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Abstract: In this study we combine deep learning predictive models and evolutionary optimization algorithm to solve 
parameter identification problem. We consider parameter identification problem coming from nuclear 
magnetic resonance signals. We use observation data of sludges and solving water content analysis problem. 
The content of the liquid flow is the basis of production control of sludge dewatering in various industries. 
Increasing control performance brings significant economic effect. Since we know the mathematical model 
of the signal, we reduce content analysis problem to optimization problem and parameters estimation problem. 
We investigate these approaches and propose a combined approach, which involves predictive models in 
initial optimization alternative set generation. In numerical research we prove that proposed approach 
outperforms separate optimization-based approach and predictive models. In examination part, we test 
approach on signals that were not involved in predictive model learning or optimization algorithm parameters 
tuning. In this study we utilized standard differential evolution algorithm and multi-layer perceptron. 

1 INTRODUCTION 

Time domain nuclear magnetic resonance method 
(TD-NMR) is becoming highly attractive for 
industries and meets various applications due to 
relatively low price, mobility, easy operating, and 
simple sample preparation procedure. The well-
known successful applications of TD-NMR 
confirmed by international standards are solid fat 
content determination in food and water (ISO 8292) 
and oil content in oilseeds (ISO 10565). These 
solutions are based on the difference of NMR 
parameters of water and lipids and a low exchange 
degree between these two fractions. There are studies, 
which demonstrate applying the same approach for 
analysis of lipid content in microalgae (Gao et al., 
2008) and for analysis of oil content of olive mill 
wastes and municipal wastewater sludge (Willson et 
al., 2010). Effects of flocculation on the bound water 
in sludge measured by the NMR spectroscopy has 
been studied in work (Carberry and Prestowitz, 
1985). 

Understanding the location of water molecules in 
materials is important in process engineering because 
it affects the dewatering process. Different situations 

require different amount of energy for drying. The 
other reason is the quantity of chemical components 
to be added to the liquid to satisfy the desired 
characteristics. Both factors take place in sludge 
dewatering problem. Sludge is a semi-solid by-
product remaining after wastewater treatment. It is a 
separated solid material suspended in a liquid, 
characteristically comprising large quantities of 
interstitial water between its solid particles (Global 
Water Community, 2015). Typically, a polymer is 
added to the wastewater to separate free water from 
the solids, and it becomes easier to remove water 
from the sludge. In wastewater treatment, the 
dewatering of sludge is one of the most important 
steps, because it affects largely both the process 
economics and the costs of sludge disposal. 

In sludges there are three water types, i.e. 1) free 
water, 2) mechanically bound water, and 3) 
physically or chemically bound water. The free water 
can be easily removed by mechanical means, whereas 
the bound water is held firmly within the floc, bound 
to the sludge, or trapped between the sludge particles, 
and thus cannot be easily removed (Jin et al., 2004). 
The bound water can be further divided into 
chemically or physically bound water, which is 

Ryzhikov, I., Nikolskaya, E. and Hiltunen, Y.
Combining Deep Learning Model and Evolutionary Optimization for Parameters Identification of NMR Signal.
DOI: 10.5220/0011004200003122
In Proceedings of the 11th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2022), pages 761-768
ISBN: 978-989-758-549-4; ISSN: 2184-4313
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

761



removable only by thermal drying, and mechanically 
bound water which is bound by weaker capillary 
forces (Colin & Gazbar, 1995). It must be emphasized 
that determining the water types is not 
straightforward and based on the literature it is 
difficult to reach an unambiguous interpretation on 
the distribution of water within activated sludge 
(Vaxelaire & Cézac, 2004). Furthermore, there seem 
to be no studies focused on the analysis of water types 
in sludge without a priori knowledge of the shares of 
different water types. 

To efficiently control complex sludge dewatering 
process, we need to analyze the flow content to make 
decisions on amount of heating energy and chemical 
components to add. Analyzing the flow content 
means solving the parameter identification problem. 
NMR signals consist of a linear combination of one 
or more exponential signals, which are traditionally 
resolved by fitting them to an experimental signal. 
However, in complex samples such as sludges, the 
number and form of exponential signals are not 
exactly known, making the analysis uncertain.  

