Al-guided Model-Driven Embedded Software Engineering

Padma Iyenghar! 2, Friedrich Otte! and Elke Pulvermueller!
LSoftware Engineering Research Group, University of Osnabrueck, Germany
2innotec GmbH, Erlenweg 12, 49324 Melle, Germany

Keywords:

Artificial Intelligence, Model-Driven Engineering (MDE), Embedded Software Engineering (ESE), Unified

Modeling Language (UML), Software Development, MDE Tool.

Abstract:

In this paper, an use case of Artificial Intelligence (AI) empowered Model Driven Engineering (MDE) in the

field of Embedded Software Engineering (ESE) is introduced. In this context, we propose to qualify MDE
tools for ESE with an Al assistant or a chatbot. The requirements for the first version of such an assistant and
the design concepts involved are discussed. A prototype of such an assistant developed using an open source
conversational Al framework used in tandem with an MDE tool for ESE is presented. Empowering MDE tools
with such Al assistants, would aid novices in MDE or even non-programmer to learn and adopt model-driven

ESE with a not-so-steep learning curve.

1 MOTIVATION

Artificial Intelligence (Al) is a sub-discipline of com-
puter science which is used to supplement techni-
cal systems with the ability to process tasks indepen-
dently and efficiently. With the help of learning algo-
rithms, Al systems can continue learning during on-
going operations, through which the trained models
are optimized and the data- and knowledge-bases ex-
tended. Recent studies on modelling the impact of Al
on the world economy in (Bughin et al., 2018) claim
that AT has large potential to contribute to global eco-
nomic activity. For instance, simulation studies in
(Bughin et al., 2018) show that around 70 percent of
companies may adopt at least one type of Al tech-
nology by 2030 and Al could potentially deliver addi-
tional economic output of around $13 trillion by 2030.
Al is also starting to impact all aspects of the system
and software development lifecycle, from their up-
front specification to their design, testing, deployment
and maintenance, with the main goal of helping engi-
neers produce systems and software faster and with
better quality while being able to handle ever more
complex systems. Thus, Al is envisaged to help deal
with the increasing complexity of systems and soft-
ware.

In the direction of the aforesaid context, the Model
Driven Engineering (MDE) paradigm has been intro-
duced in the recent decade with the goal of easing the
developmental complexity of software and systems.

lyenghar, P., Otte, F. and Pulvermueller, E.
Al-guided Model-Driven Embedded Software Engineering.
DOI: 10.5220/0011006200003119

In MDE, models are set in the center of every engi-
neering process. Its target is to guarantee significant
rise in productivity, maintenance and interoperability.
It is increasingly used in industry sectors such as Cy-
ber Physical Systems (CPS), automotive and aviation
to name a few. Thus, MDE has been a means to tame,
until now, a part of the aforementioned complexity of
software and systems. However, its adoption by in-
dustry still relies on their capacity to manage the un-
derlying methodological changes, and also the adop-
tion and training with new tools with significant cost
and time overhead. In the recently concluded work-
shop on Al and MDE (MDE _Intelligence, 2021), it is
identified that there is a clear need for Al-empowered
MDE, which will push the limits of classic MDE and
provide the right techniques to develop the next gen-
eration of highly complex model-based system.

1.1 Collaboration of AI and MDE

The convergence of two separate fields in computer
science such as MDE and Al can give rise to collabo-
ration in two main ways such as (a) Al-guided MDE
and (b) MDE for Al In the following, let us briefly
touch upon the opportunities and challenges derived
by integration of Al and MDE for both (a) and (b).

For (a) Al-guided MDE, MDE can benefit from in-
tegrating Al concepts and ideas to increase its power,
flexibility, user experience and quality. Some oppor-
tunities in this direction can be:

395

In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2022), pages 395-404

ISBN: 978-989-758-550-0; ISSN: 2184-4348

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

e Al planning applied to (meta-) modeling

e Using machine learning of models, meta-models
and model transformation through search-based
approaches

e Self-adapting code generators

o Al-based assistants such as bots or conversational
agents and virtual assistants for MDE tool. Al-
assistant for human-in-the loop modeling, e.g.
dialog-based optimization and support for mod-
eling tasks, answering FAQs and tutorials using
text-to-text, voice-to-text processing, etc.

e Natural language processing applied to modelling

e Semantic reasoning platforms over domain-
specific models

o Al techniques for data, process and model mining
and categorization

On the other hand, some challenges for (a) could be in
choice, evaluation and adaptation of Al techniques to
MDE, such that they provide a compelling improve-
ment to current system, software modeling and gen-
eration processes. Al-powered MDE should signif-
icantly increase the benefits and reduce the costs of
adopting MDE. Furthermore, this step should also en-
able ease-of-use of MDE tools such that, for instance,
they become analogous to use and popularity of low-
code platforms in the IT sector.

