
Machine Learning and Feature Engineering for Detecting Living off the
Land Attacks

Tiberiu Boros1, Andrei Cotaie1, Antrei Stan1, Kumar Vikramjeet2, Vivek Malik2

and Joseph Davidson2

1Adobe Systems, Romania
2Adobe Systems, U.S.A.

Keywords: Machine Learning, Living-off-the-Land (LotL), Feature Engineering, Artificial Intelligence, Random Forest,
Commands, CommandLine, OpenSource, Linux.

Abstract: Among the methods used by attackers to avoid detection, living off the land is particularly hard to detect. One
of the main reasons is the thin line between what is actually operational/admin activity and what is malicious
activity. Also, as shown by other research, this type of attack detection is underrepresented in Anti-Virus
(AV) software, mainly because of the high risk of false positives. Our research focuses on detecting this type
of attack through the use of machine learning. We greatly reduce the number of false detection by corpora
design and specialized feature engineering which brings in-domain human expert knowledge. Our code is
open-source and we provide pre-trained models.

1 INTRODUCTION

Attackers spend a lot of time trying to trick and cir-
cumvent sophisticated malware detection algorithms
that are present in modern AV software. A particu-
larly interesting method is to rely on binaries and tools
that are often part of the base operating system (OS)
distribution to perform reconnaissance, privilege es-
calation and lateral movement. Because it leverages
what is already present in the system, this technique
is called living off the land (LotL) and it is hard to
detect for several reasons:

• Context: When analyzed on its own, the ex-
ecution of a specific standard binary might not
provide sufficient evidence of malicious activity.
This is the case for most reconnaissance activities
which might look like normal applications check-
ing for privileges or trying to find if a service is up
or not on a remote host;

• Scope: Most of the LotL tools and binaries
are normally used by system administrators and
power users to achieve goals that are sometimes
indistinguishable from those of the attackers (e.g.
add a new user or change a password). Also, some
legitimate software installers are known to use a
similar approach. This renders the line between
administrative operations and malicious activities

thin;

• Reliability: Based on the double scope of these
tools, it is likely that the detection mechanisms
would generate false positives, which could some-
times block normal operations for legitimate soft-
ware and cause outages in corporate networks
(where there is a higher level of administra-
tive/power user operations than on home sys-
tems).

The motivation for the present research comes
from Barr-Smith et al. (2021), where the researchers
focus on the evasion rate of LotL-based malware, con-
cluding that the detection of LotL attacks is under rep-
resented in modern AV software.

In the present work we propose a system aimed at
highlighting LotL related-activity on a given host. We
mitigate some issues related to data sparsity and false
positives (see Section 3 for clarifications) through
our feature-engineering process (which is described
in section 3.2) and through the way we design our
dataset (Section 3.1). Also, we rely on a classical ap-
proach to machine learning: feature engineering and
well-established classifiers. To account for this we
argue that in theory, a deep-learning approach could
provide superior results, but the classical process al-
lows for hand-crafted exceptions and it makes it easy
to explain the results and see where and why the sys-

Boros, T., Cotaie, A., Stan, A., Vikramjeet, K., Malik, V. and Davidson, J.
Machine Learning and Feature Engineering for Detecting Living off the Land Attacks.
DOI: 10.5220/0011004500003194
In Proceedings of the 7th International Conference on Internet of Things, Big Data and Security (IoTBDS 2022), pages 133-140
ISBN: 978-989-758-564-7; ISSN: 2184-4976
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

133



tem fails.
Because a large-scale LotL dataset is hard to ob-

tain, we had to build our own corpus in order to train
and test the models. We describe the process we used
and we include the open-source repositories that we
collected malicious examples from. Everything de-
scribed in this paper is currently freely available as
an open-source repository (link provided in Section
6) and a PIP package with pre-trained models (lolc).
However, we are unable to share the corpus because
the benign examples could contain sensitive informa-
tion. Instead, we offer insights into our data and tag
distribution (Section 5).

2 RELATED WORK

Whether or not we are concerned about LotL detec-
tion, intrusion detection systems fall in two main cate-
gories: (a) Signature-Based (SB) and Anomaly-Based
(AB).

