oped as part of the Hadoop project that manages
data using Apache ZooKeeper and the Hadoop file
system HDFS. HBase can be seen as an abstraction
layer for HDFS that is intended to improve the
performance for particular record sizes and access
patterns. The processing approach is based on the
”big table” concept introduced by Google in (Chang
et al., 2008). The underlying file system, HDFS,
manages data in blocks of a fixed size (64 MB by
default). This results in an inefficient processing of
smaller data sets, which often arise in sensor data
management (our use case). HBase is optimized to
solve this problem by efficiently managing small sets
of data within large data volumes and by quickly
updating frequently changing data. An HBase cluster
consists of ”master”- and ”region”-servers. The
former coordinate data and task distribution using
ZooKeeper, the latter store data records, which are
logically divided into ”regions”. A region contains a
set of rows (DB entries) and is defined according to
the range of key values of the contained entries. The
regions are distributed across multiple servers in the
cluster to achieve high read and write performance.
Thus, both sharding and replication of the data takes
place.

MariaDB is a relational DB that emerged as a
fork from MySQL. Since the most widely used Linux
distributions have replaced MySQL as the standard
DB with MariaDB, it is now considered more im-
portant by the open source community than MySQL,
which is not covered separately here. For distributed
operation, the software extension ”Galera” is used,
which replicates all data synchronously to all nodes
of the cluster (w/o sharding). There is no hierarchy
between the servers. Multi-master operation takes
place, in which both read and write requests can be
made to all servers. A MariaDB cluster manages data
in a transaction-safe manner according to the ACID
criteria. A quorum-based communication protocol
is used to ensure consistency. This means that the
system state is always assumed to be correct when
the majority of the servers in the cluster agree. To
avoid so-called ”split-brain” situations, in which half
of the servers agree to one of two different system

states, the number of nodes should always be odd
(2n+ 1). In this case, up to n servers can fail at the
same time without any restrictions to the availability
of the cluster. If too many servers (more than n)
fail a majority decision is no longer possible and the
remaining servers will not answer any queries until at
least n+1 servers are available again.

MongoDB is a non-relational, document-oriented
DB in which data is managed in JSON-like docu-
ments. The storage scheme allows the construction
of complex, nested data hierarchies, which can, how-
ever, be managed and queried in a clear and targeted
manner on the basis of indices. Data distribution
uses sharding and replication mechanisms. A cluster
consists of three different software components: the
”Mongos”, which distribute incoming requests, the
”Shards”, which manage so-called ”replica sets” and
the ”Config” server, which manages and provides
metadata for the cluster and configuration for the
replica sets. A replica set contains a quantity of data
that is distributed to any number of shards. How
exactly the data is distributed can be freely config-
ured using the Config server and corresponding hash
functions. Incoming queries cannot be addressed
directly to the shards, but must always be forwarded
via the Mongos first.

PostgreSQL, like MariaDB, is a classic relational
DB that processes data in a transaction-safe manner
according to the ACID principles. PostgreSQL can
be used as a DB cluster on the basis of a master-slave
approach, in which read queries can be made to all
nodes and write queries exclusively to the master
node, which thus represents a single point of failure.
Multi-master operation, similar to MariaDB, can be
enabled on the basis of (commercially distributed)
third-party extensions, but was not investigated in
this work.

Redis is an in-memory DB and therefore not
really suitable for our use case. Nevertheless, it can
be assumed that Redis achieves the best throughput
and latency values in all benchmarks or is only beaten
in this respect by DBs that also feature in-memory-
processing. Redis thus provides baseline values
for the metrics under consideration and shows the
costs of persistent data storage in comparison to the
other DBs. Redis manages data as key-value pairs.
The software runs in only one thread at a time and
thus does not take advantage of modern multi-core
processors. Redis can be operated as a DB cluster
with up to 1,000 nodes, with data distributed to the
nodes by means of sharding and replication.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

18

Generator Reducer SinkkeyBy
(+ windowing)

Figure 1: Operator graph of the test application.