In the case of (b) using MDE for Al, Al can pri-
marily benefit from MDE by integrating concepts and
ideas from MDE such as

e Model-driven processes for Al systems develop-
ment

e Automatic code generation for Al libraries
e Model-based testing of Al artifacts

e Domain-specific modeling approaches for ma-
chine learning

Rather than significant challenges, it is expected that
experts in MDE can make comprehensive inroads in
the AI domain with their rich background and experi-
ence in applying MDE across various sectors.

1.2 MDE in ESE

Software development for embedded systems typi-
cally involves coding in programming language C (or
C++), for a specific microcontroller. However, in the
recent decade to cope with the growing complexity
of software-intensive embedded systems, MDE has
become an essential part for analysis, design, imple-
mentation and testing of these systems. In the state-
of-the-art, a large variety of software modeling prac-
tices are used in the domain of Embedded Software

396

Engineering (ESE). A majority of them employ Uni-
fied Modeling Language (UML) (OMG, 2021) as a
first choice of a graphical formal modeling language.
A survey in (Akdur et al., 2018), claims that the top
motivations for adopting MDE in ESE (e.g. for CPS
development) are cost savings, achieving shorter de-
velopment time, reusability and quality improvement.
Several state-of-the-practice UML-based MDE
tools are available in the ESE domain. While most
of these tools claim to help build models quickly, edit
programs graphically, generate source code automati-
cally and design systems across platform, they are not
necessarily intuitive to immediately put to use in real-
life projects after installing them (Sundharam et al.,
2021). This makes the learning curve steep and may
introduce high cost and time overhead. A typical use
case of Al-guided MDE can be foreseen for the afore-
said scenario. For instance, to gain higher acceptance
of such MDE tools and bring them a step closer to, for
example, a typical embedded software developer ven-
turing to MDE or even to a non-programmer/beginner
to learn model-driven ESE, Al-based assistants can be
developed and employed together with these tools.

1.3 Novelties

Addressing the aforesaid aspect, we present the fol-
lowing novelties in this short paper:

e Introduce the concept of an Al-assistant or a chat-
bot for an MDE tool in the context of ESE.

e Define requirements for a first version of such a
chatbot and elaborate on the design concepts of
one requirement (step-by-step tutorial).

e Present a prototype of the Al assistant developed
using RASA (Rasa: Open Source Conversational
Al, 2021) for a state-of-the-practice MDE tool in
ESE namely, SiSy (Simple System, 2021).

Following this introduction, related work is presented
in Section 2. The requirements and design concepts
are discussed in section 3. A prototype is presented in
section 4 and section 5 concludes this paper.

2 RELATED WORK

2.1 Al-based Assistants

A chatbot is an Al-based program or an assistant, de-
signed to simulate conversation with human users.
It uses Natural Language Processing (NLP) to com-
municate in human language by text or oral speech
with humans or other chatbots. Chatbots offer users

comfortable and efficient assistance when communi-
cating with them; they provide them with more en-
gaging answers, directly responding to their prob-
lems (Adamopoulou and Moussiades, 2020). A litera-
ture review in (Adamopoulou and Moussiades, 2020)
presents the history, technology and applications of
natural dialog systems or the so-called chatbots.

There are two main approaches in developing a
chatbot, depending on the algorithms and the tech-
niques adopted, namely, pattern matching and ma-
chine learning approaches (Adamopoulou and Mous-
siades, 2020), (Ramesh et al., 2017).

A chatbot can be developed using programming
languages like Java and Python or a chatbot devel-
opment platform that may be commercial or open-
source (Nayyar,D.A., 2019). Open-source platforms
make their code available, and the developer can have
full control of the implementation. Although, com-
mercial platforms do not give full control to develop-
ers, they may still benefit from data for efficient train-
ing of the chatbots.

Open source platforms include Rasa (Rasa: Open
Source Conversational Al, 2021), Botkit (Botkit:
Building blocks for building bots, 2021), Chatterbot
(Chatterbot python library, 2021), Pandorabots (Pan-
dorabots: Chatbots with character, 2021) and Botlyt-
ics (Botlytics:Analytics for your bot, 2021). Com-
mercial platforms include Botsify (Botsify - A Fully
Managed Chatbot Platform To Build AI-Chatbot,
2021), Chatfuel (Chatfuel Chatbot solution, 2021)
and Manychat (Manychat:Chat Marketing Made Easy
with ManyChat, 2021).

