
NLP-based User Authentication through Mouse Dynamics

Hoseong Asher Lee1, Nikhil Prathapani1, Rajesh Paturi1, Sarp Parmaksiz1 and Fabio Di Troia2 a

1Department of Computer Engineering, San Jose State University, San Jose, CA, U.S.A.
2Department of Computer Science, San Jose State University, San Jose, CA, U.S.A.

Keywords: Insider Threat Attack, Intrusion Detection, CNN, LSTM, biLSTM, NLP.

Abstract: Insider threat attacks are increasing in most organizations yearly. It is also tough to prevent this type of attack
because the threat is within the boundary, making them more dangerous than external threat actors. There
can be a situation where a strong authentication layer is implemented for the external users, but due to cost or
maintenance effort reasons, the authentication layer for insiders might not have proper security controls. One
of the types of insider threat attacks is to exploit established sessions by legitimate users. There are certain
applications and operating systems that provide an in-built security mechanism to detect idle sessions and
automatically expire the sessions if no action is performed by the user. However, this type of protection is
still vulnerable since it cannot really detect if the user who is taking action is the legitimate user or not. In
this paper, we propose to use an advanced machine learning model based on Natural Language Processing
(NLP) algorithms to authenticate users based on their mouse dynamics in web browser contexts. The model
can provide a protective layer that continuously monitors against insider threat attacks. By this method, we
can prevent malicious users from accessing unauthorized assets and provide enhanced security to legitimate
users.

1 INTRODUCTION

The internet technology has been increasingly
adopted to our daily lives. From smartphones to
the technologies allowing us to ‘work-from-home’,
we are in an era where digital information is widely
exposed. All this led to the field of cybersecurity
becoming more expansive. Today, cybersecurity is
needed and widely adopted than it was in the re-
cent past. In computers, we have firewalls, antivirus
software, intrusion detection and prevention technolo-
gies that protect users and companies from outside
threats. There are also operating system level pro-
tections, such as authentication that might prevent an
attacker from taking over a machine. Mac OS uses
Keychain (Apple Inc., 2021) for authentication, while
Linux systems use Pluggable Authentication Module
(PAM) (RedHat, 2020) to store authentication details.
However, there is not much security after a user is
authenticated, which is where an insider threat dam-
ages the most. The lack of internal security provides
a challenge in congregated settings, such as schools,
colleges, corporate organizations, and government of-
fices. In these types of situations, users need a solu-
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tion that helps them to protect their browsing data,
which might contain sensitive financial information,
intellectual property, and personally identifiable in-
formation. Machine learning can be potentially a
promising solution for such problems. In the inter-
net browsers, web applications or browser extensions
can track the end-user’s mouse dynamics, and that
data can be used to train a machine learning model
to authenticate the user. As the model gets trained
and more mature, both the security and the user ex-
perience are greatly improved. The end-users do not
need to periodically authenticate themselves, rather,
they will be prompted for authentication only when
the model suspects the end-user. Also, this can pre-
vent malicious users from intercepting the victim’s
browser and stealing data from it.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe the state-of-the-art
in the intrusion detection field by briefly introducing
related work in this area. In Section 3, we discuss
background topics such as the machine learning mod-
els adopted in this research. Section 4 covers the ap-
plied methodology analyzing in detail every specific
approach followed for every machine learning model.
In Section 5, we present and analyze the results of
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our experiments. Section 6 describes the software im-
plementation of our proposed work by introducing a
web-browser extension. Finally, Section 7 presents
the conclusions of our paper and includes a discus-
sion of possible directions for future work.