Signature-Based detection relies on identifying
patterns of commands that were previously observed
to have been misused in other attacks Modi et al.
(2013). With a high number of rules comes a high
accuracy. However, it generalizes poorly on new at-
tack methods and, to our knowledge, the most effi-
cient way to automatically catch and generate rules
for new attacks methods is through the use of honey
pots Kreibich and Crowcroft (2004). The later men-
tioned come with their own ups and downs, which
will not be discussed here, except for the fact that,
in time, attackers learn how to detect and avoid honey
pots themselves.

Anomaly-Based detection relies on modeling,
usually through statistics, what can be regarded as
normal operations and on alerting whenever a sys-
tem or application falls outside the normal behaviour
Boros et al. (2021); Butun et al. (2013); Lee et al.
(1999); Silveira and Diot (2010)1. They can either
rely on directly modeling a monitored system or on
computing the model based on a preexisting data-
setDurst et al. (1999), though the later would nor-
mally fall into the supervised learning class, rather
than the unsupervised (anomaly-based) class. While
all AB systems are better at adapting and detecting
new attack methods, purely unsupervised methods
usually yield a higher number of false positives than
their supervised counterparts. On the other hand, su-
pervised methods are better at avoiding false alerts,

1Some of the cited work, refers to network based
anomaly detection. The basic ideas and principles still ap-
ply for LotLs detection, but the volume of data is much
lower.

but they are only as good as the labeled data they are
trained on, thus requiring periodic updates and higher
maintenance.

Notice: This research only focuses on misuse
of LotL binaries and tools. It might seem obvious
for most security experts, but we are going to say
it anyway: Relying on just one type of detection,
including LotLs detection, is not effective from the
security standpoint. Only by combining signature
based, anomaly based, network profiling, obfusca-
tion detection, system auditing and all the other well-
established methods, a Defense in Depth approach,
can one obtain a decent level of security and safety.

3 PROPOSED METHODOLOGY

Our methodology can be classified as a special case of
signature based intrusion detection that employs ma-
chine learning for modeling. There are two main ML
related issues we need to take into consideration:

(a) Data Sparsity: A naive approach would be to
rely on n-gram related features that can be easily ex-
tracted from the command-lines in the dataset. This is
probably one of the most common approaches when
it comes to using ML on text data. However, this re-
sults in a rich feature set, which in turn generates data
sparsity and enables the model to quickly over-fit the
dataset and generalize poorly on previously unseen
examples.

(b) False Positives: Given the skewed nature of
real-life data2, there is always a “power-struggle” be-
tween precision (how many of the examples that are
marked as malicious are actually labeled correctly)
and recall (how many of the malicious examples from
the overall mass are actually identified). This is best
captured by specific metrics for skewed datasets, such
as the F-Score.

In order to mitigate data sparsity we used a fea-
ture extraction scheme that is mostly manually de-
signed and incorporates lots of human-expert knowl-
edge. This keeps the feature-set to a decent size and
focuses mostly on features that weigh heavily on the
decision of the classifier (as opposed to automatically
extracted features, such as n-grams, that would proba-
bly introduce a lot of useless information). To address
false positives, we manually compile our dataset and
we use a huge ratio between benign and malign exam-
ples. Also, we repeatedly tweaked our feature extrac-
tion scheme and retrained our classifier, until we ob-
tained a high f-score, with the following mentioned:

2In a standard and relatively secure environment, most
of the collected data will probably be benign, and not mali-
cious

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

134



Figure 1: Our proposed methodology: (a) take raw data, (b) add labels for known commands, interesting paths, commandline
parameters, known patterns, (c) get enriched dataset and (d) apply classifier on generated labels.

whenever the case, we preferred to reduce the recall
at the expense of the f-score, rather than have a clas-
sifier that generates a lot of noise and ends up being
ignored by security analysts over time.