Hazelcast is an in-memory data grid, i.e. a dis-
tributed system in which the nodes of the cluster
combine their available RAM virtually to enable
fast data exchange for applications without using
solid-state storage. Hazelcast can thus be used as
an in-memory DB. However, as practiced in this
study, it is also possible to implement Hazelcast as an
additional abstraction layer to extend an application
with a distributed cache for DB queries. For this
purpose Hazelcast provides appropriate programming
interfaces. These are used to define how the software
can persistently store data and load existing data. The
system can be combined with any data source, such as
DBs, file systems or REST interfaces. In the course
of implementing the application logic for a given use
case, there is no longer a direct connection to the DB
system used. Instead, all calls are handled via the
interfaces of Hazelcast, which maintains the loaded
DB contents in memory for fast access. Changes are
made in main memory and asynchronously persisted
in the connected DB. Hazelcast is highly scalable and
the architecture contains no single point of failure.
A variety of components are provided to integrate
Hazelcast into software projects. Hazelcast was
combined in this research series with all DBs that
do not provide main memory-based data processing
themselves (apart from query caches): Cassandra,
HBase, MariaDB, MongoDB and PostgreSQL.

4 DATABASE ACCESS PATTERNS

In this section we explore the specific data access pat-
terns that the concepts typically used in DSP generate
to the connected system components. This will be
demonstrated here briefly with an example.

Figure 1 shows the operator pipeline of a simple
DSP application that produces data points in a gener-
ator and then groups them based on a key value con-
tained in these points. The reduce operator receives
multiple data points and combines them to a new data
point of the same object type. How the reduce op-
eration is implemented in detail is not important for
this example, but for instance, the data points could
contain integer values, which are simply summarized
by the reducer to create the resulting objects. Subse-
quently, the reduced data points are passed to a sink,

which persists the results (for example, by logging
them or writing them to a DB). This processing can
be optionally done with or without windowing.

In our example, the generator was set to emit 100
data points per second. Figure 2 shows the result-
ing throughput for the three operators per tenth of a
second when no windowing is used. Figure 3 shows
the windowed version accordingly. There is no dif-
ference visible concerning the generator, but there is
for the reducer. If no windowing is used, the re-
ducer combines two input elements at a time and then
passes them on to the sink, which receives a stable
data stream. With windowing, the reducer does not
combine two elements at a time, but all elements of
the given window and outputs only one total result for
each window (here once per second). Depending on
the key distribution in the input data stream, there are
(few) less processing steps necessary, so the through-
put of the reducer drops at the end of each window
(every one second), which explains the cyclic pattern
in the figure. Consequently, the sink operator only
receives data points when the reducer has just com-
pleted a window, cyclically at intervals of one sec-
ond and idles the rest of the time. Considering that
each of the operators may access DBs and other ex-
ternal services, it becomes clear that the resulting re-
quest patterns are strongly influenced by the concepts
of DSP. In the present example, the windowing has
a great influence on the temporal distribution of the
accesses and it also leads to an aggregation of data
points. The keyBy() function as well as the amount
of different key values in the data stream also influ-
ence the amount of elements arriving at the sink ev-
ery second and thus the number of write operations
triggered in a window. In conclusion, the access pat-
terns triggered by DSP processing are typically char-
acterized by cyclic accesses in which larger numbers
of requests are transmitted. If multiple processes, for
example windowing operations, are running in par-
allel, these patterns can overlap and possibly lead to
”chaotic” access sequences with poor resource uti-
lization and to race conditions. Since there are these
very special initial conditions for the use of DBs in
DSP applications, we decided to further investigate
their performance in a context-specific manner.

5 BENCHMARK SETUP

Our investigation included four complementary work-
loads with different DB access patterns, whose struc-
ture was based on a use case from our research
project, which is a typical real-world scenario from
the field of sensor data analysis. Within this use case,

Performance of Databases Used in Data Stream Processing Environments

19

0 100 200 300
0

5

10

15

time (s/10)

pr
oc

es
se

d
el

em
en

ts

Generator

0 100 200 300
0

5

10

15

time (s/10)

Reducer

0 100 200 300
0

5

10

15

time (s/10)

Sink

Figure 2: Throughput of the generator, the reducer and the sink per tenth of a second when executed without windowing.

0 100 200 300
0

5

10

15

time (s/10)

pr
oc

es
se

d
el

em
en

ts

Generator

0 100 200 300
0

5

10

15

time (s/10)

Reducer

0 100 200 300
0

5

10

15

time (s/10)

Sink

Figure 3: Throughput of the generator, the reducer and the sink per tenth of a second when executed with windowing.

heat maps are generated and continuously updated
based on GPS measurements of cyclists. Municipal
traffic planners from all over Germany can access the
maps using a web portal. The workloads were de-
signed to examine the performance of the DBs with
respect to specific access types (insert, update, ran-
dom read), as our previous research in (Weißbach
et al., 2020) showed that their performance usually
differs depending on these.

