
MDD4REST: Model-Driven Methodology for Developing RESTful
Web Services

Amirhossein Deljouyi and Raman Ramsin a
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

Keywords: Model-Driven Development, Domain-Driven Design, Web Engineering, REST Architectural Style, Model
Transformation, Automatic Code Generation.

Abstract: Web services based on the REpresentational State Transfer (REST) architectural style have become
increasingly popular in recent years. REST provides several desirable features, such as simplicity and
scalability; however, developing RESTful web services involves repetitive and trivial tasks that can be
avoided through automatic code generation. Model-Driven Development (MDD) can be used to this aim, as
it facilitates the construction of complex applications and can provide automatic code generation through
transformations of models. This paper presents MDD4REST as a model-driven methodology, consisting of a
framework and a process, for developing RESTful web services. MDD4REST takes advantage of Domain-
Driven Design (DDD) to produce a rich domain model for web services. It provides an effective method for
designing RESTful web services using modeling languages, and supports automatic code generation through
transformation of models. In addition, MDD4REST has the capability to support modern web architectures
and patterns, such as Microservice, Event-Driven, and CQRS.

1 INTRODUCTION

Offering software in the form of web services has
gained immense popularity due to the evolution of
cloud architectures. REpresentational State Transfer
(REST) comprises a set of rules and practices that
provide simple and comprehensible APIs, clear
representational structures, and scalable services for
use in web services engineering. Due to its simplicity
and scalability, the REST architecture has become
increasingly popular among web-service developers.
Among the architectures used in web service design
(REST, WSDL, SOAP), REST is the most common;
it has significantly changed how systems are
developed based on web services (Fielding and
Taylor, 2000; Mulloy, 2013; Ong et al., 2015;
Richardson and Ruby, 2008; Rodriguez, 2008).

Model-Driven Development (MDD) is a software
engineering approach in which models are construed
as primary artifacts of the software development
process, from requirements engineering to analysis,
design, and implementation. MDD facilitates the
construction of complex applications and supports
automatic code generation through transformation of
models (Hailpern and Tarr, 2006; Siegel, 2014;

a https://orcid.org/0000-0003-1996-9906

Truyen, 2006); its potential has therefore been
recognized in designing RESTful web services by
using modeling languages (Zolotas et al., 2017).

On the other hand, Domain-Driven Design
(DDD) is an effective method for producing a rich
domain model for web services by focusing on the
problem domain. DDD can take advantage of MDD
best practices in order to develop a system based on
models (Evans and Evans, 2004).

Web services can address functional or non-
functional requirements. Functional requirements can
be expressed through visual models or text, based on
which the domain model is formed. Non-functional
requirements can be addressed by designing
appropriate architectures. Architectural styles and
patterns, including Microservice, Event-Driven, and
CQRS, help enhance the scalability and performance
of web services (Fowler, 2002, 2017; Greg Young,
2010; Newman, 2015; Rademacher et al., 2017).

Despite their merits, existing MDD methods for
web services engineering do not adequately cover the
web services development process and fail to produce
all of its artifacts. Also, they fail to support high-level
modeling at an adequately abstract level, and fail to
provide adequate complexity management features.

Deljouyi, A. and Ramsin, R.
MDD4REST: Model-Driven Methodology for Developing RESTful Web Services.
DOI: 10.5220/0011006300003119
In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2022), pages 93-104
ISBN: 978-989-758-550-0; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

93

We propose a model-driven methodology, which
we have chosen to call MDD4REST, for developing
RESTful web services. Modeling levels and model
transformation rules are precisely defined in
MDD4REST, and DDD is applied for producing the
domain model. MDD4REST has been evaluated by
applying four different categories of criteria in order
to evaluate its different aspects. Furthermore, it has
been empirically validated through application to a
web development project in a software development
company; this case study has demonstrated the degree
of applicability of the proposed methodology, and has
helped identify its strengths and weaknesses.

The rest of this paper is structured as follows:
Section 2 provides an outline of the related works;
Section 3 presents an overview of MDD4REST;
modeling levels and transformation rules are
explained in Section 4; Section 5 presents a process
for applying the MDD4REST framework; Section 6
provides the evaluation results; and Section 7 presents
the conclusion and a discussion of the future work.

2 RELATED WORKS

In order to elicit the target methodology, the different
facets of an MDD methodology for developing
RESTful web services have been studied. In this
section, existing approaches are briefly reviewed,
along with three high-level frameworks for MDD and
web engineering.