In this work, we start with the case when the 
number of components is known. We use three 
different approaches for system identification: the 
first is based on parameters optimization via 
evolutionary algorithms, the second is based on 
parameters estimation via deep learning and the third 
one is based on combination of evolutionary 
optimization and deep learning prediction. We 
numerically prove that proposed approach based on 
combination of optimization and machine learning 
outperforms baseline approaches: tuned optimization 
algorithm and trained model. 

2 REDUCTION TO 
OPTIMIZATION PROBLEM 

In this chapter we consider reduction of the water 
content analysis to extremum seeking on the rational 
vector space with constrains. Let us denote 𝑌  as 
signal measurements, 𝑌 = ሼ𝑦௜ሽ, 𝑖 = 1, … , 𝑛 , 𝑦௜ ∈ 𝑅 , 
and 𝑛 is the number of observations. Let us denote 𝑇 
as times, where measurements 𝑌  were done, 𝑇 =ሼ𝑡௜ሽ, 𝑡௜ ∈ 𝑅, 𝑖 = 1, … , 𝑛. In general case, we assume 
that our measurements of signal are noisy, but in this 
study, we start with assumptions that measurements 
represent the real signal. The signal can be explained 
by the following equation: 

𝑦ො(𝑡, 𝛼, 𝜃, 𝑐) = ෍ 𝛼௜𝑒ି ௧ఏ೔௠
௜ୀଵ + 𝑐 (1)

where 𝑚  is the number of components, 𝛼௜  are 
amplitudes, 𝜃௜  are relaxation times and 𝑐  is 
parameter. Now, using equation (1) we can formulate 
the reduced problem: 

𝐼(𝛼, 𝜃, 𝑐) = ෍൫𝑦௜ − 𝑦ො(𝑡, 𝛼, 𝜃, 𝑐)൯ଶ௡
௜ୀଵ , (2)

𝛼∗, 𝜃∗, 𝑐∗ = arg min 𝐼(𝛼, 𝜃, 𝑐), (3)

where 𝛼∗, 𝜃∗, 𝑐∗  are components amplitudes, 
relaxation times and model constant, respectively. 

We assume that we know the number of 
components 𝑚, so to make water content analysis we 
need to find solution on the vector space 𝑅ଶ௠ାଵ. 

There is another criterion of our interest: the 
accuracy in parameters. We cannot calculate this 
criterion for the signal we observe, because we do not 
know the real parameters, but it is possible in 
simulation. Once we found solution of the problem 
(2)-(3), it is possible to compare it to the real 
parameters: 𝐼௔(𝛼, 𝜃, 𝑐) = ‖𝛼௥ − 𝛼∗‖ + ‖𝜃௥ − 𝜃∗‖ +|𝑐௥ − 𝑐∗|, (4)

where 𝛼௥ , 𝜃௥  and 𝑐௥  are the parameters of the real 
system (1) and ‖∙‖ is any norm on real vector space. 

The major research question is if the solution of 
problem (2)-(3) brings the extremum to criterion (4). 
In experimental part we compare these criteria and in 
the next section we describe the modifications of 
criterion (2) that lead to performance improvement. 

2.1 Adjusting Fitting Criterion 

Our experiments proved that criterion adjustment is 
one of the most important parts in increasing 
performance of optimization and in this part, we 
formulate the notations we use in the further study.  

First, we modified the relaxation time variables 
and use their exponential representation in search. 
The reason for this is that amplitude and relaxation 
time values are different in magnitude, 𝛼 takes values 
approximately from interval (0, 20)  and 𝜃  takes 
values from interval (0.004, 0.04). To equalize the 
parameter values in search we use following 
exponential transformation of relaxation times: 𝜃 = ଵ௘ഇ෩, (5)

where 𝜃෨  is the variable we use in optimization.  
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According to (2-3) and (5), the main criterion can be 
formulated in the following way: 

𝐼ሚ൫𝛼, 𝜃෨, 𝑐൯ = ෍ ቆ𝑦௜ − 𝑦ො ൬𝑡, 𝛼, 1𝑒ఏ෩ , 𝑐൰ቇଶ௡
௜ୀଵ , (6)

𝛼∗, 𝜃෨∗, 𝑐∗ = arg min 𝐼 ቀ𝛼, ଵ௘ഇ෩ , 𝑐ቁ. (7)

Criteria (2) and (6), as their minimum (3) and (7) 
are identical but solving problem (6)-(7) is preferable 
for some optimization algorithms. 