2 RELATED WORK

Several works have been piblished on the long last-
ing problem of intrusion detection. For example, the
work in (Saber, 2019) describes a machine learning-
based approach to detecting vehicle theft by analyzing
the anomalies in the driving behavior of the user. An-
other example is the work in (Manikoth et al., 2018),
where the authors implemented a detection mecha-
nism based on several classifiers with the goal to find
the best subset of features to identify unauthorized
use of a mobile device. In (Huang et al., 2021), the
authors propose a new dataset to authenticate users
to their own mobile devise. This last work relies on
gesture-based authentication, where the sensors infor-
mantion are used to train machine learning models.
As seen in this examples, in order to achieve machine
learning-based user authentication, there can be dif-
ferent approaches to accomplish it. We describe now
different of such approaches proposed in academia
over the past few years. In particular, we concentrate
on browser intrusion and insider threat attacks. Three
works step forward due to their promising results and
innovative solutions in the field of intrusion detec-
tion. One approach was to intervene with users while
they are using the computer periodically (Chen et al.,
2014). The approach was proven to be successful in
terms of achieving high accuracy to predict a legiti-
mate user. For five seconds of verification, it achieved
2.86% False Rejection Rate (FRR) and 4.00% False
Acceptance Rate (FAR). Where, FAR is the per-
centage of identifications in which unauthorised in-
dividuals are incorrectly accepted (also called fraud
rate), while FRR is the percentage of identifications in
which authorised individuals are incorrectly rejected
(also called insult rate). Another method was to ex-
tract features from mouse operations (Jorgensen and
Yu, 2011). This approach was also fairly successful,
resulting in roughly 2% of both FRR and FAR. How-
ever, the average time to authenticate users was rela-
tively long, for example several minutes to sometimes
even more than 10 minutes. Although it can predict a
malicious user, within that time frame, the malicious
user can still performs a considerable amount of dam-
age to the victim’s data. Hence, the fact that it takes
too long to authenticate users makes this approach not
feasible to be applied in the real world. The work pro-

posed in this paper takes inspiration from a research
which proposed to use CNN algorithm to authenti-
cate users using mouse dynamics (Hu et al., 2019).
In this approach, the authors converted mouse opera-
tions into JPEG images following certain rules. They
used an open-sourced dataset for mouse dynamics.
And with that, they were able to achieve 2.96% FAR
and 2.27% FRR within only seven seconds. The great
advantage of this approach is that it does not extract
features from a model, and does not miss any infor-
mation from the user actions. Furthermore, it does not
require any other algorithms to extract features from
the dataset. For this reason, we decided to improve
further in the direction undertaken by this interesting
work. In particular, we decided to apply Natural Lan-
guage Processing (NLP) algorithms to the extracted
user data.

3 BACKGROUND

In this Section, we describe different types of machine
learning algorithms that we applied for mouse dynam-
ics user authentication in our experiments

3.1 CNN

Convolutional Neural Network (O’Shea and Nash,
2015) (CNN) is a type of neural network algorithm
that is popular for analyzing images and detecting pat-
terns. One of the characteristics of the network is that
it has multiple convolutional layers, and those layers
are responsible for finding patterns in input images.
One can think of an input image as a representation
of a mathematical matrix. CNN internally applies fil-
ters to groups of cells in the matrix, and this results in
the pattern recognition. There are many types of filter
for recognizing different patters, for instance simple
shapes such as squares or edges. By utilizing those fil-
ters, more sophisticated shapes can be detected, such
as a dog, a cat, or a human’s face. A representation
of the patterns recognized by a CNN is shown in Fig-
ure 1 for different classified objects.

3.2 LSTM

LSTM stands for long short term memory and it is
a type of recurrent neural network (RNN) algorithm.
Traditionally, RNN had an issue of short term mem-
ory where important data could not be propagated to
the final layers during prediction. LTSM aims to re-
duce this problem. RNNs usually have multiple short
term memory cells. In the case of LSTM, we have
a memory cell which includes scope for long term
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Figure 1: The left side panel contains the output result
from a CNN model, and the output results contain the pat-
terns identified from the input pictures on the right side
panel (Dshahid380, 2019).

memory and short term memory. For example, if
we have an input word in short term memory opera-
tion, it is converted into a list of numbers or a vec-
tor x(t), while previous hidden state is denoted by
h(t − 1), which is also a vector. Finally, a sigma op-
eration is computed as weighted multiplication, and
the activation function hyperbolic tangent (tanh) is
applied. During LSTM training, a large number of
statements are inputted to the algorithm which will
build the understanding in the recurrent neural net-
work. Throughout this process, the model discards
unnecessary information and stores only what is rel-
evant. A full LSTM operation comprises of a forget
gate, input gate, and output gate, as denoted in Fig-
ure 2. As the name suggests, forget gate is used to
discard information that is not needed for prediction
in future. In the case of a forget gate, the previous
hidden state h(t −1) and the current input x(t) are ac-
tivated through a sigmoid function that restricts the
value between 0 and 1. Finally, the output of the sig-
moid function is multiplied with the previous memory
state c(t −1).