Designing highly functional NLUs requires ex-
pert knowledge in machine learning and natural lan-
guage processing. For this reason, several vendors
exist for NLU solutions that make it easier for de-
velopers to create programs with NLU. The currently
most used and evaluated NLUs are (Abdellatif et al.,
2021): Dialogflow from Google (Dialogflow, 2021),
LUIS from Amazon (LUIS-Language Understanding,
2021), Watson from IBM (Watson Assistant, 2021)
and Rasa which is open source (Rasa: Open Source
Conversational Al, 2021). These do not only con-
sist of NLUs but also of components for building dia-
log managers, which makes them full-fledged chatbot
frameworks. But until now, there are only scientific
evaluations for the NLU part, because it is of greater
importance and not every application that needs an
NLU also needs a dialog manager.

The results from several evaluation studies show
that the performance of the NLU varies greatly de-
pending on the content domain (Canonico and Russis,
2018), (Angara, 2018), (Shawar and Atwell, 2007).
Therefore, it is important to determine the suitability

Al-guided Model-Driven Embedded Software Engineering

of an NLU at the relevant domain. Rasa was specif-
ically evaluated in the context of software engineer-
ing by using technical questions asked on stack over-
flow (Abdellatif et al., 2021). The performance of
the NLUs varied from one aspect to another. There
was no NLU that outperformed the others on every
aspect. In an overall ranking, Watson was placed first,
Rasa second, Dialogflow third and LUIS fourth. Wat-
son performed best in intent classification and entity
extraction, while Rasa performed best in confidence
score. This means that an intent with high confidence
value was more often correct for Rasa than it is with
other NLUs. This makes Rasa very robust for differ-
ent confidence thresholds and allows for effective fall-
back routines. Among the several open source conver-
sational Al framework, we found Rasa to be compre-
hensive and easy-to-use and supported by its elaborate
documentation. Hence, the choice to use Rasa conver-
sational Al framework to build the Al assistant (here-
after referred to as chatbot) for Al-guided MDE in
our work was made. An introduction to Rasa frame-
work is not provided here due to space constraints.
Interested readers are referred to (Rasa: Open Source
Conversational Al, 2021) (Rasa architecture, 2021).

2.2 MDE in ESE: State-of-the-Practice

In the last decade, Model-Driven Architecture (MDA)
introduced by the Object Management Group (OMG)
(OMG, 2021) is considered as the next paradigm shift
in software and systems engineering. Model-driven
approaches aim to shift development focus from pro-
gramming language codes to models expressed in
proper domain-specific modelling languages. Thus,
models can be understood, automatically manipulated
by automated processes, or transformed into other ar-
tifacts. For instance, in the direction of adoption of
a model-driven approach and the use of simulation-
based techniques, significant effort has been spent in
the last decade for easing the development and the
simulation of complex systems using UML/SysML
models in works such as (Bocciarelli et al., 2013),
(Bocciarelli et al., 2019), (Sporer, 2015), (Mhenni
et al., 2018), (Mhenni et al., 2014) and (Andrianari-
son and Piques, 2010) to mention a few. Some of
these works are also joint efforts from industry and
academia.

However, one must admit that the shift from
model-based (models used as mere diagrams) to a
completely model-driven methodology (models used
as central artifacts) in real-life projects in the indus-
try has not yet taken place, especially for ESE do-
main. For example, in a latest survey in (van der
Sanden et al., 2021), a position paper on model-driven

397

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

Systems Performance Engineering (SysPE) for Cyber
Physical systems (CPS) is presented. The paper con-
cludes that the state-of-practice is model-based and a
transition to model-driven SysPE is needed to cope
with the ever increasing complexity of today’s CPS.

Some state-of-the-practice UML-based MDE
tools in the embedded software domain include pro-
prietary tools such as Rhapsody Developer (IBM
Software, 2021), Enterprise Architect (Enterprise Ar-
chitect tool, 2021) and SiSy (Simple System, 2021)
and a free UML tool, Visual Paradigm (Visual
Paradigm, 2021). In the non-UML domain, Mat-
lab/Simulink (Mathworks Products, 2021) is among
the most popular MDE tool employed in the embed-
ded software domain. While most of these tools claim
to help build models quickly, edit programs graphi-
cally, generate source code automatically and design
systems across platform, they are not necessarily in-
tuitive to immediately put to use in real-life projects
after installing them.

For the aforementioned scenario, a typical use
case of Al-guided MDE can be foreseen. For in-
stance, to gain higher acceptance of such MDE tools
and bring them a step closer to, for example, a typical
embedded software developer venturing to MDE or
even to a non-programmer/beginner to learn model-
driven ESE, Al-based assistants can be developed and
employed together with these tools.

3 AI ASSISTANT FOR MDE TOOL

As mentioned in section 1.1, in the context of Al
guided MDE, the latter can benefit from integrating
Al concepts to increase its power, flexibility, user ex-
perience and quality. For instance, a starting point can
be development of an Al-assistant such as a chatbot,
which can serve as conversational virtual assistants
for answering FAQs, step-by-step guidance of the tu-
torials available in the MDE tool, modeling tasks and
so on. Such a use case of Al-guided MDE, would help
in enabling ease-of-use of MDE tools (e.g. lessen the
steep learning curve) and perhaps also help to reduce
the costs of adopting MDE.