All experiments were performed on the server
cluster shown in figure 4, while taking care of an
equal technical baseline. Since the goal of the in-
vestigations was to find out which DB is best suited
for our use case and interacts best with the chosen
SPE Apache Flink, the implementations used the pro-
vided DB interfaces that were best suited to build a
high-performance workflow. All system components
were configured according to the official instructions
and guidelines provided by their developers. Since
the DBs follow different data management concepts
and provide different interfaces, the implementation
variants differ to some extent.

The workloads are implemented in such a way that
the DB used (in the last operator) is always the slow-
est architectural component, making it the processing
bottleneck. Consequently, the DB controls the overall
throughput of the application by means of backpres-

sure mechanisms. This means the stream processing
engine adjusts the processing rates of the individual
operators to the maximum processing speed of the
slowest operator in the processing chain.

In the following sections, the four benchmarks are
described in detail.

Workload 1: Heatmap Generation
Figure 5 shows the operator pipeline of Workload
1. The implementation is based on the production
code of the use case. So-called ”trips” serve as input
data. Each trip contains the GPS points (recorded
with a frequency of 1 Hz) of a recorded bicycle ride
as well as metadata. For the benchmark, 14,409 trips
were exported into an efficiently readable binary file,
which is read in by the ”File Source” operator. The
MapToHeatmapCell operator calculates a geographic
hash value for each GPS point included in a trip and
emits a HeatmapCell object that assigns the number
of crossings made to this hash value (initial value: 1).
The data stream is grouped in the KeyByCellIndex
operator using the geographic hashes before the
HeatmapAggregation operator determines the total
number of crossings and updates the corresponding
value in the HeatmapCell object. The HeatmapEx-
porter stores the hash value, the crossings count, and
an event timestamp in the DB. Both the geographic

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

20

3 physical servers (24 core Intel Xeon Gold 6136, 354 GB RAM (DDR4), 500 GB NVME-SSD memory, 10GbE, Ubuntu 18.04.2 LTS)

Container

Monitoring:
Prometheus, Grafana,

Graphite

Docker Swarm

Container Container

…
DB DB

Container Container

Hadoop Hadoop …
SPE SPE

Figure 4: Benchmark deployment.

File
Source

MapTo
HeatmapCell

KeyBy
CellIndex

Trip HeatmapCell

Heatmap
Aggregation

Heatmap
Exporter

HeatmapCellHeatmapCell
DB

(windowing)

Figure 5: Operator graph for workload 1.

DBReader

WindowProcessing

DataManagementData (no windowing)

Data Data
DB

(windowing)

DB

Figure 6: Operator graph for workload 2.

hash and the timestamp are used as indexes. This
benchmark primarily provides information about
the application’s write performance during random
access.

Workload 2: Heatmap Copy
The second workload also examines the application’s
write performance, but with sequential access be-
havior. As shown in figure 6, an already existing
heatmap DB is read from a (PostgreSQL) source
DB and copied to the target DB. In total, the source
contains 418,239,564 entries.

Workload 3: Realistic Queries
Workload 3, shown in figure 7, examines the perfor-
mance of the system in querying the stored heatmap
information. For this purpose, a visualization tool
of the research project was modified to export all
DB queries into an efficiently readable binary data
format. The resulting file is used by the Flink

FileSource

WindowProcessing

DataManagementQueries (no windowing)

 Queries Queries

DB

(windowing)

Figure 7: Operator graph for workloads 3 and 4.

application as a source dataset. It contains 1,292,600
entries generated by six users over a 10-hour usage
period. The dataset thus contains realistic query
patterns, which include a lot of duplicate queries, as
the users repeatedly viewed the same map sections in
the same resolution while working with the heat map.
The benchmark thus examines the performance of
the application in random data access, whereby an ef-
ficient data caching yields large performance benefits.

Workload 4: Random Queries
Workload 4 is similar to Workload 3, but the input
data set contains a randomly generated query pattern
without any duplicates. The benchmark examines the
read performance of the architecture when random
access is used, whereby data caching should not
provide notable performance benefits.

6 BENCHMARK RESULTS

In total, we performed 152 experiments, in each of
which the processing time, the achieved throughput,
the end-to-end processing latency, the 95th percentile
of the processing latency, the DB access latency, the
95th percentile of the DB access latency, the CPU
utilization, the RAM utilization, the network utiliza-
tion as well as the persistent storage utilization re-
sulting from the experiments were measured. Due to
the amount of data and resulting diagrams, only those
metrics will be discussed in the following from which
relevant statements about the performance of the con-
sidered systems can be derived or which show note-
worthy peculiarities. Throughput values mentioned or
shown in the diagrams are mean values.