Figure 2: LSTM gates and activation functions (Dang et al.,
2021).

In the case of the input gate (that adds new
memory-meaningful information), we have sigmoid
and tanh functions both for “h(t-1)” and “x(t)”, and
each vector is bound with a weight when is given to
the function. Both of these outputs are multiplied to-
gether, and long term memory data is then added. Fi-
nally, we have the output gate, where a weighted sum
of h(t − 1) and x(t) is computed before being acti-
vated by the sigmoid function. This computed output
is then processed to generate a new hidden state h(t).

3.3 biLSTM

Bidirectional long-short term memory (biLSTM) is
the successor of the unidirectional LSTM model. In
regular LSTM, the only information that is present is
the input from the past. Unlike unidirectional LSTM,
biLSTM can take inputs from both the past and the fu-
ture of the input sequence relatively to a given word.
This architecture style makes biLSTM more versa-
tile than the LSTM model. According to the study
in (Abduljabbar et al., 2021), when applied to the
same dataset, biLSTM outperformed unidirectional
LSTM by a large margin. Another study (Siami-
Namini et al., 2019) also proved that biLSTM is
around 38% more accurate than regular LSTM based
on the dataset under analysis.

4 METHODOLOGY

We implemented several experiments using CNN,
LSTM, and biLSTM. Here we give a description of
the methodology followed to accomplish such exper-
iments.

4.1 CNN

Overall, this approach comprises of three different
steps:

1. Conversion of CSV data to JPEG Images

2. Data Augmentation

3. Model Training

For the most part, we adopted the methods proposed
in (Balabit, 2021), where the mouse dynamics dataset
was taken from an open source data repository. We
adopted the same dataset. Since the repository pro-
vides the data in the CSV format, the data needs to be
converted before being fed to the CNN algorithms.
Hence, we converted the CSV data into JPEG im-
ages. The mouse operation is mapped to certain dif-
ferent shapes of drawing in the JPEG image. Table 1
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shows the different input actions and the correspond-
ing graphical representation. Each JPEG image con-
tains a certain number of mouse operations, and the
number can vary by choice. In our study, we experi-
mented with 100, 500, and 1000 mouse actions.

The CNN model contains seven layers. The first
four layers are convolutional layers, and the remain-
ing three are fully-connected layers. The ReLU acti-
vation function was applied to all layers in the model
except for the last one. The input shape to the first
convolutional layer was set to [100,100,3]. The first
two values indicate the width and height of input
JPEG, and the last value indicates the color chan-
nel. Hence, the model reads images with red, blue,
and green colors with 100 pixel width and 100 pixel
height. The kernel size was set to 3 for all convo-
lutional layers. The filter was set to 32 for the first
convolutional layer, 32 for the second convolutional
layer, 64 for the third convolutional layer, and 128 for
the last convolutional layer. A max pooling layer was
also added after each convolutional layer.

4.2 JPEG Image Data

The open source dataset consists of 10 different users’
mouse dataset. An image rotation method to augment
the data was also implemented in our experiments.
Out of the converted JPEG images, we picked random
images and rotated them by 90, 180, or 270 degrees.
The selection of the angle was also random, and the
augmentation was accomplished until it reaches the
maximum number of images.

Figure 3: Converted JPEG images from CSV-formatted
mouse operation data (Balabit, 2021). Each row of images
is created with different mouse actions (m) values. From
the top row, m is set to 100, 500, and 1000, respectively.