3.1 Requirements

In the following, requirements for the envisaged Al-
assistant for an MDE tool applied in the context of
ESE are outlined. However, the overall concepts and
ideas discussed here could be applied in the context
of an Al-based assistant for any MDE tool. Please
note that, within the scope of this paper, we make use
of an MDE tool SiSy (Simple System, 2021), aiming

398

specifically at MDE for embedded software systems
and envisage the usage of the Al-assistant with this
tool.

3.1.1 RI1: Step-by-Step Guided Tutorial

To enable ease-of-use of the MDE tool step-by-step
guidance of tutorials available in the MDE tool can
be offered by the Al-based assistant.

e RI1.I-Piece-wise Tutorial: The tutorial should be
provided in a piece-wise manner with step-by step
interactive instructions for the user, based on their
comfort level.

e RI.2-Questions at Any Time: During such
a conversation-based tutorial, the Al-assistant
should be able to answer questions anytime.

e RI.3-Manipulate Tutorial State: The user should
be able to request any tutorial, and should also be
able to stop or restart the running tutorial or switch
to another tutorial. Restarting the tutorial can be
useful if the user accidentally gave false informa-
tion or skipped a tutorial step.

e Ri.4-Context Specific Tutorial: The chatbot
should provide content depending on the context.

3.1.2 R2: Frequently Asked Questions (FAQs)

The chatbot should be able to answer a list of FAQs.
These are typically single-turn interactions, which
means that the user asks a question and the chatbot
can answer in one turn, without additional context in-
formation or asking further questions.

3.1.3 R3: Ease of Use

The chatbot must be easy and intuitive to use. It
must be clear for the user how to request tutorials and
FAQs. This also implies a high robustness for lan-
guage understanding.

3.1.4 R4: Scalability

The chatbot is envisaged to be used in the long run
of the MDE tool. Hence, it is important that it can be
easily adapted, i.e., change and add or remove content
in a simple and fast way.

3.1.5 RS: Integration

The AI Assistant should be easily accessible while us-
ing the MDE tool in question. This can be achieved,
for instance, by integrating it within the MDE tool or
by making it accessible via the web.

3.1.6 R6: Continuous Improvement

When deployed, the chatbot should continue to col-
lect data and improve its language understanding and
dialog management.

3.2 Design Challenges and Decision

This section discusses the design challenges for re-
quirement 3.1.1 only (due to space constraints), to ar-
rive at a design solution. A chatbot usually comprises
two main components, namely the NLU and dialog
manager. In line with this idea, the proposed design
and architecture of the chatbot introduced in this pa-
per is shown in Figure 1.

Natural Language Understanding (NLU)

User Component
Input
Intent C. Entity Extraction
User Interface l (Intent, Entities)
Component
Conversation |Ambiguity and Error|
Tracking Handling

Response|
Qutput
Response

Generation

Dialog Management (DM) component

API call

(—__Backend
e —

Database

Information Systems

Figure 1: Proposed design employing message handling
process of the RASA framework.

The NLU is responsible for understanding the un-
structured user input (text information) and the dialog
manager controls state and flow of the conversation.
As seen in Figure 1, the NLU component takes care of
intent classification and entity extraction. The dialog
management component handles conversation track-
ing, ambiguity and error handling and response gener-
ation. The user interface component receives the user
input, and it is communicated to the NLU unit. Based
on the extracted intents and entities, the dialog man-
agement component provides a response to the user
interface component.

3.2.1 Handling Step-by-Step Tutorial

To provide the tutorial step-by-step as discussed in
section 3.1.1, the conversations have to be defined
over multiple turns. In contrast, it would be straight-
forward to provide the conversation in one block,

Al-guided Model-Driven Embedded Software Engineering

because this can be a simple question/response pat-
tern. The challenge of providing a step-by-step tuto-
rial is increased by the sub-requirement R.1.2 in sec-
tion 3.1.1, which requires that the questions from the
end-user of the Al assistant should be answered any
time. This prevents a rigid sequential process where
after step one, step two and then step three will fol-
low and so on. This implies a dialog management
(cf. Figure 1), which is designed for multiple-turn di-
alogues, needs to be used. Furthermore, it should be
possible to use slots to save information over multi-
ple turns. Rasa’s dialog management is designed for
multiple-turn dialogues in so far that former intents
can be taken into account when the next action is de-
cided. Furthermore, it is possible to use slots to save
information over multiple turns in Rasa.

With enough training data, the dialog manager
could learn to provide the tutorial steps in the cor-
rect order and flexibly react to other questions at the
same time. But this approach would be very labor-
intensive and there would be no guarantee for success.
Hence, other approaches had to be designed: the first
approach was to use forms to manage these multiple-
turn dialogues, the second approach was to use slots
and custom actions. Both these approaches have been
designed and evaluated as part of the concept study
phase and elaborated below.