6.1 Preliminary Remarks

At this point, it should be noted once again that this
is not a ”classical” DB benchmark. The goal of the
study was to determine how good the tested DBs per-
form when they are used in a DSP environment and to
what extent they are suitable for sensor data process-
ing use cases. Consequently, the results presented in
the following provide information about the suitabil-

Performance of Databases Used in Data Stream Processing Environments

21

ity of the systems for this application area, but are not
representative for other fields.

6.2 Workload 1: Heatmap Generation

The diagram on the left in figure 8 shows the
throughput achieved when processing workload 1
with and without windowing. As expected, the Re-
dis in-memory DB achieves the highest throughput
(270,479 tuples/s). When processing the data with-
out windowing, the DBs achieved higher throughput
values when Hazelcast was used than when they were
operated individually. The effect can be explained by
the fact that Hazelcast already acknowledges the write
operations as successfully performed when the data
has been stored in main memory. The data is then
transferred to the underlying DBs asynchronously.
Hazelcast thus acts as a write buffer here, which is
beneficial for the write throughput. It is also note-
worthy that Hazelcast achieves the highest throughput
with MariaDB (242,013 tuples/s), as exactly this DB
shows up the lowest throughput in standalone mode
(29,372 tuples/s). Hazelcast writes new data to the
connected DB cyclically every 5 seconds. Apparently,
the Galera-based MariaDB cluster copes much better
with this access pattern than with the original access
pattern of the streaming application. From this it can
be concluded that by using Hazelcast (or another in-
memory data grid) for buffering, a change in the write
pattern can be achieved, which can lead to higher pro-
cessing performance in DSP, since the pattern created
by the in-memory data grid is one that the DB can
better handle.

If windowing is used, the measurement results of
the system compositions with Hazelcast vary signif-
icantly. MongoDB even achieved worse throughput
values than in independent operation. The cause of
this behavior is the overlapping of the cyclic processes
of the DSP processing with the also cyclically per-
formed data write-out through Hazelcast. This results
in an inefficient use of resources and sometimes full
utilization of the hardware.

Apart from the use of Hazelcast, PostgreSQL
(139,552 tuples/s without windowing, 110,905 tu-
ples/s with windowing), HBase (135,145 tuples/s w/o
w., 108,003 tuples/s w/ w.) and MongoDB (120,226
tuples/s w/o w., 82,950 tuples/s w/ w.) delivered the
best measurement results in both test variants. Cas-
sandra (41,626 tuples/s w/o w., 38,890 tuples/s w/
w.), Ignite (35,472 tuples/s w/o w., 33,780 tuples/s
w/ w.) and, as already mentioned, MariaDB (29,372
tuples/s w/o w., 32,363 tuples/s w/ w.) were far be-
hind. The comparatively low data throughput of Cas-
sandra is noteworthy to the extent that this DB de-

livered the best measured values when inserting and
updating small binary data sets in our previous study
(presented in (Weißbach et al., 2020)). This makes
clear that the results of these investigations cannot be
transferred to the management of typed data consid-
ered here.

6.3 Workload 2: Heatmap Copy

When copying the heatmap data, all DBs achieved
higher throughput values than in the heatmap gener-
ation with and without windowing, as the right dia-
gram in figure 8 shows. Accordingly, our measure-
ment results show that the processing latencies were
also lower for all DBs. This is due to the fact that the
data was processed sequentially, whereas the previ-
ous workload used random DB accesses. In addition,
only inserts (and no updates) were performed in this
benchmark.

Again, this access pattern shows large perfor-
mance differences in terms of processing with and
without windowing. As expected, Redis shows the
highest throughput and lowest latency values for
both variants. Omitting Redis, if no windowing is
used, the highest throughput values can be achieved
with Hazelcast for this experiment. The in-memory
data grid performed best in combination with HBase
(338,532 tuples/s). With windowing, a similar behav-
ior was observed with one exception (PostgreSQL).
The best measurement result in terms of throughput
was achieved by the combination of Hazelcast and
MariaDB (184,812 tuples/s).