Second, we add penalties for constrains violation. 
We assume, that relaxation times and amplitudes are 
bounded: 𝛼 < 𝛼௟௜௠௨ , 𝜃෨ < 𝜃෨௟௜௠௨ , 𝛼 > 0, 𝜃෨ > 0, (8)

so the violation of constrains (8) will cause the 
increase of fitting criteria (6): 𝐼ሚ௣൫𝛼, 𝜃෨, 𝑐൯ = 𝐼ሚ൫𝛼, 𝜃෨, 𝑐൯ + 𝛾௨𝑃௨൫𝛼, 𝜃෨൯ +𝛾௟𝑃௟൫𝛼, 𝜃෨൯, 

(9)

where 𝛾௨ ≥ 0  and 𝛾௟ ≥ 0  are penalty coefficients, 𝑃௨൫𝛼, 𝜃෨൯ ≥ 0  and 𝑃௟൫𝛼, 𝜃෨൯ ≥ 0 are penalty function 
of upper and lower boundaries, respectively: 

𝑃௨൫𝛼, 𝜃෨൯ = ෍ 𝑓௨(𝛼௜, 𝛼௟௜௠௨ )௠
௜ୀଵ  

+ ෍ 𝑓௨൫𝜃෨௜, 𝜃෨௟௜௠௨ ൯௠
௜ୀଵ , (10)

𝑃௟൫𝛼, 𝜃෨൯ = ෍ 𝑓௟(𝛼௜, 0)௠
௜ୀଵ + ෍ 𝑓௟൫𝜃෨௜, 0൯௠

௜ୀଵ . (11)

In penalties (10) and (11), functions 𝑓௨ and 𝑓௟ are 
linear functions of boundary violation: 𝑓௨(𝑥, 𝑣) = ቄ𝑥 − 𝑣, 𝑥 > 𝑣0, 𝑥 ≤ 𝑣 , (12)

𝑓௟(𝑥, 𝑣) = ቄ𝑣 − 𝑥, 𝑥 < 𝑣0, 𝑥 ≥ 𝑣 . (13)

By adjusting 𝛾௨  and 𝛾௟  parameters and penalties 
(10)-(13) we can reach feasible and better solutions 
of optimization problem (9). In experimental results 
part we provide statistics that prove performance 
improvement by adding penalties. 

2.2 Generating Alternatives 

Model (1) parameters have their boundaries, which 
originate from the nature of identification problem 
and expected components. Since we know these 
values, we can generate alternatives according to 
them. For example, when one utilizes stochastic 
optimization algorithm, there is a need in initial 
alternatives set. This is common in population-based 
optimization. 

First generating condition limits the amplitudes:  20 > 𝛼௜ > 0.1, 𝑖 = 1, … , 𝑚, (14)

since in our experiments we study signals produced 
by exponential additives, which amplitudes do not 
exceed by 20. 

Due to borders (14) we utilize uniform random 
number generator, based on uniform distribution 𝑟ఈ~𝑈(0.1, 20). (15)

Generating of relaxation time is similar, but it 
comes out of mixture of distributions 𝑟ఏଵ~𝑈(0.01, 0.06),  𝑟ఏଶ~𝑈(0.08, 0.2), 𝑟ఏଷ~𝑈(0.03, 0.06), (16)

and 𝑃(𝑟ఏ = 𝑟ఏଵ) = 𝑃(𝑟ఏ = 𝑟ఏଶ) = 𝑃(𝑟ఏ = 𝑟ఏଷ) = ଵଷ. 
Since the coefficient 𝑐 is expected to be small in 

value, we also use a uniform distribution, where 
density covers small interval around origin, 𝑟௖~𝑈(−0.05, 0.05). (17)

Each time we generate the initial population we 
randomly generate alternative by generating variables 
according to distributions (15)-(17). 