Option 1: Form Approach. One approach would
be to use forms, since they already are a specific im-
plementation of multiple turn dialogues. Forms are a
special type of action that allows to define slots that
need to be filled. A form can thus be active over
several utterances. As long as there is an empty slot
within the form, the agent will ask a predefined ques-
tion for that slot until it will be filled and move to the
next slot. If the user gives an utterance that can not be
used to fill the slot, the message will be handled like it
would if there was no active form by the dialog man-
ager. This means that the user can ask the same ques-
tions he or she normally could, as long as the mes-
sage is not confused with valid slot input. Therefore,
requirement R1.2 would be fulfilled.

Forms are usually used to collect user information
in a structured fashion. After the bot gives a response,
it will turn back to the form and repeat the question for
the currently empty slot. Figure 2 shows how a form
could be used to implement step-by-step tutorials by
using slots in a slightly different way. The form starts
after the NLU component detects the intent to start
a tutorial. Then, the first step of the tutorial will be
provided, and the user will be asked to fill the first slot
with something like ”Did you succeed?” or ”Do you
want to continue to the next step?”. Only if the next

399

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

Tutorial
Request Intent

Provide
Tutorial Step
1

l

Ask for slot 1

e
Y]

Everything else— Dialog Provide
® Manager Response

Affirm intent

Provide
Tutorial Step
2

i

Ask for slot 2

«

1

Everything else—_| | D209 Provide
¢ Manager Response

Affirm intent

Provide i
: Provide
Tutorlgl Step —» .. —> ongratulation

Figure 2: Flowchart diagram of the form approach option
to implement step-by-step tutorials.

user input is interpreted as affirmative intent by giving
a message like “yes” or "please continue” will the
form continue to the next step. If no affirmative intent
is detected, the message will be handled by the dialog
manager. This is repeated until all tutorial steps have
been provided. If necessary, the first slots can be used
to collect context information like controller type to
fulfill requirement R1.4.

A prototype evaluation of this approach has shown
that this approach in fact fulfills requirements R1.1
and R1.2 and R3, but also has shown some disadvan-
tages. Some disadvantages are, for each tutorial, a
form has to be created and for each tutorial step, an in-
dividual slot has to be created. Furthermore, for each
form, a FormValidationAction event that includes the
validation logic for each slot, has to be defined. This
makes adding content very time consuming and is in
conflict with requirement R4. The effort could prob-
ably be mitigated by a script that adds all these slots
and the validation logic automatically, but this would

400

have to be updated every time that Rasa changes the
domain syntax or structure or the form structure.

Option 2: Custom Actions Approach. Another
solution could be to use custom actions to provide the
next tutorial step and slots to save the current state of
the tutorial. The tutorial state could be modeled by
the current tutorial name and the current tutorial step.
When a tutorial is requested, a tutorial specific cus-
tom action will be executed. This will allow handling
tutorial specific business logic, like different content
depending on the controller type. A specially created
“next” intent will be used to trigger a custom action
”Tutorial dispatcher” that evaluates the current tuto-
rial slot and calls the respective custom action. This
approach is shown in Figure 3.

As in option 1, the process begins after NLU mod-
ule detects the intent to start a tutorial. The custom
action will increment the tutorial step counter slot and
set the slot that defines the current tutorial. If context
information is needed to provide the tutorial, a form
is run and all the necessary information will be col-
lected. Otherwise, the agent will provide the first step
of the tutorial directly. When the user says something
like "next”, the ”Tutorial Dispatcher” will be called.

The purpose of this action is to request the “cur-
rent tutorial” slot and dispatch to the tutorial spe-
cific action. It could also be used to handle tutorial
switches and edge cases. Calling the tutorial specific
action will increment the tutorial step counter again
and provide the next step. If the user has a question,
the bot will answer it and the slots will remain un-
touched. The tutorial dispatcher decides which cus-
tom action to start, depending on the current tutorial
slot. If a tutorial needs to ask user information, forms
can be used. They can be invoked by the custom ac-
tion before the first step, so the collected information
can be used in the subsequent steps.

Decision. As seen above, two approaches are eval-
vated for the requirement R1 in section 3.1.1. Al-
though the form approach utilizes an existing Rasa
tool, it comes with great disadvantages. The process
of adding new tutorials would be very compartmental-
ized, and there is no obvious way to remedy this. The
second approach using custom actions has a similar
problem, because for each tutorial, a custom action
has to be added. But the implementation effort can be
reduced by making use of object inheritance.