When looking at the DBs in individual use, Post-
greSQL (189,542 tuples/s), MongoDB (133,005 tu-
ples/s) and HBase (106,869 tuples/s) generated the
highest throughput values without windowing in the
experiment variant. With windowing, the ranking
was quite similar: PostgreSQL (141,409 tuples/s),
HBase (120,690 tuples/s), MongoDB (87,379 tu-
ples/s). MariaDB, Cassandra and Ignite achieved
comparatively low throughput values.

6.4 Workload 3 and 4: Realistic and
Random Queries

On the left, Figure 9 shows the throughput achieved
when processing real DB queries, and on the right, the
result for the randomized queries.

Two characteristics catch the eye immediately
when looking at the diagrams: Contrary to expecta-
tions, Redis did not achieve the highest measured val-
ues, and the results of the relational DBs PostgreSQL
and MariaDB stand out clearly. Both observations are
attributable to the number of accesses required for the

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

22

without windowing with windowing
0

50

100

150

200

250

300

350

400

·103
41

.6
27

38
.8

90

29
.3

72

32
.3

63

1.
2
·1

05

82
.9

50

1.
4
·1

05

1.
11
·1

05

1.
35
·1

05

1.
08
·1

05

2.
7
·1

05

2.
66
·1

05

35
.4

72

33
.7

80

2.
13
·1

05

1.
53
·1

05

2.
42
·1

05

1.
15
·1

05

2.
07
·1

05

68
.9

11

2.
11
·1

05

1.
67
·1

05

2.
03
·1

05

1.
48
·1

05

av
er

ag
e

th
ro

ug
hp

ut
in

tu
pl

es
/s

Cassandra MariaDB MongoDB PostgreSQL

HBase Redis Ignite H+Cassandra

H+MariaDB H+MongoDB H+PostgreSQL H+HBase

without windowing with windowing
0

200

400

600

800

1.000

1.200

1.400

1.600

1.800
·103

53
.4

74

38
.8

48

52
.9

34

46
.8

561.
33
·1

05

87
.3

791.
9
·1

05

1.
41
·1

05

1.
07
·1

05

1.
21
·1

05

1.
11
·1

06

4.
81
·1

05

42
.5

01

40
.5

50

2.
12
·1

05

1.
74
·1

05

2.
52
·1

05

1.
85
·1

05

2.
26
·1

05

1.
17
·1

05

2.
08
·1

05

1.
38
·1

053.
39
·1

05

1.
72
·1

05

av
er

ag
e

th
ro

ug
hp

ut
in

tu
pl

es
/s

Cassandra MariaDB MongoDB PostgreSQL

HBase Redis Ignite H+Cassandra

H+MariaDB H+MongoDB H+PostgreSQL H+HBase

Figure 8: Throughput achieved by the investigated databases for workload 1 (left) and workload 2 (right).

without windowing with windowing
0

10

20

30

40

50

60

70

80

·103

3.
44

5

3.
55

9

55
.1

35

40
.8

42

1.
19

3

1.
19

3

22
.5

27

18
.1

38

2.
86

5

2.
71

5

4.
62

6

4.
61

5

3.
72

3

3.
66

0

1.
51

5

1.
52

0

1.
64

6

1.
34

1

1.
75

1

1.
78

2

1.
27

8

1.
37

5

1.
67

2

1.
68

9

av
er

ag
e

th
ro

ug
hp

ut
in

tu
pl

es
/s

Cassandra MariaDB MongoDB PostgreSQL

HBase Redis Ignite H+Cassandra

H+MariaDB H+MongoDB H+PostgreSQL H+HBase

without windowing with windowing
0

10

20

30

40

50

60

70
·103

11
.4

68

11
.6

04

13
.7

27

12
.3

64

5.
34

3

5.
30

0

47
.2

37

39
.6

50

13
.1

36

11
.5

39

20
.3

11

18
.6

39

15
.6

07

12
.7

87

8.
08

7

7.
95

9

8.
05

7

6.
98

5

8.
15

6

7.
95

9

8.
08

7

7.
77

5

8.
25

7

7.
80

3

av
er

ag
e

th
ro

ug
hp

ut
in

tu
pl

es
/s

Cassandra MariaDB MongoDB PostgreSQL

HBase Redis Ignite H+Cassandra

H+MariaDB H+MongoDB H+PostgreSQL H+HBase

Figure 9: Throughput achieved by the investigated databases for workload 3 (left) and workload 4 (right).

data queries in particular. Each of the implementa-
tion variants was adapted to the conditions of the use
case and implemented and configured on the basis
of the official documentation and best practice pro-
cedures. However, the interfaces of the DBs differ
greatly. For example, most of the systems studied op-
erate on a key-value data management basis, where
access to multiple attributes usually requires multiple
DB queries. In addition, it is not possible in all DBs
to request multiple entries with a single query. With
relational DBs, which usually store individual entries

(table rows) as a contiguous data set, all required at-
tributes can be loaded with one read operation and
multiple queries can be made. This leads to a signifi-
cant reduction of the DB queries, which is the reason
for the performance advantage of relational DBs.