In what follows, we describe our dataset (Section
3.1), discuss our feature extraction scheme (Section
3.2) and evaluate our system (Section 4)

3.1 Corpora Description

Our primarily focus is to build a model that takes
as input raw command-lines and is able to detect if
they are used in LotL attacks. One challenging as-
pect of any ML-based approach is getting high quality
data to train on. To our knowledge, there is no com-
plete dataset that enables this. However, it is fairly
easy to get negative examples from multiple online
resources3. Thus we started by collecting all avail-
able examples of known LotL attacks and we manu-
ally filtered the dataset for ambiguous commands, by
removing any command that, taken on its own, could
be used in both attacks or normal operations, such as:

$ stat ˜/.ssh
$ iptables -L -n

3Our data was collected from the following
urls: https://gtfobins.github.io/ and https://lolbas-
project.github.io/

The total number of negative examples at the end
of this process was 1609. For collecting the posi-
tive examples we used our own infrastructure logs,
removed duplicates and performed random sampling.
In order to correctly detect duplicates we used an
open-source tool called Stringlifier4, which is able to
spot random strings, GUIDs, numbers, IP Addresses
and JWT tokens, thus enabling us to establish when
two string instances are actually the same command-
line with different parameters. We assumed that ran-
domly selecting the positive examples is likely to cap-
ture normal operations and has a less chance of hitting
sys-admin/power-user activity. We also preferred an
unbalanced dataset (only 0.02% negative examples)
because it better reflects real-life data and, with the
right feature engineering and tweaking, one can build
a robust classifier with a low false-positive rate and
good recall.

3.2 Feature Extraction and Modeling

Our feature extraction process is primarily inspired
by human experts and analysts. During analyzing
a command-line, people rely on certain cues, such
as what binaries are being used, what paths are ac-
cessed, they quickly browse through parameters and,
if present, they look at domain names, IP addresses

4https://github.com/adobe/stringlifier

Machine Learning and Feature Engineering for Detecting Living off the Land Attacks

135



Table 1: k-fold validation results for random forest (with 50 estimators), SVM and Logistic Regression with k=5.

Classifier F1-score Standard deviation Avg. train time
Random forest 0.95 0.013 18 minutes
SVM 0.95 0.027 3.5 hours
Logistic regression 0.93 0.014 1.2 hours

ports. Thus we designed special labels for the follow-
ing classes of features:

1. Binaries: We look for a list of common linux
binaries, regardless if they are part of LotL at-
tacks or not. Whenever we encounter a known
binary we tag the training example with a spe-
cific label that identifies the feature class (for later
analysis of the results) and the binary. For ex-
ample, “nc -e sh 10.20.30.40 1234” will re-
ceive two labels: CMD_NC and CMD_SH;

2. Paths: We compiled a limited list of inter-
esting paths that are usually in attacks such
as temporary locations that don’t require any
special writing permissions, special devices
found in “/dev/”, known locations for sensi-
tive data (e.g. “˜/.ssh/”), etc. For example,
“sh -i >& /dev/udp/(...)”, will receive the
label PATH_DEV_UDP;

3. Parameters: Similarly to paths and bi-
naries, we also label common parame-
ters, using a similar schema: command
“nc -e sh 10.20.30.40 1234” will also
receive the label “PARAM_E”;

4. Networking: We look for cues of networking
in all command-lines, such as protocol names
(e.g. http, ftp) domain names and IP addresses.
For IP addresses we distinguish between private,
public, all and loopback. For clarity, the com-
mand “nc -e sh 10.20.30.40 1234”, will re-
ceive the label IP_PRIVATE.

5. Pattern Detection: Using a list of known LotL
malicious looking commands we build a series of
regexes where purpose is to identify LotL compo-
nents in commands. For example, let’s take the
following command:

python -c ’import sys, socket, os,
pty

s=socket.socket()
s.connect((os.getenv(""RHOST""),

int(os.getenv
(""RPORT"")))

)
[os.dup2(s.fileno(),fd) for fd in

(0,1,2)]
pty.spawn(""/bin/sh"")’.