2.1 Existing MDD/DDD Approaches
for Developing RESTful Web
Services

Valverde and Pastor have produced a methodology by
extending the OO-Method methodology with a basic
meta-model for generating RESTful web services
(Valverde and Pastor, 2009). Schreier has introduced
meta-models for modeling structural and behavioral
aspects of RESTful applications (Schreier, 2011).
Haupt et al. have presented a meta-model for REST
constraints (Haupt et al., 2014). Ed-Douibi et al. have
proposed a method for developing RESTful web
services by taking advantage of MDD and combining
REST principles with the Eclipse Modeling
Framework (EMF) (Ed-Douibi et al., 2015); EMF
allows the construction of meta-models using the
Ecore language (Steinberg et al., 2008). Ed-Douibi et
al. have also addressed various challenges of RESTful
web services development, including testing and
integration of APIs, through MDD (Ed-Douibi, 2019).

Zolotas et al. have proposed a methodology for
generating RESTful web services based on software
requirements (Zolotas et al., 2017); in this approach,
informal specifications or use-cases are used for
modeling functional requirements, and behavioral
requirements are modeled in activity diagrams or
storyboards. Gonçalves and Azevedo have introduced
a model-driven approach in which a DSL is proposed
for developing OpenAPI specifications; this enables
developers to utilize the first-design approach,
focusing on the definition of resources and
relationships (Gonçalves and Azevedo, 2018). Koren
and Klamma have developed a method for creating
front-end pages from OpenAPI specifications (Koren
and Klamma, 2018). Hernandez-Mendez et al. have
proposed an MDD method for consumption of
RESTful APIs in single-page applications, which
aggregates RESTful APIs through a query service
meta-model (Hernandez-Mendez et al., 2018).

Jegadeesan has proposed an approach for
generating web services of various granularities in
which requirements are obtained through DDD
(Jegadeesan, 2009). Kapferer has introduced a DDD-
driven approach for strategic design of systems and
decomposition of web services (Kapferer, 2020).
Terzić et al. have addressed the challenges of
RESTful web services in a microservice architecture
(such as routing, and microservice auto-discovery and
registering) (Terzić et al., 2018).

2.2 High-level Process Frameworks for
MDD and Web Engineering

We have used three high-level process frameworks as
bases for developing our proposed methodology;
these frameworks are briefly introduced in this
section.

Babanezhad et al. have proposed a high-level
process framework consisting of process patterns for
developing web-based systems (Babanezhad et al.,
2010). By applying abstraction to existing MDD
methodologies, Asadi et al. have devised a generic
framework of process patterns for MDD (Asadi et al.,
2010). Blake has provided a lightweight framework
for development of web services (Blake, 2006).

3 OVERVIEW OF PROPOSED
MDD4REST METHODOLOGY

As mentioned before, MDD4REST consists of two
parts, a modeling framework (shown in Figure 1) and
a process.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

94

L
ev

el
 2

: P
IM

L
ev

el
 3

: P
S

M
L

ev
el

 4
: P

S
M

B
ac

ke
nd

M

od
el

s

L
ev

el
 5

: A
rt

if
ac

ts

Legend

Model Document

PrimaryTest Document Front-EndAPI

Static Model
Dynamic-
Security
Model

Configuration

Model
Service
Model

Deployment

Model

OAI model
Sculptor

Model
JDL model

Btdesign Files JDL FilesYAML Files

Front-EndTestServer &
Client APIs Back-End

API
Specification

ArtifactTransformation

Automatic
Transformation

Semi-Automatic
Transformation

M
Manual

Transformation

L
ev

el
 1

: C
IM

Linked
Ontology

Computation Independent Model Ontologies

Requirements

Dynamic
Ontology

Static
Ontology

Activity
Storming

Model

A
S

CIM DSL

D
om

ai
n

M
od

el

S

A

A

S

S

S S

A

A

A

A

A

S

MM

Figure 1: MDD4REST modeling framework.

The modeling framework supports modeling the
target web system. It consists of four levels of
abstraction and was defined based on the results of
the literature review. A fifth level houses the artifacts
of the end product (components of the generated
system). The framework provides a set of model
transformations that supports semi-automatic
construction of target models from source models,
producing the detailed design of RESTful web
services. All modeling levels are thoroughly
described in Section 4. A process was also proposed
for applying the MDD4REST framework that will be
explained in Section 5.

Software Architectures. The MDD4REST
framework supports various architectural styles and
patterns for complex web applications. The system
generated through applying the MDD4REST
framework will be based on an onion architecture.
Code generators support architectural styles such as
Microservice and Event-Driven. Also, command and
query concepts are split from the first level to support
more advanced patterns, including CQRS.