A comparison of the two diagrams also makes
clear that the high processing performance of Mari-
aDB in the first benchmark (55,135 tuples/s w/o w.,
40,842 tuples/s w/ w.) can be attributed to the effi-
cient caching mechanisms of the DB. In the second
experiment, MariaDB’s throughput dropped signifi-

Performance of Databases Used in Data Stream Processing Environments

23

cantly (13,727 tuples/s w/o w., 12,363 tuples/s w/ w.).
This collapse was not visible with PostgreSQL. Quite
the contrary, the DB even achieved higher through-
put values for the randomized queries. A possible
explanation for this is the ”pg prewarm” module that
PostgreSQL uses to refill the data cache as quickly as
possible after a DB crash or restart. The module fills
the cache with information even before it has been
queried. This results in a significant advantage in the
processing of randomized queries, even though they
do not contain any duplicates.

Apart from the relational DBs, the main memory-
oriented DBs Redis and Ignite performed best in
terms of throughput, followed by Cassandra and
HBase. MongoDB was the only DB that achieved
worse throughput when used individually than when
combined with Hazelcast. The use of Hazelcast does
not provide significant benefits for the present use
case. The additional processing steps required to load
data into memory are reflected in comparatively low
throughput values. Since the DBs under consideration
also feature main memory-based query caches them-
selves, they can achieve low response times. Hazel-
cast’s response times could be optimized by import-
ing the entire DB into main memory at the beginning.
In our setup, the caching is just done when the data
is accessed. However, due to the size of the DB, this
would result in a massive increase in the startup time
of the system, which would be undesirable for our use
case in production operation, especially during recov-
ery after the occurrence of an error.

6.5 Summary and Further Results

With regard to the benchmarks performed and the fur-
ther metrics recorded (but not illustrated here), the
following findings and observations can be noted:

• In the results presented, the implementation vari-
ants without windowing mostly achieved higher
throughput and lower latency values. This is due
to the structure of our benchmarking application.
It should not be wrongly concluded from this that
windowing generally slows down data processing.

• The use of Hazelcast results in higher throughput
and more stable processing for write access with-
out windowing in combination with most DBs
(except PostgreSQL). This can be explained by
the temporary data buffering in memory, which
decouples the writing of new data from the phys-
ical fixed-memory access. However, if this effect
is intended to be utilized in an exactly-once appli-
cation, it is necessary to introduce safeguards that
ensure proper adherence to the semantics in the
event of Hazelcast failures.

• Using Hazelcast (or another in-memory data grid)
as a write buffer leads to a change in DB query
patterns. In some cases (see MariaDB), this
can contribute to a significant increase in perfor-
mance, if it results in an access pattern that is
more suitable for the used DB than the one orig-
inally generated by the application logic. In con-
trast, PostgreSQL shows that there can be an in-
verse behavior, in which a DB is slowed down by
Hazelcast. Consequently, whether a performance
improvement can be achieved through the use of
Hazelcast must always be investigated on a use-
case- and access-pattern-specific basis.

• In terms of read access there were almost no ad-
vantages from using Hazelcast. The data sets used
in sensor data processing are usually of small size,
although they are queried en masse. Considering
that Hazelcast utilized a disproportionately large
amount of memory in our tests (significantly more
than the size of the stored data sets and also more
than Redis required), it seems more appropriate
to operate the DBs under consideration without
the additional caching layer and to optimize their
own caching instead (with the help of appropriate
hardware resources).

• MariaDB had a very low CPU load and a high net-
work load while writing data in standalone mode.
This suggests that the overhead resulting from the
synchronous replication operations of the DB is
the cause of the low throughput values. When
combined with Hazelcast, resource utilization was
more in line with the other DBs. The collec-
tion and aggregation of write operations, which
are then performed in fewer DB queries (trans-
actions), leads to significantly better performance
for the DB.