Tutorial
Request Intent

set slot: current tutorial
set slot: current_tutorial_step

Run form
Provide Step
1
Dialog
— |
Anything else Manager
“next” intent
Tutorial
Dispatcher
set slot: current tutorial
set slot: current_tutorial_step
Provide Step
2
Dialog
Anything else Manager

"next" intent

Tutorial Provide
Dispatcher ongratulation:

Figure 3: Flowchart diagram of the custom action approach
option to implement step-by-step tutorials.

4 PROTOTYPE

The design alternatives and corresponding design de-
cisions for the requirements mentioned in section
3.1.1-3.1.6 have been implemented in the chatbot pro-
totype. A first version of the prototype of the chatbot
can assist the MDE tool (SiSy) user with a set of tu-
torials and answer a set of FAQs, as seen in Figure
4.

Due to space limitations, only the implementation
specifics of the requirement R1 in section 3.1.1 is pre-
sented in this section.

Al-guided Model-Driven Embedded Software Engineering

o

You have been invited
to have a conversation
with Welcome to the
virtual SiSy assistant!

Say "Hi" to learn more.

« Button tutorial
List of FAQs:

* Which microcontrollers do you
support?

* What s uml?

« How to connect classes?

+ Compile error?

- Nostlink?

« Whati ion?

- W i

- Wi pull up’

Figure 4: Welcome screen of the chatbot with a list of its
capabilities.

4.1 Step-by-Step Tutorial

The SiSy tool provides various tutorials to learn
Model-driven implementation of embedded software.
In the first version of the prototype, three tutorials
are provided (Figure 4). In this section, the design
and implementation of a message handling mecha-
nism where a multi-step tutorial can be followed, and
the chatbot is able to answer questions at any time is
presented.

Figure 5 shows the design of basic structure of tu-
torial implementation using the LED tutorial exam-
ple (i.e., toggling LEDs in embedded target) example
and described below. Further, the series of steps in
the step-by-step LED tutorial provided piece-wise by
the chatbot for the MDE tool SiSy (as a conversation-
based tutorial) is shown in Figure 6 and Figure 7.

o A Tutorialhhandler class has been implemented
to reduce implementation effort involved in
adding new tutorials (i.e., for scalability, extensi-
bility and continuous improvement). Adding a tu-
torial always requires a new custom action. These
actions are very similar to attributes and functions.

o To add a new tutorial, one has to create a new Sub-
class to the TutorialHandler class and overwrite
the name function and init function. Note that,
the tutorials are split into multiple text messages
and presented to the user based on the user input
during conversation with the chatbot.

e For instance, for the LED Tutorial, a custom ac-
tion handle_led_tutorial has been created (see ac-
tions.py in Figure 5). The function of this custom
action is to provide the next step of the LED tuto-
rial. The action gets the current step of the LED
tutorial by querying the tracker for a specific slot.

401

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

actions.py

In actions.py create Subclass
to TutorialHandlerClass

Set class variables:
total_number_of steps = 6
predecessor = "Setup Tutori

al”

overwrite name method:
def name{self):

retum
“handle_led_tutorial"

Centroller type Yes controller_type_is_relevant =
relevant? True
No

et values for all
total_number_of_steps_scontroller_type>

I

domain.yml
register the created
action

actions:

- handie_led_tutorial

register intent
intents:
- request_led_tutorial

create responses according to this
format:
utter_<name>_step_sstepnumbers

create responses according to this format:
utter_<names_<controller_type>_step_<stepnumbers

nlu.yml

Add examples for request
intont: equest._led_tutorial
examples: |
-LED
-build LED
- start led tutorial

- led tutorial

rules.yml
#add rule to start handler action after request
intent

~rule; call led tutorial handler
steps:
- intent: request_led_tutorial
-action: utter_tutorial_manual

- action: handle_led_tutorial
wait_for_user_input: false

Figure 5: Design of basic structure of tutorial handling in
chatbot (here example is LED Tutorial).

If the action was called for the first time, it should
first start a form.

e The form defines all information that is needed
by the user in order to provide the correct tutorial
steps. Here the user is asked about the controller
type he has. Based on the user input, (and if the
current step is greater than zero and smaller than
the maximum number of steps), the next tutorial
step will be uttered. The name of the utterance for
each step follow the pattern utter tutorial name
step number.

e Based on the extracted information from user in-
put, the form could be used here to provide fine-
grain instructions tailored to the user information.
If the total number of steps is reached for a tuto-

402

rial, a congratulation message will be uttered.

e In addition, two rules have been added for the dia-
log manager (see rules.yml in Figure 5). The first
rule: there is a 'request led form intent’, the LED
form handler is called. This is how the tutorial
will be started. The second rule: Whenever there
is a 'next’ intent, the ’dispatch tutorials’ action
will be called. This will check which tutorial is
active and dispatch to the correct action.

This architecture described above is flexible since it
allows the user to switch between multiple tutorials.
Whenever the user wants to change the current tu-
torial, the user can type the name of the tutorial he
wishes, and it will start.