Tool Support. Several tools have been developed to
facilitate using the MDD4REST framework; these
tools are depicted in Figure 2: 1) mdd4rest-annotater,
which is mainly based on BRAT (Stenetorp et al.,

MDD4REST: Model-Driven Methodology for Developing RESTful Web Services

95

2012), annotates software requirements and generates
the static ontology; 2) mdd4rest-activity-storming,
which is based on Eugenia (Kolovos , 2017), provides
a modeling tool and meta-model for exploring,
visualizing, designing, and formalizing the business
domain; 3) mdd4rest-generator, which is mainly
based on the Eclipse Epsilon family of model
transformation and management languages
(including ETL, EOL, EML, and EGL), provides a set
of transformation rules for generating models; 4)
mdd4rest-cli is a command-line interface for
facilitating the use of the mdd4rest-generator; 5)
mdd4rest-metamodels contains a set of EMF meta-
models for the framework's modeling levels. All the
projects for MDD4REST, and the case study’s
artifacts, are available online (Deljouyi, 2021).

Figure 2: MDD4REST Framework Tools.

4 MDD4REST FRAMEWORK

This section introduces the four modeling levels of
the MDD4REST framework. Examples of the models
produced are presented in Section 6.1 (Case Study).

4.1 Level 1: Computation-Independent
Model (CIM)

At level 1, system requirements are identified and
modeled, and the system’s domain model is thus
formed. Two approaches are used at the first level for
domain modeling: textual requirements specifications
and activity storming models.

4.1.1 Textual Requirements Specifications

Due to the fact that textual specifications of the
requirements are prevalently utilized in software
development projects, they are good sources for

structural modeling of a system. mdd4rest-annotator
can annotate textual requirements and parse
annotations into a static ontology (Figure 3).

Figure 3: An example of textual requirements specifications
and annotations.

4.1.2 Activity Storming Diagrams

For behavioral modeling, we have developed a new
diagram named “Activity Storming” via combining
UML Activity Diagram elements with concepts taken
from Event Storming (Brandolini, 2013). Activity
diagrams provide formalization, and Event Storming
covers DDD concepts. Activity Storming thus
provides both formalization and support of DDD
concepts. In addition, our mdd4rest-activity-storming
tool comes as an Eclipse plugin to explore, visualize,
and design Activity Storming models. The elements
of Activity Storming are shown in Figure 4.

Figure 4: Elements of Activity Storming.

4.1.3 Ontologies

MDD4REST incorporates three ontologies regarding
different views of the system: 1) Static Ontology,
representing a structural view; 2) Dynamic Ontology,
representing a dynamic view; 3) Linked Ontology,
combining structural and dynamic views. mdd4rest-
generator transforms activity storming models into a
dynamic ontology, and then aggregates the static and
dynamic ontologies to produce a linked ontology.
Ultimately, mdd4rest-generator transforms the
linked ontology into a YAML-based Domain-
Specific Language (DSL).

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

96

4.2 Level 2: Platform-Independent
Model (PIM)

The focus of level 2 is on the REST architecture and
contains resource-oriented concepts. Two models are
produced at this level: Static and Dynamic-Security
models. At this level, mdd4rest-generator semi-
automatically transforms the YAML-based DSL
produced at level 1 into the models of level 2. Figure
5 shows the architecture of this level. As Static and
Dynamic models have common elements, EOL rules
are developed for synchronizing them.

Figure 5: PIM’s architecture.

4.3 Level 3: Platform-Specific Model
(PSM) of the Architecture

Levels 3 and 4 are both platform-specific. At level 3,
the architecture of the system will be determined;
PIM models are merged into a service model, and the
user can create deployment and configuration models
manually. There are two types of architectural views
at the third level: intra-application and inter-
application. Intra-application represents the
architecture of each application, which may be simple
or CQRS. Inter-application describes the architecture
between the applications, as several microservice
applications can comprise the system. Figure 6 and
Figure 7 demonstrate intra-application and inter-
application views, respectively.

4.4 Level 4: Platform-Specific Model
(PSM) for Code Generators

Level 4 contains models and DSLs for code
generators, namely Jhipster, Sculptor, and OpenAPI.
mdd4rest-generator transforms level-3 models into
code generator models, and DSLs are then generated

by applying EGL rules on these models. Code
generators use these level-4 products to generate the
final artifacts of the target system (residing at level 5).

Figure 6: CQRS Intra-Application view.

Figure 7: Inter-Application architecture view.

5 MDD4REST PROCESS

In order to define an MDD methodology, a process
must be defined for applying the modeling
framework. The process that we propose (shown in
Figure 8) consists of four phases: Start-up,
Construction, Transition, and Maintenance. The
process is primarily based on the Web Engineering
Process Framework of (Babanezhad et al., 2010). The
phases are performed serially, but they are broken
down into stages that are executed iteratively.

The goal of the Start-up phase is to acquire
knowledge about the target system and perform the
essential activities for initiating the project.