4.3 LSTM

For LSTM , we tested three different approaches:

1. Model training with basic GRU (Gated Recurrent
Unit)

2. Unidirectional LSTM
3. Bidirectional LSTM

For all three approaches, we first began by reading the
input dataset as numpy files. Numpy files in python
provide support for large arrays and matrices. We
also added an additional script to read the contents
of numpy data files. After we loaded the inputs as
numpy files, the next step was to choose either GRU,
unidirectional LSTM or biLSTM for model training.
After we compiled a model, the next step was to fit the
model. Here, we chose the X value and Y value from
input numpy arrays. Also, we chose the number of
epochs, which basically denotes the number of passes
of the entire training dataset that the ML model has
completed. We also chose the validation split which
is the parameter specifying how much of training data
is used for validation (a value between 0 and 1). Vali-
dation data is not used for the training, but to evaluate
the loss and the accuracy. In our work, we set ”valida-
tion split=0.1”, that is, 10% of the training data was
used for validation. Next step after fitting the model
was to train the model and obtain the results of accu-
racy and loss over various epochs. We also plot the
confusion matrix for the same. Confusion matrix is
used for performance measurement in machine learn-
ing classification where the output is a table with four
different combinations of predicted and true values.
It is utilized for recall, accuracy, and precision of a
model. The four possible outcomes are True positive,
True negative, False positive, and False negative. True
positive means that you predicted positive and the out-
come was correct. True negative means that the model
predicted negative and the outcome was not correct.
False positive means that the model predicted positive
and the outcome was not correct (type 1 error). False
negative means that the model predicted negative and
the outcome was not correct (type 2 error).

5 RESULTS

We trained the models with different machine learn-
ing algorithms. Here, we describe the outcomes of
our experiments in detail.

For the fully-connected layers, the first layer con-
tains 1024 neurons passing Dropout with probabil-
ity of 50%, and the second layer contains 512 neu-
rons passing Dropout with probability of 50%. The
Adam optimizer function was used with the parame-
ters learning rate=0.01, beta1=0.9, beta2=0.999, and
epsilon=1e-08. To train the model, the legal user data
and illegal user data were mixed randomly.

Our first experiment relied on purely CNN as a
confirmation of the work in (Hu et al., 2019), which
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Table 1: Mapping between mouse operations and corresponding drawings.

Operation from CSV data Mapped Drawing in JPEG image

Move Red Line

Pressed Blue Circle

Released Green ”X” Shape

Drag Yellow Line

Scroll Up Cyan Upward Triangle

Scroll Down Cyan Downward Triangle

Stay Red Translucent Square (Size of Square related to the time of Stay op-
eration)

obtain a maximum accuracy of around 81%. The
meaning of accuracy in this context is how often the
anti threat system was able to detect a malicious in-
truder. Table 2 contains the results of this experiment
with different values of mouse operations (m).

Then, we tested the GRU model, which was able
to achieve a maximum accuracy of around 75%. Ta-
ble 3 contains the model parameters and layers infor-
mation. Please note that, for this and the subsequent
experiments, there was no need to convert the data to
images. This reduced considerably the overhead in
analyzing the user’s behavior.

Unidirectional LSTM, instead, obtained a maxi-
mum average of around 78%. Table 4 describes the
parameters and layers used. Both values from LSTM
and GRU were below the results obtained in (Hu
et al., 2019), even though by a realtively small mar-
gin. However, implementing the biLSTM layer, the
best accuracy achieved was around 95%, a consider-
ably superior result when compared to the previous
work. Table 5 describes the parameters and layers
used. By these results, we see that biLSTM is a valu-
able and promising algorithm to implement when in-
sider threat attacks are a possibility. A comparison of
all the four approaches is given in Figure 4.

In Section 6, we propose a possible real-life im-
plementation of this approach as part of a browser ex-
tension.