There are a couple of pieces of infor-
mation we can extract using regex. We
can detect the use of the pty library
r’python.*\-c.*pty’ or we can detect the
socket library r’python.*\-c.*socket’, the
connection itself r’python.*\-c.*\. connect’
or the shell invocation itself r’python.*\-c.
*pty.*sh’. The regexes can be more or less
permissive but the scope is to generate as much
context as possible.

For the command in the last example, the
feature extraction phase would generate tags as:
PATH /BIN/SH, COMMAND PYTHON, COM-
MAND FOR, KEYWORD -C, KEYWORD SOCKET,
KEYWORD OS, KEYWORD PTY, KEY-
WORD PTY.SPAWN, python socket, python shell,
import pty.

The classifier is trained to output a binary deci-
sion LotL/non-LotL, based on the labels we previ-
ously discussed. Not adding any rich text-based fea-
tures avoids over-fitting the training data. Also, by
analyzing the decision and the generated labels for
failed examples, it is fairly easy to tweak the feature
extraction process and enhance the model.

4 EVALUATION

To evaluate our approach, we performed 5-fold cross-
validation. We split the input dataset into 5 subsets
that shared the same positive/negative examples ra-
tio. We trained the classifiers on every combination of
4 subsets and report results as the average f1-metric
on the 5-th subset (see Table 1). We experimented
with multiple classifiers from Sklearn Pedregosa et al.
(2011) and we report the results for Logistic Regres-
sion, SVM(linear kernel)5 and Random Forest Clas-
sifier Pal (2005).

In terms of accuracy, we obtained comparable re-
sults with SVMs and Random Forests. However, the
convergence speed for the latter was significantly bet-
ter, as the implementation allowed training on mul-
tiple threads. We noted that the speed for SVMs is

5The convergence speed for the SVM classifier
is reported on a system with Intel Sklearn Patch
(https://github.com/intel/scikit-learn-intelex).

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

136



reported after installing the Intel Sklearn patch. With-
out this patch, the classifier didn’t complete a single
fold after 8 hours.

4.1 Runtime Enhancement

This section covers a runtime enhancement, we in-
cluded in our system that is neither the scope of our
evaluation, nor it was used when we computed the
accuracy of the classifier. However, it is part of the
python library we created and we feel that it has to be
presented.

As a part of the data collection, we have collected
a wide range of Living off the Land commands. It
is easy for a human to observe their malicious char-
acter but it can be hard to detect from a rule-based
approach. Slight variations of the command can es-
cape all sort of static rules in place. Pattern based
static rules which are too permissive can generate a
lot of noise and false positives. One way to try to
detect potential Living off the Land commands is to
compare new commands with well known LotL com-
mands, like the ones we collected.

One mechanism to do this similarity comparison
is by computing the BLEU Scoring distance between
two observations. The BLEU score is typically used
in Machine Translation to measure the similarity be-
tween two proposed translation of a sentence. In our
case, we considered using BLEU scoring to express
the functional similarity of two command lines that
share common patterns in the parameters (Figure 2).
In our experiments, we found that a weighted vari-
ant of BLEU is well suitable to capture command-line
patterns and also LotL commands.

If the score generated is greater than an estab-
lished score (0.7 in our implementation) the observa-
tion is attributed a KnownLoL tag. For such observa-
tion our implementation overwrites the decision of the
RandomForest classifier and marks the observation as
bad. This runtime enrichment can be considered a
fail-safe mechanism to ensure that well known LotL
do not bypass the algorithm in place.

5 INSIGHTS INTO OUR DATASET

Because we are currently unable to share the dataset
we find it useful to provide some insights regarding
its composition from the tagging perspective. For
each unique tag (t) in our dataset, we counted the
number of times it appears in benign (negative) ex-
amples and how many times it appears with mali-
cious/LotL (positive) examples. We refer to these
metrics as Cn(t) and respectively Cp(t). Given the

skewness of our dataset we compute the “log plus
1” equivalents for this metrics for graphical repre-
sentations as: Lnp1(t) = log(Cn(t) + 1) and Lpp1(t) =
log(Cp(t)+1). Finally, we add the safe ratio metric as
Sr(t) = (Cp(t) + 1)/(Cn(t) + 1), for highlighting tags
that have a bias toward positive or negative examples.