The Construction phase is aimed at developing
the target system in several iterations, and consists of
three coarse-grained stages: Analysis, Model-Driven
Development, and Implementation. Construction is
where modeling is performed based on the different
levels of the MDD4REST framework. In the Analysis
stage (level 1), the functional and non-functional
requirements of the system are elicited, estimation
and prioritization are performed, and higher-priority
requirements are selected for the iterations.

MDD4REST: Model-Driven Methodology for Developing RESTful Web Services

97

Planning &
Process

Selection

Chartering

Domain
Modeling

Automatic
Generation of

Dynamic
Ontology

Semi-Automatic
Generation of

YAML DSL

Text Annotation
& Automatic

Static Ontology
Generation

Requirements
Engineering

Automatic
Generation of

Linked
Ontology

Complete
Back-end

Implementation

Design and
Implementation

of UI

Test in the
small

Architectural
Styles and
Patterns
Selection

Iteration
Planning

Review

Semi-Automatic
Generation of

Dynamic-
Security Model

Semi-Automatic
Generation of
Static Model

Static and
Dynamic Models
Synchronization

Architecturalƈ
andƈDesignƈ

Patternsƈ

Selection

Semi-Automatic
Generation of

Service Model

Semi -Automaticƈ
Generationƈofƈ
Configurationƈ

Model

PSM Models
Synchronizati

on

Semi-Automatic
Generation of
Development

model
Automaticƈ

Generationƈofƈ
Generatorsƈ

Models

Semi -Automaticƈ
GenerationƈofƈCodeƈ

GeneratorsƈDSLs

Rework

Test in the
large

Deployment

Traditional
Maintenance

Web

Maintenance

Continuous
Delivery

Generate
Codes by Code

Generators

Stage

Splitting and
Combining

Applications

Optional
Stage

Management

Technical

Ontology
Based

Model- Driven

Continuousƈ

Integration

Figure 8: MDD4REST process.

In the Model-Driven Development stage,
activities related to levels 2 to 4, including the
transformations, are performed. In the
Implementation stage, code is generated by code
generators, and is then completed by developers
(level 5).

The Transition phase is focused on deploying the
developed system into the user environment. The
Maintenance phase focuses on maintenance and
support activities. Umbrella activities are also
considered in this process, shown on the arrow at the
bottom of Figure 8.

Two types of roles are involved in this process:
mandatory and optional. The mandatory roles are:
user, product owner, coach, domain expert, and
developer. The optional roles are: architecture owner,
tester, modeler, user interface designer, and
infrastructure expert.

6 EVALUATION

To assess the applicability and effectiveness of
MDD4REST, a case study was conducted and criteria-
based evaluation was applied. The research questions
were as follows: RQ1. How logical and accurate are
the modeling levels and model transformations?
RQ2. Does MDD4REST facilitate the design and
development of RESTful web services? RQ3. Are the
concerns of RESTful web service well covered?
RQ4. How applicable are the tools in MDD4REST?

6.1 Case Study

The case was a web development project in a software
development company that specializes in producing

software solutions for medium to large businesses.
MDD4REST was used to develop a virtual gift card
generator system. A technical manager of the
company was actively involved in the study, both as
product owner and user. The first author was involved
in the project and carried out the activities prescribed
by MDD4REST in collaboration with the technical
manager. The development took about 30 working
days, and all the products were delivered to the
technical manager to acquire his feedback and
confirmation. A questionnaire was designed to collect
the final feedback from the technical manager.

6.1.1 Definition

The virtual gift card generator system provides the
following services: 1) browsing gift card designs and
categories; 2) buying gift cards; 3) receiving the list
of orders of a customer; 4) setting a second password
for a gift card.

6.1.2 Requirements Engineering

Requirements were elicited and expressed as textual
specifications and event storming models. An excerpt
of the event storming model of the "buying a gift
card" scenario is depicted in Figure 9.

Figure 9: Scenario for buying a gift card.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

98

6.1.3 Level 1

Text Annotation and Automatic Generation of
Static Ontology. The textual specifications of
requirements were annotated using mdd4rest-
annotator; an excerpt of the annotation result is
shown in Figure 10. The static ontology (Figure 11)
was later generated by mdd4rest-annotator.

Figure 10: An excerpt of the annotation of the system.

Domain Modeling and Automatic Generation of
Dynamic Ontology. Problem domain modeling was
performed by designing Activity Storming models.
Event Storming models can be used for producing
Activity Storming models; however, Event Storming
models are optional, and Activity Storming models
can be designed directly. The dynamic ontology
(Figure 11) was later generated.