5 CONCLUSION

In this paper, an use case of Al-driven MDE is pre-
sented. A proposal to qualify MDE tools for ESE with
an Al assistant or a chatbot is outlined. The require-
ments of a conversational chatbot which uses text (for
input and output) and image (only output) as the con-
versational medium was elaborated. The design al-
ternatives and design choices made to fulfil one of
the requirements (step-by-step tutorial) is presented in
this short paper. In the prototype, the design of a ba-
sic structure for message handling mechanisms in the
chatbot is described. It was showcased how a multi-
step tutorial can be followed by the user and how the
chatbot is able to answer questions at any step.

This is only the tip of the iceberg. The bot can
be further improved in umpteen ways. One possible
use case is by making use of training data for the di-
alog management, with the so-called stories. The bot
can help the user at a specific tutorial step, even if the
user does not ask for specific information. For ex-
ample an ‘unspecific problem’ intent could be added
with example messages like "It does not work’, 'noth-
ing works’, how does this work?’, ’I have a problem’
and so on. In the next step, the stories could be re-
vised and the responses that the chatbot should give in
the exact situation - depending on the current tutorial,
the current step or even slot values - are added to the
stories. After enough examples, the dialog manager
learns to provide the necessary information even if the
user does not ask for it specifically-thereby achieving
a true Al guided model-driven development experi-
ence.

Al-guided Model-Driven Embedded Software Engineering

This is how it works: In the beginning of each
tutorial | will ask you some questions about
your controller type etc. After that, the first
step of the tutorial will beginn. If you have
trouble to complete the tutorial step you can
ask me any of the listed questions.
Otherwise you can write "next", "continue”
or simply "nx" to get to the next step. If you
have accidentally given wrong information
or want to start over, you can reset the
dialog by typing "restart".

What kind of Micracontroller do you have?
Atmega AVR, STM32 or XMC?

Now let's start with the led tutorial. Step 1:
Right-click on Navigator {(Schnellzugriff) and
click on UML-Pakete. Open ARMC|asses.
Choose Led and drag and drop to application
area.

MNow let's start with the led tutorial. Step 1:
Right-click on Navigator (Schnellzugriff) and
click on UML-Pakete. Open ARMClasses.
Choose Led and drag and drop to application
area.

PR——

[t | - ey i

e

Step 2: Connect the added LED class to the
controller as aggregation (pointed, filled
arrow).

Step 3: Use the explorer to search for
PecPinOutput and drag it into the diagram.
Connect it to StatusLED as realisation.

Q & il

Figure 6: Step (a)-left and step (b)-right in the step-by-step LED tutorial provided piece-wise by the chatbot for the MDE tool

SiSy.
A g e
10 ~ iy
e e T
Step 2: Connect the added LED class to the
controller as aggregation (pointed, filled
arrow).
Step 3: Use the explorer to search for
PecPinQutput and drag it into the diagram.
Connect it to StatusLED as realisation.
et s P
e - 2 T
ot — i
Start typingam 0 £

next

Step 5: Overwrite the controlller method
onWork() with the following two lines:
statusLED.toggle(); waitMs({200);

next

Step 6: Now you can compile and flash the
programm.

Good job, you did it!

The next tutorial is the button tutorial. You
can start it by typing “button tutorial”.

Figure 7: Step (c)-left and step (d)-right in the step-by-step LED tutorial provided piece-wise by the chatbot for SiSy tool.

403

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

REFERENCES

Abdellatif, A., Badran, K., Costa, D., and Shihab, E. (2021).
A comparison of natural language understanding plat-
forms for chatbots in software engineering. IEEE
Transactions on Software Engineering (early access).

Adamopoulou, E. and Moussiades, L. (2020). Chat-
bots: History, technology, and applications. Machine
Learning with Applications, 2:100006.

Akdur, D., Garousi, V., and Demirérs, O. (2018). A survey
on modeling and model-driven engineering practices
in the embedded software industry. Journal of Systems
Architecture, 91:62-82.

Andrianarison, E. and Piques, J.-D. (2010). Sysml for em-
bedded automotive systems : a practical approach.

Angara, P. P. (2018). Towards a deeper understanding of
current conversational frameworks through the design
and development of a cognitive agent.

Bocciarelli, P., D’Ambrogio, A., Giglio, A., and Gianni, D.
(2013). A saas-based automated framework to build
and execute distributed simulations from sysml mod-
els. In 2013 Winter Simulations Conference (WSC),
pages 1371-1382.

Bocciarelli, P., D’Ambrogio, A., Giglio, A., and Paglia, E.
(2019). Model-driven distributed simulation engineer-
ing. In Proceedings of the Winter Simulation Confer-
ence, WSC ’19, page 75-89. IEEE Press.