Table 2 shows the metrics for the top-30 high fre-
quent tags in both positive and negative example, and
Figure 3 compares the distribution between the two
classes on the log scale for the top-30 frequent tags.
Similarly, Figure 4 shows the same distributions but
for tags that have a high occurrence rate in positive
examples (ordered by Cp(t) descending) while Figure
5 highlights tags that have a bias toward positive ex-
amples (ordered by Sr(t) descending).

Based of Figure 5, one can easily observe
that tags such as “lua socket”, “OS EXECUTE”,
“PTY SPAWN”, etc. have a high tendency to ap-
pear in LotL attacks. One notable outlier is “COM-
MAND RVIM” which can be observed in a signifi-
cant number of benign examples. However, Figures 3
and 4 show an overwhelming mostly benign tendency
for the tags they highlight, which suggests that these
tags can never be used as sole indicators for LotL ac-
tivity.

The final metrics that we present about the dataset
is the average number of tags, 1.73 for benign exam-
ples and 6.40 for malign commands. This shows that
our tags primarily target keywords and commands
that are found in LotL attacks. Interestingly, the max-
imum number of tags generated for a benign example
is 30 (a long automation script), whereas the maxi-
mum number of tags generated for a malign example
is only 19 (also a long script).

6 CONCLUSIONS AND FUTURE
WORK

We addressed the issue of detecting Living off the
Land attacks and introduced a ML based method to
handle this. The source code is freely available on
GitHub6 and we provide pre-trained models (for the
Random Forest Classifier) as well as PIP packag-
ing for easy installation and integration with other
projects.

This is only one small step in the direction of han-
dling this type of attacks, but we feel that it is an im-
portant one, especially because this is a community
contribution.

Currently this is a “state-less” approach, meaning
that it analyzes each command on a stand-alone man-

6https://github.com/adobe/libLOL

Machine Learning and Feature Engineering for Detecting Living off the Land Attacks

137



Figure 2: BLEU scoring strategy. Compute BLEU of a new observation using a known list of Living off the Land commands.
Attribute a KnownLoL label if the score provided is greater than a specified threshold.

Figure 3: The distribution of most frequent tags between negative(benign) and positive(malicious) examples, computed on a
log scale.

Figure 4: The distribution of most frequent positive tags between negative(benign) and positive(malicious) examples, com-
puted on a log scale.

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

138



Figure 5: The distribution of most frequent positive tags between negative(benign) and positive(malicious) examples, com-
puted on a log scale.

Table 2: Statistics related to the top 30 tags based on their frequency inside our dataset.