Automatic Generation of Linked Ontology.
After creating the static and dynamic ontologies,
mdd4rest-generator merged them into the linked
ontology. Figure 11 shows the mapping of static and
dynamic ontologies onto the linked ontology. The
"property" attribute is mapped from the static
ontology to the linked ontology in parts 1 and 3, and
the "event" element is mapped from the dynamic
ontology to the linked ontology in parts 2 and 4.

Figure 11: Static, Dynamic, and Linked ontologies.

Semi-automatic Generation of YAML DSL. The
mdd4-rest-generator transformed the linked ontology
into a YAML-based DSL. This DSL must be
reviewed and evaluated and is considered as the
system's high-level design.

6.1.4 Level 2

The YAML DSL was given as input to the model-
driven engine of mdd4rest-generator, and the Static
and Dynamic-Security models were generated. The
attributes and relationships of the domain and
aggregation objects are modeled in the Static model,
whereas processes and operations are modeled in the
Dynamic-Security model. In this phase, the generated
resources are completed; the relationships between
resources, operations, and processes are defined. In
addition, policies for accessing the resources and the
access level of roles are modeled in the Dynamic-
Security model. An excerpt of the generated Static
and Dynamic-Security models is shown in Figure 12.

Figure 12: Static and Dynamic-Security models.

6.1.5 Level 3

At this level, mdd4rest-generator merged the Static
and Dynamic-Security models and transformed them
into PSM models (Service, Configuration, and
Deployment). In order to generate a system with the
CQRS architecture, three modules, namely
command, query, and web, were generated as
constituents of the Service model (partially shown in
Figure 13). Consequently, the domain objects,
operations, internal/external services, and resources
were completed; the Configuration and Deployment
models were enhanced accordingly.

MDD4REST: Model-Driven Methodology for Developing RESTful Web Services

99

Figure 13: Modules in the Service model.

6.1.6 Level 4

At this level, level-3 models were transformed into
models specific to each supported code generator, and
DSLs for each code generator were subsequently
generated. These DSLs are reviewed and modified as
necessary. An excerpt of the Sculptor’s DSL is shown
in Figure 14.

Figure 14: The DSL of the Sculptor Code generator.

6.1.7 Implementation

At this stage, the code was generated by the three
code generators, and the body of functions of the

generated back-end code was completed. In order to
access the front-end services, a single-page
application was generated by the Jhipster code
generator, which was then improved. Figure 15 shows
the appearance of the gift-card generator system.

Figure 15: Appearance of the single-page application for
the gift-card generator system.

6.1.8 Questionnaire-based Interviews

The participants involved in the case study were
interviewed using a specially designed questionnaire.
The questionnaire was designed to summarize the
opinions of the participants, particularly regarding the
research questions; a partial view of the questionnaire
is shown in Table 1. Furthermore, the advantages and
drawbacks of MDD4REST were discussed with the
participants for future improvement.

6.2 Evaluation Criteria

We developed a set of evaluation criteria to assess
MDD4REST in a systematic manner, particularly
regarding the research questions. There are four
groups of criteria: general criteria, model-driven
criteria, model-driven web engineering criteria, and
RESTful web services criteria. As some groups are
quite populous (containing more than 20 criteria),
showing the whole sets of results is not possible in
this paper. However, excerpts of the criteria and
evaluation results are shown in Tables 2 to 5.

6.3 Analysis of Results

The analysis results are presented in the order of the
research questions:

Answering RQ1- Adequacy of MDD4REST from
an MDD perspective: the evaluation results shown in
Tables 3 and 5 indicate that modeling levels are
defined accurately and distinguishably. However,
support for round-trip engineering is low.

Answering RQ2- Usability of MDD4REST: the
case study demonstrated that MDD4REST improves

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

100

quality and comprehensibility in design and
modeling. As a result of these features and the
automation provided, the web services development
process is significantly easier to use in comparison
with common approaches; this was confirmed by the
results of the questionnaire-based interviews.

Answering RQ3- Addressing the concerns of
RESTful web services development: the results
obtained from criteria-based evaluation (Table 4) and
questionnaire-based interviews indicate that there is
an adequate level of coverage. The primary
deficiency is the maintenance of the generated
systems. This issue will be tackled by supporting
round-trip engineering in future work.

Answering RQ4- Applicability of MDD4REST
tools: the results obtained from criteria-based
evaluation (Tables 3 and 4) and questionnaire-based
interviews indicate that the tool support is adequate,
and provides convenient employment of MDD4REST
at all levels. In fact, tool support is one of the
strengths of MDD4REST.

6.4 Comparative Analysis

MDD4REST has overcome many of the shortcomings
of previous methods. Here are a few issues that have
been addressed:

Coverage of web services development lifecycle-
Previous methods for generating RESTful web
services either do not provide full coverage of the web
services development lifecycle, or fail to define a
development process at all. In contrast, MDD4REST
incorporates a detailed process that covers the entire
lifecycle, from analysis to maintenance.