6 IMPLEMENTATION

As mentioned earlier, the mouse dynamic authentica-
tion can be used in a browser extension. Through the
content script of a browser extension, the tool can ac-
cess the mouse operations data for end-users and pro-
vision a ML model for such user. To achieve this, the
user’s mouse operation are collected. Those collected
data is then used for both training the ML model

and for authenticating the end-user in real-time. The
project architecture follows a typical browser exten-
sion architecture where the browser extensions run
asynchronously. One possible way to implement such
architecture is to not develop a backend component.
In this way, the machine learning model can be de-
ployed in a backend server and the browser extension
can leverage the model in the backend. However,
with this design choice, it would incur in constant
backend server maintenance. Also, if hackers run a
DDoS (Distributed Denial of Service) attack against
the central server, the authentication mechanism on
the browser extension can be impacted. Hence, for
scalability and security perspective, we decided to
run the model in the browser without contacts with
the server. This is possible with the employment of
TensorFlowJS (Google, 2021). TensorFlowJS allows
developers to run machine learning models and al-
gorithms in the browser context using the JavaScript
programming language. The browser extension runs
asynchronously in the browser, and the browser col-
lects and analyzes the mouse dynamics from the end-
users by using Browser DOM API and TensorFlow
models. If the extension concludes that the end-user
is not the actual user but a malicious user, it locks
the browser and the user is not able anymore to use
it until they solve the authentication challenges. For
instance, an employee can have specific access to cer-
tain internal resources, such as app development time-
lines or codebases. Those resources are considered
confidential in most cases because they can affect the
business operation if they are leaked. In the insider
threat attack scenario, an employee would have been
already authenticated for accessing a resource and the
session is active in the browser. The employee could
leave the computer unattended at risk of a bad actor
taking actions on such device. Specifically, the ma-
licious insider could access the resources and steal
them. However, with the use of the browser lock ex-
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Table 2: CNN model prediction by the number of mouse operations (m).

m Accuracy Loss # of Legal User data # of Illegal User data

100 0.811 3.04 4219 18054

500 0.810 3.05 850 3617

1000 0.809 3.06 426 1807

Figure 4: Maximum accuracy of the four tested model over mouse actions values of 10, 100, and 1000, obtained after 10
training epochs.

Table 3: Model parameters and layers for the GRU model.

Layer (type) Output Shape Parameters

input 1 (InputLayer) (None, 100, 9) 0

gru (GRU) (None, 6) 306

dense (Dense) (None, 2) 14

Table 4: Model parameters and layers for the LSTM model.

Layer (type) Output Shape Parameters

input 1 (InputLayer) (None, 100, 9) 0

lstm (LSTM) (None, 6) 384

dense (Dense) (None, 2) 14

Table 5: Model parameters and layers for the biLSTM
model.

Layer (type) Output Shape Parameters

input 1 (InputLayer) (None, 100, 9) 0

biderectional (None, 12) 768

dense (Dense) (None, 2) 26

tension, the browser can detect the hacking attempt
by analyzing the mouse dynamics and prevent insider

threat attacks. When the browser is locked due to sus-
picious attempts, the end-user is given an authentica-
tion challenge, and only if the user solves such chal-
lenge, the browser will be unlocked. The challenge
can vary based on the implementation, but it can even
be a traditional password authentication.

7 CONCLUSIONS

As a part of this research, we worked with mouse
dynamics data to tell malicious users behavior apart
from legitimate users activity. At first, we used a
CNN model where we converted a sequence of mouse
movements belonging to given users to JPEG images,
and use the images as input to train a CNN model for
user authentication. With the CNN model, we were
able to achieve user authentication with about 81%
of accuracy. Furthermore, we tested GRU, unidirec-
tional LSTM, and biLSTM. With a single GRU layer
after 10 epochs, the best accuracy was around 75%.
With a single LSTM layer after 10 epochs, the best ac-
curacy achieved was around 78%. With the biLSTM
layer and after 10 epochs, the best accuracy achieved
was around 95%. At the outset, the biLSTM model
result was very promising, and it might be ideal to
use this type of model for real-world applications like
browser lock extensions where we identify malicious
insider attacks.
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As future work, we want to use a unified dataset
where we can compare biLSTM to hybrid CNN-
LSTM and CNN-biLSTM based approaches. More-
over, the dataset used could be enhanced with ad-
ditional users and data augmentation techniques to
test even further the efficacy of the proposed biLSTM
method.
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