• PostgreSQL exhibited even higher network uti-
lization than MariaDB during writes. This can
also be explained by the data replication, which,
however, is done asynchronously and thus has less
of an impact on the system’s performance.

• HBase generated much greater disk usage than
the other DBs studied in all experiments. Post-
greSQL showed similar behavior, but only for
write queries and to a lesser extent. It can there-
fore be assumed that the performance of these sys-
tems is more dependent on the speed of the solid-
state storage used than that of the other systems,
which have fewer memory accesses.

• The in-memory DB Redis showed much higher
throughput values than the other DBs, especially
when writing data. This illustrates the massive
speed advantages resulting from the use of main

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

24

memory for data processing. In the presented in-
vestigations, modern NVME SSDs were used as
data storage, which achieve a comparatively high
data throughput. It can be assumed that the gap
between Redis and the other DBs would be much
greater if classic hard disks had been used, which
are still the standard storage solution in most data
centers. This illustrates how important it is to
build a suitable storage hierarchy of fast fixed stor-
age and large RAM-based DB caches.

7 LESSONS LEARNED

While working on these topics, we were frequently
challenged with various architectural design and com-
ponent configuration problems that needed to be
solved in order to achieve high processing perfor-
mance. In the following, we present some approaches
that have been helpful in this regard:

• Architecture Components: To build a highly
available, fault-tolerant data stream processing
architecture, we recommend the use of Apache
Flink, Apache Kafka (as a buffer for incoming
messages), and a DB selected according to the re-
quirements of the use case. For ease of admin-
istration and dynamic scalability, we also recom-
mend using Docker and Kubernetes. In order to
run Kafka and Flink in a highly available man-
ner without a single point of failure, the use of
ZooKeeper is necessary.

• Move Analyses to the DSP Application: Data
analysis is often performed in DBs, as they pro-
vide appropriate functions and query types for this
purpose. However, SPEs are also designed to ana-
lyze large amounts of data. A higher performance
can often be achieved by shifting complex analy-
sis steps to the DSP application. This allows the
engine’s scheduler to work more efficiently and
backpressure mechanisms to operate more effec-
tively than when DB queries are triggered in op-
erators, running for indefinite and varying periods
of time.

• Optimize Hardware: Especially for applications
with many random read accesses, the storage ar-
chitecture should be optimized. HDDs should be
replaced with fast SSDs and sufficient main mem-
ory should be provided for request caches.

• Fundamental DB Optimization: In case of DB
performance problems, the classical optimization
strategies should be applied first. For example,
indexes should be created on regularly requested

attributes. Depending on the DB, views or contin-
uous queries can be used for frequently requested
data to ensure that the data is not just collected at
the time of the incoming query.

• Data Locality: In DBs that support sharding, data
distribution can often be influenced by configura-
tion. In the (Flink) stream processing application,
it is also possible to control how data streams are
distributed across operators that are executed in
parallel. Based on these configuration options, it
is possible to install instances of the SPE and DB
on the same physical machine and to distribute the
data in a way that only local accesses are made (on
the same server). This reduces network traffic and
processing latencies.

• Reduce (Concurrent) Accesses: If high laten-
cies occur in DB queries due to a high number
of (concurrent) accesses, it is advisable to reduce
the queries. Our analyses in this study and in
(Weißbach et al., 2020) have shown that most DBs
work more efficiently when multiple records are
requested in a single query than when using indi-
vidual queries for each record. One approach is to
move competing queries to an upstream operator
that is not executed in parallel and that serves as
a data source for the downstream operators. Win-
dowing can be used to combine the queries so that
more data is requested per access. This results in
a lower overhead. The use of sharding with ap-
propriate data distribution can further ensure that
the request load is distributed among different DB
servers.

• Operate Multiple Database Systems: Our anal-
yses show that the choice of the DB should be
made depending on the circumstances of the par-
ticular use case. In some cases, widely differing
access patterns may occur and different types of
data records need to be managed. If this results
in conflicting requirements and the data allows
an independent administration, it can increase the
overall performance of the architecture to main-
tain different data sets in different DB systems.
This optimization step should only be taken if it
is otherwise not possible to achieve sufficient per-
formance, as it increases the complexity of the ar-
chitecture.

• Replaceable DB: If several DBs are to be tested
or to be integrated, it is useful to provide a central
interface for data management in the software
implementation, through which all queries can be
handled. For each individual DB, a corresponding
implementation is then made using the interface.