Coverage of MDD abstraction levels- Existing
methods lack sufficient modeling and abstraction
levels, and only a few of them support the CIM Level.

In contrast, the MDD4REST modeling framework
supports modeling at all levels, including CIM, PIM,
and PSM.

Rich domain model- Existing methods cover
CRUD operations only, whereas MDD4REST is not
limited to CRUD operations. A rich domain model is
produced in MDD4REST based on DDD concepts.

Generating the artifacts necessary for RESTful
web services- Existing methods do not create all the
products needed for web services development based
on the REST architecture. In contrast, MDD4REST
generates code, API specifications, and tests.

Supporting common architectures- Existing
approaches do not address the architectures common
in modern web systems, such as microservices and
event-driven. In contrast, MDD4REST covers
prevalent architectural styles and patterns.

7 CONCLUSIONS

The MDD4REST methodology was developed as a
comprehensive model-driven methodology for
developing RESTful web services. It is
comprehensive in that it provides a multilevel
modeling framework along with a process for
applying it. Transformation rules have been
implemented to generate the models so that the
transitions between modeling levels are smooth and
trouble-free. Furthermore, we have developed several
tools to support MDD4REST. For future work, we
plan to support other diagrams for domain modeling,
improve the textual annotation process by using NLP
methods, cover strategic concepts of DDD, and
support reverse-engineering from DSLs to models.

Table 1: Part of the designed questionnaire.

General evaluation of the approach
Strongly

Agree
Agree Neutral Disagree

Strongly
Disagree

1 The approach can be used easily in organizations.
2 Others can extend the approach.

3
The approach can improve the quality of code and decrease errors
in web services.

4 Technical people are enthusiastic about this approach.

Technical evaluation of the approach
Strongly

Agree
Agree Neutral Disagree

Strongly
Disagree

1 The approach helps developers and designers significantly.
2 The approach designs web services adequately.
3 The approach deploys the systems efficiently and automatically.
4 The approach can maintain the systems efficiently.

5
The developed tools are able to improve the automation of the
transformation and generation of models.

6 Common architectures in web engineering are supported.

MDD4REST: Model-Driven Methodology for Developing RESTful Web Services

101

Table 2: Partial view of the results of assessment based on General methodology evaluation criteria.

Criterion Result Description of possible values

Lifecycle
Coverage

Requirements Engineering

Analysis

Design

Implementation

Test

Deployment

Maintenance

A

A

A

A

B

B

B

A: Supported with detailed instructions.

B: Supported with general guidelines.

C: Not Supported.

Coverage of
Umbrella
Activities

Project Management

Risk Management

Quality Management

B

B

A

A: Supported with detailed instructions.

B: Supported with general guidelines.

C: Not Supported.

Clarity of Development Process
Definition

A
Work-products, actors, and activities are: A: entirely supported and precisely
described. B: partially supported or just mentioned. C: weakly supported.

Seamlessness and Smoothness of
Transition between Phases

A
A: Both provided; B: Only seamlessness provided. C: Only smoothness provided.
D: None provided.

Encouragement of Active User
Involvement

A
A: The methodology explicitly provides an atmosphere in which the user is actively
involved. B: The methodology provides a number of guidelines for involving the
user. C: The methodology does not provide any support.

Manageability of complexity A
A: The methodology explicitly provides coping mechanisms. B: Some guidelines
are defined in order to manage complexity. C: This feature is weakly supported.

Process Definition Type
Process-
Centered

Process-Centered: The lifecycle phases, stages, and activities are considered, and
other aspects are described as secondary. Product-Centered: Products are taken
into consideration, and other aspects are described as secondary. Role-Centered:
roles are taken into consideration, and other aspects are described as secondary.

Table 3: Partial view of the results of assessing support for Model-Driven Development.

Criterion Result Description of possible values

Transparency of modeling
levels

A
The boundary between levels: A: is accurately distinguishable. B: is relatively transparent. C:
cannot be distinguished.

Classification of the
modeling levels' data

A A: accurate classification. B: Relative classification. C: lack of classification.

Support for abstraction
levels (CIM, PIM, PSM)

A
A: abstraction levels and transitions are fully supported. B: All abstraction levels are defined,
but transitions between them are not supported. C: some abstraction levels are not supported.

Structural, Behavioral,
Functional modeling

A A: All the system’s aspects are modeled. B: some aspects of the system are not modeled.

Model Transformation type Both
Vertical: The source and target models are at different levels of abstraction.

Horizontal: The source and target models are at the same level of abstraction.