Tag Cn(t) Cp(t) Lnp1(t) Lpp1(t) Sr(t) Total
IP PRIVATE 2207350 170 6,343871398 2,23299611 7,74684E-05 2207520
PATH /TMP/ 2138210 57 6,330050559 1,763427994 2,71255E-05 2138267
hadoop 1814008 0 6,258639437 0 5,51265E-07 1814008
KEYWORD -C 1690794 325 6,228090955 2,5132176 0,000192809 1691119
KEYWORD -P 1564014 101 6,194240914 2,008600172 6,52168E-05 1564115
KEYWORD -R 1466919 80 6,16640643 1,908485019 5,52177E-05 1466999
KEYWORD -L 1331186 37 6,124239068 1,579783597 2,8546E-05 1331223
sh script 1325071 30 6,122239477 1,491361694 2,3395E-05 1325101
KEYWORD -U 1294020 31 6,111941324 1,505149978 2,47291E-05 1294051
KEYWORD -N 1290764 21 6,110847181 1,342422681 1,70442E-05 1290785
KEYWORD -B 1264105 18 6,101783493 1,278753601 1,50304E-05 1264123
splunk 697940 1 5,843818711 0,301029996 2,86557E-06 697941
KEYWORD -O 642962 62 5,808185982 1,799340549 9,79839E-05 643024
COMMAND JAVA 580453 0 5,763767808 0 1,72279E-06 580453
KEYWORD -T 421556 15 5,624856305 1,204119983 3,79545E-05 421571
path etc 286768 39 5,457532202 1,602059991 0,000139485 286807
bash enable library 278936 2 5,445506126 0,477121255 1,07551E-05 278938
KEYWORD -F 277278 45 5,442916979 1,662757832 0,000165898 277323
PATH /BIN/SH 256605 406 5,409266807 2,609594409 0,001586089 257011
COMMAND PYTHON 254365 70 5,405459061 1,851258349 0,000279125 254435
KEYWORD -I 249437 134 5,396962616 2,130333768 0,000541217 249571
jenkins 220177 1 5,342773922 0,301029996 9,08356E-06 220178
https con 199794 25 5,300584616 1,414973348 0,000130133 199819
KEYWORD SH 196318 173 5,292962333 2,240549248 0,000886313 196491
COMMAND BASH 191233 72 5,281565109 1,86332286 0,000381731 191305
KEYWORD BASH 191233 72 5,281565109 1,86332286 0,000381731 191305
PATH /BIN/BASH 186057 39 5,269648348 1,602059991 0,000214987 186096
ping p 154827 5 5,189849504 0,77815125 3,87527E-05 154832
jar script 144942 0 5,161197246 0 6,89926E-06 144942
COMMAND GREP 133265 25 5,124719362 1,414973348 0,000195099 133290
COMMAND SUDO 128947 391 5,110414611 2,593286067 0,003039985 129338
COMMAND POSTGRES 129096 0 5,11091615 0 7,74611E-06 129096

Machine Learning and Feature Engineering for Detecting Living off the Land Attacks

139



ner. Our future research will extend to processing se-
quences of commands, as this type of analysis is bet-
ter suited for detecting complex LotL-based attacks.

Another goal is to be able to share the dataset we
created and to provide researchers with a common
ground to experiment and compare models. This is an
extremely difficult task, since the benign examples re-
quire sanitation in order to remove any sensitive data
or intellectual property. The alternative is to create
an artificial dataset based on out-of-the-box operating
system and software installation, but this will likely
not accurately reflect custom designed automation,
which is present in most enterprise environments.

REFERENCES

Barr-Smith, F., Ugarte-Pedrero, X., Graziano, M., Spolaor,
R., and Martinovic, I. (2021). Survivalism: System-
atic analysis of windows malware living-off-the-land.
In Proceedings of the IEEE Symposium on Security
and Privacy. Institute of Electrical and Electronics
Engineers.

Boros, T., Cotaie, A., Vikramjeet, K., Malik, V., Park,
L., and Pachis, N. (2021). A principled approach to
enriching security-related data for running processes
through statistics and natural language processing.
IoTBDS 2021 - 6th International Conference on In-
ternet of Things, Big Data and Security.

Butun, I., Morgera, S. D., and Sankar, R. (2013). A sur-
vey of intrusion detection systems in wireless sensor
networks. IEEE communications surveys & tutorials,
16(1):266–282.

Durst, R., Champion, T., Witten, B., Miller, E., and Spag-
nuolo, L. (1999). Testing and evaluating computer
intrusion detection systems. Communications of the
ACM, 42(7):53–61.

Kreibich, C. and Crowcroft, J. (2004). Honeycomb: cre-
ating intrusion detection signatures using honeypots.
ACM SIGCOMM computer communication review,
34(1):51–56.

Lee, W., Stolfo, S. J., and Mok, K. W. (1999). A data min-
ing framework for building intrusion detection mod-
els. Proceedings of the 1999 IEEE Symposium on Se-
curity and Privacy (Cat. No. 99CB36344), pages 120–
132.

Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., and
Rajarajan, M. (2013). A survey of intrusion detection
techniques in cloud. Journal of network and computer
applications, 36(1):42–57.

Pal, M. (2005). Random forest classifier for remote sensing
classification. International journal of remote sensing,
26(1):217–222.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research,
12:2825–2830.

Silveira, F. and Diot, C. (2010). Urca: Pulling out anomalies
by their root causes. 2010 Proceedings IEEE INFO-
COM, pages 1–9.

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

140