Botkit: Building blocks for building bots (Last accessed:
21.11.2021). https://botkit.ai/.

Botlytics:Analytics for your bot (Last accessed:
21.11.2021). https://www.botlytics.co/.

Botsify - A Fully Managed Chatbot Platform To
Build AI-Chatbot (Last accessed: 21.11.2021).
https://botsify.com/.

Bughin, J., Seong, J., Manyika, J., Chui, M., and Joshi,
R. (2018). Notes from the Al frontier: Modeling
the impact of Al on the world economy. https:
/Iwww.mckinsey.com/featured-insights/artificial-
intelligence/notes-from-the-ai-frontier-modeling-
the-impact-of-ai-on-the-world-economy. [Online;
accessed 17-Nov-2021].

Canonico, M. and Russis, L. D. (2018). A comparison and
critique of natural language understanding tools.
Chatfuel Chatbot solution (Last accessed: 21.11.2021).

https://chatfuel.com/ .

Chatterbot python library (Last accessed: 21.11.2021).

https://chatterbot.readthedocs.io/en/stable//.

Dialogflow (Last accessed: 21.11.2021).
https://cloud.google.com/dialogflow/.
Enterprise Architect tool (2021).

http://www.sparxsystems.com/. Accessed 17-Nov-21.

IBM Software (2021). Ibm rational rhapsody de-
veloper. https://www.ibm.com/software/products/en/
ratirhap. Accessed 17-Nov-21.

LUIS-Language Understanding (Last accessed:
21.11.2021). https://docs.microsoft.com/en-
us/azure/cognitive-services/luis/.

Manychat:Chat Marketing Made Easy with ManyChat (Last
accessed: 21.11.2021). https://manychat.com.

404

Mathworks Products (Last accessed:
https://www.mathworks.com/.

MDE _Intelligence (2021). 3rd Workshop on Artificial
Intelligence and Model-driven Engineering. https:
//mde-intelligence.github.io/. [Online; accessed 17-
Nov-2021].

Mhenni, F.,, Choley, J.-Y., Penas, O., Plateaux, R., and Ham-
madi, M. (2014). A sysml-based methodology for
mechatronic systems architectural design. Advanced
Engineering Informatics, 28(3):218-231. Multiview
Modeling for Mechatronic Design.

Mhenni, F., Nguyen, N., and Choley, J.-Y. (2018). Safesyse:
A safety analysis integration in systems engineering
approach. IEEE Systems Journal, 12(1):161-172.

Nayyar,D.A. (2019). Chatbots and the Open
Source Tools You Can Use to Develop Them.
https://www.opensourceforu.com/2019/01/chatbots-
and-the-open-source-tools-you-can-use-to-develop-
them/.

OMG (Last accessed: 21.11.2021). Object management
group. https://www.omg.org/.

Pandorabots: Chatbots with character (Last accessed:
21.11.2021). https://www.pandorabots.com/.

Ramesh, K., Ravishankaran, S., Joshi, A., and Chan-
drasekaran, K. (2017). A survey of design techniques
for conversational agents. In Kaushik, S., Gupta, D.,
Kharb, L., and Chahal, D., editors, Information, Com-
munication and Computing Technology, pages 336—
350, Singapore. Springer Singapore.

Rasa architecture (Last accessed: 21.11.2021).
https://rasa.com/docs/rasa/arch-overview/.

Rasa: Open Source Conversational Al (Last accessed:
21.11.2021). https://rasa.com/.

Shawar, B. A. and Atwell, E. (2007). Different measure-
ment metrics to evaluate a chatbot system. In HLT-
NAACL 2007.

Simple System (2021). https://sisy.de/. Accessed 17-Nov-
21.

Sporer, H. (2015). A model-based domain-specific lan-
guage approach for the automotive e/e-system design.
RACS, page 357-362, New York, NY, USA. Associa-
tion for Computing Machinery.

Sundharam, S. M., Iyenghar, P, and Pulvermueller, E.
(2021). Software architecture modeling of autosar-
based multi-core mixed-critical electric powertrain
controller. Modelling, 2(4):706-727.

van der Sanden, B., Li, Y., van den Aker, J., Akesson, B.,
Bijlsma, T., Hendriks, M., Triantafyllidis, K., Verriet,
J., Voeten, J., and Basten, T. (2021). Model-driven
system-performance engineering for cyber-physical
systems. In Proceedings of the 2021 International
Conference on Embedded Software, EMSOFT ’21,
page 11-22, New York, NY, USA. Association for
Computing Machinery.

21.11.2021).

Visual Paradigm (2021). https://www.visual-
paradigm.com/solution/freeumltool/. Accessed
17-Nov-21.

Watson Assistant (Last accessed: 21.11.2021).

https://www.ibm.com/uk-en/products/watson-
assistant.