Automation level of
transformations

Medium High: Fully-automated. Medium: Semi-automated. Low: Manual.

Automatic code generation B
A: All parts of the code are automatically generated. B: Most parts of the code are automatically
generated. C: some parts of the code are automatically generated.

Tool support B
A: A complete toolset is provided, or precise guidelines are defined to select alternative tools. B:
A complete toolset is not provided, but general guidelines are provided to select alternative
tools. C: No specific tools or guidelines are provided.

Round-trip engineering,
Synchronization of source
and target models,
Verification/Validation

B
A: Detailed procedures are specified for the task in the methodology. B: Only general guidelines
are provided for the task. C: The task is not covered by the methodology.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

102

Table 4: Partial view of the results of assessing support for RESTful Web Services.

Criterion Result Status of MDD4REST based on the criterion

General Modeling of RESTful Web Services
(Structural, Behavioral, Functional)

A All aspects of modeling RESTful web services are considered.

RESTful Practices modeling (Resource, REST API
Specification, Query, Third-Party API Integration)

A
All aspects relating to REST architecture are precisely defined. However,
only guidelines are defined for third-party API Integration.

Security
Modeling

Access Levels to Resources
Access Levels to Resource Operations
Definition of Roles

A
C
A

In Dynamic-security and Service models, access levels are defined for
resources and roles, but access controls to resource operations are not
supported.

Domain-Driven
Modeling

Tactical Design
Strategic Design

A
B

The bounded context concept is not covered in MDD4REST. However,
similar concepts, including application and module, are supported.

Web Engineering
Architectures

Event-Driven
Microservice
Layered

A
A
B

In MDD4REST, the common Web architectures, including event-driven,
microservices, and layered, are supported. The presentation layer must be
completed by developers.

Process: CI/CD, First-API Design, Rich Domain
Model

A All of these activities are precisely defined in the process of MDD4REST.

Services: Service Integration and Service
Granularity

A
The external services layer integrates internal services with third-party
APIs. The Services are also divided into two layers: internal and external.

Operations: CRUD and Non-CRUD Operations,
REST constraints, Error handling, Pagination,
Filters

A MDD4REST provides guidelines for all of these activities.

Test: Unit-Test, Integration-Test, API-Test, Test
Case Generation

B
By default, the code generator will produce unit and API tests, but
developers should also produce other types of tests.

Tools

Support for SQL and NoSQL Databases
Support for Query Languages
Use of Standard Technologies
Diversity of Programming Languages

A
C
A
B

MDD4REST uses popular code generators capable of supporting a wide
range of products and programming languages.

Legend- A: Fully Supported; B: Partially supported; C: Not Supported.

Table 5: Partial view of the results of assessing support for Model-Driven Web Engineering.

Criterion Result Status of MDD4REST based on the criterion

Existence of the Models Necessary
for Web Development

B
Except for the presentation model, all the models necessary for designing web systems are
supported.

Data Model

(CIM, PIM, PSM)
A

Domain objects representing system data are obtained from the beginning in the form of
ontologies and static models.

Business Model

(CIM, PIM, PSM)
A

Business logic is provided in the form of Activity Storming models at the CIM level. At the
following levels, this aspect can be seen in the Dynamic-Security and Service models.

Navigation Model

(CIM, PIM, PSM)
B

Service navigation has been considered in the modeling levels of MDD4REST. However,
presentation navigation has not been addressed, as the presentation aspect is outside the
scope of MDD4REST.

Presentation Model

(CIM, PIM, PSM)
C

In MDD4REST, the focus is on generating web services, and addressing the presentation
aspect is outside the scope of MDD4REST.

Legend- A: Fully Supported; B: Partially supported; C: Not Supported.

REFERENCES

Asadi, M., Esfahani, N., & Ramsin, R. (2010). Process
patterns for MDA-based software development. In
ACIS International Conference on Software
Engineering Research, Management and Applications,
190–197.

Babanezhad, R., Bibalan, Y.M., & Ramsin, R. (2010).
Process patterns for web engineering. In IEEE Annual
Computer Software and Applications Conference, 477–
486.

Blake, M. B. (2006). A lightweight software design process
for web services workflows. In IEEE International
Conference on Web Services, 411–418.

MDD4REST: Model-Driven Methodology for Developing RESTful Web Services

103

Brandolini, A. (2013). Introducing event storming. blog,
Ziobrando’s Lair, 18.

Deljouyi, A. (2021). MDD4REST Labs. Retrieved from
https://github.com/MDD4REST

Ed-Douibi, H. (2019). Model-driven round-trip
engineering of REST APIs (PhD Thesis, Network and
Information Technologies Doctoral Programme,
Universitat Oberta de Catalunya).