Performance of Databases Used in Data Stream Processing Environments

25

This avoids the need to change huge parts
of the implementation when replacing the DB.

8 SUMMARY

At the beginning of the paper, we showed that spe-
cific access patterns arise when DBs are integrated
into DSP applications. Based on this knowledge,
we’ve investigated which DBs are well suited for
which types of access and how well they interact with
Apache Flink for sensor data processing use cases.
We also examined the impact of windowing mecha-
nisms on data processing and the usefulness of Hazel-
cast, which we used as a data cache and write buffer.

The results indicate that the suitability of DBs
depends heavily on the access pattern that is typi-
cal for the particular use case. Benchmarking realis-
tic heatmap queries, for example, showed throughput
differences of a factor up to 46.2 (MariaDB: 55,135
tuple/s, MongoDB: 1,193 tuple/s). Therefore, we can-
not make a general recommendation for a certain DB,
but instead advise to determine the most frequent ac-
cess pattern of the considered use case and to make
the choice of DB dependent on this.

The use of Hazelcast as a data cache hardly
brought any advantages for read access with regard to
our use case, but a higher throughput could often be
achieved for write access. Whether the use of Hazel-
cast is beneficial or not depends on a large number of
factors that influence each other and should therefore
always be examined on a use-case-specific basis.

Finally, we have presented a set of recommenda-
tions for the integration of DBs into DSP applica-
tions, based on knowledge that we developed during
our analyses. These can help to avoid implementa-
tion problems from the very beginning and to achieve
quick optimization gains in case the implementation
does not meet the performance requirements given by
the use case.

8.1 Future Work

We found that the use of Hazelcast caused changes
in the access patterns to the DB systems, which had
positive or negative consequences for throughput de-
pending on the particular database used. In further
research, we plan to investigate this component inter-
action further to determine if higher processing per-
formance can be achieved for specific access patterns
through the targeted use of in-memory data grids. It
may also be possible to achieve a (partial) decoupling
of the database access patterns from the cyclic pro-
cesses in DSP with this approach.

ACKNOWLEDGEMENTS

This work is financed by the German Federal Ministry
of Transport and Digital Infrastructure (BMVI) within
the research initiative mFUND (FKZ: 19F2011A).
We would like to thank Hannes Hilbert, who pro-
vided us with great support in the implementation
and execution of the experiments. Finally, we would
like to thank the Center for Information Services and
High Performance Computing (ZIH) for providing
the servers used for the measurements.

REFERENCES

Abramova, V. and Bernardino, J. (2013). Nosql databases:
Mongodb vs cassandra. In Proceedings of the In-
ternational C* Conference on Computer Science and
Software Engineering, C3S2E ’13, pages 14–22, New
York, NY, USA. ACM.

Ahamed, A. (2016). Benchmarking top nosql databases.
Master’s thesis, Institute of Computer Science, TU
Clausthal.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gru-
ber, R. E. (2008). Bigtable: A distributed storage sys-
tem for structured data. ACM Transactions on Com-
puter Systems (TOCS), 26(2):4.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R.,
and Sears, R. (2010). Benchmarking cloud serving
systems with ycsb. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA. Association for Com-
puting Machinery.

Fiannaca, A. J. (2015). Benchmarking of relational and
nosql databases to determine constraints for querying
robot execution logs [final report].

Klein, J., Gorton, I., Ernst, N., Donohoe, P., Pham, K., and
Matser, C. (2015). Performance evaluation of nosql
databases: A case study. In Proceedings of the 1st
Workshop on Performance Analysis of Big Data Sys-
tems, PABS ’15, pages 5–10, New York, NY, USA.
ACM.

Nelubin, D. and Engber, B. (2013). Ultra-high performance
nosql benchmarking: Analyzing durability and perfor-
mance tradeoffs. White Paper.

Niyizamwiyitira, C. and Lundberg, L. (2017). Performance
evaluation of sql and nosql database management sys-
tems in a cluster. International Journal of Database
Management Systems, 9:01–24.

Stonebraker, M., Çetintemel, U., and Zdonik, S. (2005).
The 8 requirements of real-time stream processing.
SIGMOD Rec., 34(4):42–47.

Weißbach, M., Hilbert, H., and Springer, T. (2020). Perfor-
mance analysis of continuous binary data processing
using distributed databases within stream processing
environments. In CLOSER, pages 138–149.

Westoby, L. (2019). Apache cassandra™: Four interesting
facts. letzter Zugriff 03. Juni 2021.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

26