Ed-Douibi, H., Izquierdo, J. L. C., Gómez, A., Tisi, M., &
Cabot, J. (2015). EMF-REST: Generation of RESTful
APIs from Models. In Annual ACM Symposium on
Applied Computing, 1446–1453.

Evans, E. J., & Evans, E. (2004). Domain-driven design:
Tackling complexity in the heart of software. Addison-
Wesley Professional.

Fielding, R. T., & Taylor, R. N. (2000). Architectural styles
and the design of network-based software architectures
(Vol. 7). (PhD Thesis, University of California, Irvine).

Fowler, M. (2002). Patterns of enterprise application
architecture. Addison-Wesley Longman Publishing
Co.

Fowler, M. (2017). What do you mean by “Event-Driven”?
Retrieved from https://martinfowler.com/articles/2017
01-event-driven.html

Gonçalves, R. C. da C., & Azevedo, I. (2018). RESTful Web
Services Development With a Model-Driven
Engineering Approach. (M.S. Thesis, Instituto Superior
de Engenharia do Porto)

Greg Young. (2010). CQRS Documents by Greg Young.
Hailpern, B., & Tarr, P. (2006). Model-driven

development: The good, the bad, and the ugly. IBM
Systems Journal, 45(3), 451–461.

Haupt, F., Karastoyanova, D., Leymann, F., & Schroth, B.
(2014). A model-driven approach for REST compliant
services. In International Conference on Web Services,
129–136.

Hernandez-Mendez, A., Scholz, N., & Matthes, F. (2018).
A Model-driven Approach for Generating RESTful
Web Services in Single-Page Applications. In
International Conference on Model-Driven
Engineering and Software Development, 480–487.

Jegadeesan, H. (2009). Towards a Model-Driven Approach
to Support SOA-Based Web-Business Platforms. (Ph.D.
Thesis, BITS Pilani).

Kapferer, S. (2020). A Modeling Framework for Strategic
Domain-driven Design and Service Decomposition.
(M.S. Thesis, University of Applied Sciences of
Eastern Switzerland).

Kolovos, D. S., Garcia-Dominguez, A., Rose, L. M., &
Paige, R. F. (2017). Eugenia: Towards disciplined and
automated development of GMF-based graphical
model editors. Software & Systems Modeling, 16(1),
229–255.

Koren, I., & Klamma, R. (2018). The Exploitation of
OpenAPI Documentation for the Generation of Web
Frontends. In Web Conference, 781–787.

Mulloy, B. (2013). Web API design. Academic Press.
Newman, S. (2015). Building microservices: Designing

fine-grained systems. O’Reilly Media, Inc.

Ong, S. P. et al. (2015). The Materials Application
Programming Interface (API): A simple, flexible and
efficient API for materials data based on
REpresentational State Transfer (REST) principles.
Computational Materials Science, 97, 209–215.

Rademacher, F., Sachweh, S., & Zündorf, A. (2017).
Differences between model-driven development of
service-oriented and microservice architecture. In IEEE
International Conference on Software Architecture
Workshops, 38–45.

Richardson, L., & Ruby, S. (2008). RESTful web services.
O’Reilly Media, Inc.

Rodriguez, A. (2008). RESTful web services: The basics,
33, 18 (Technical Report, IBM DeveloperWorks).

Schreier, S. (2011). Modeling RESTful applications. In
International Workshop on Restful Design, 15–21.

Siegel, J. M. (2014). Model driven architecture (MDA)-
MDA Guide rev. 2.0. (Technical Report, Object
Management Group).

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M.
(2008). EMF: Eclipse Modeling Framework. Pearson
Education.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou,
S., & Tsujii, J. (2012). BRAT: A web-based tool for
NLP-assisted text annotation. In Demonstrations
Session at European Chapter of the Association for
Computational Linguistics.

Terzić, B., Dimitrieski, V., Kordić, S., Milosavljević, G., &
Luković, I. (2018). Development and evaluation of
MicroBuilder: A Model-Driven tool for the
specification of REST Microservice Software
Architectures. Enterprise Information Systems, 12(8–
9), 1034–1057.

Truyen, F. (2006). The fast guide to model driven
architecture. Cephas Consulting Corp.

Valverde, F., & Pastor, O. (2009). Dealing with REST
services in model-driven web engineering methods. V
Jornadas Cientifico-Técnicas en Servicios Web y SOA,
243–250.

Zolotas, C., Diamantopoulos, T., Chatzidimitriou, K. C., &
Symeonidis, A. L. (2017). From requirements to source
code: A Model-Driven Engineering approach for
RESTful web services. Automated Software
Engineering, 24(4), 791–838

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

104