2.3 Differential Evolution Algorithm 

Optimization problem (2)-(3) is a global extremum 
seeking problem on real vector field, as well as 
optimization problem that includes penalties for 
amplitudes and relaxation time parameters (14)-(15). 
There are various algorithms for solving the problem 
of this kind (Kochenderfer and Wheeler, 2019) and 
speaking of global optimization the most of 
algorithms are stochastic. And among stochastic 
algorithms there are evolutionary algorithms and 
bioinspired algorithms, which proved their 
performance solving different challenging 
optimization problems (Simon, 2013). 

Today there are plenty of population-based 
optimization algorithms and even more of their 
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modifications. It is impossible to examine each of 
those for optimization problem and, perhaps, useless. 
The only criteria we have is that if the algorithm of 
our choice solves the problem with required accuracy 
and in desired time. These criteria are related and 
have different values for different computational 
resources and are the subject of the further studies. 

Since the problem aim is parameter identification 
of specific system (1), we are not interested in 
designing of general optimization algorithm, but 
specific one, that has a high performance solving the 
application problem. Reaching this aim requires two 
steps. First, we need to prove that the reduced 
optimization problem (2)-(3) or (6)-(7) is fitting 
solving the component analysis problem (4). Second, 
we need to examine one of the algorithms by varying 
its parameters and determining a best one to have a 
baseline approach, which we could use to compare 
other algorithms in the future. 

As a starting point for algorithms, we used 
standard differential evolution (DE) algorithm (Storn 
and Price, 1998). This algorithm has 4 control 
parameters: mutation rate 𝑐௥ ∈ ሾ0,1ሿ , differential 
weight 𝐹 ∈ ሾ0,2ሿ,  population size 𝑛௣ ∈ 𝑁 , and 
number of iterations 𝑛௜ ∈ 𝑁.  

3 REDUCTION TO PREDICTIVE 
MODELING 

Machine learning approaches allows train the model 
on data to recognizes the patterns. One of most 
powerful approaches in a field of machine learning is 
based on artificial neural networks (ANN). In this 
study we utilize ANN, that takes the NMR signal as 
an input and predicts the parameters of mathematical 
model (1), that produced this signal. 

Since we know the number of exponents in the 
signal (1) and the distributions of mathematical model 
parameters (15)-(17), we generated 𝑁 = 8 ∙ 10ହ  of 
parameters combinations and produced the same 
number of signals (1). We also generated 𝑁௧௘௦௧ =500 of parameters to test ANN model. Now, using 𝑁 
observations of signal outputs and model parameters 
that they produced we can train the ANN model and 
then evaluate its performance on 𝑁௧௘௦௧  test 
observations. Let us denote 𝑌௜ ∈ 𝑅௦, 𝑖 = 1, … , 𝑁,  as 
signals we use to train the model and 𝑌௜௧௘௦௧ ∈ 𝑅௦, 𝑖 =1, … , 𝑁௧௘௦௧  as signals we use to test it. Here 𝑅௦  is 
vector field of size 𝑠=200, so ∀𝑖: 𝑇 = ሼ𝑡: 𝑡 = 0.04 + 0.02𝑗, 𝑗 = 1, … , 𝑠ሽ, 𝑌௜ = ൛𝑦: 𝑦 = 𝑦ො൫𝑡௝, 𝛼௜, 𝜃௜, 𝑐௜൯, 𝑗 = 1, … , 𝑠ൟ (18)

The same 𝑁௧௘௦௧  observations will be used when 
testing the proposed approach that combines ANN 
predictions and DE algorithm search. 

3.1 Data Preprocessing 

Model (1) represents sum of inverse exponents, so 
each signal observation contains a small number of 
values greater than 1 and large number of values that 
are very close to signal constant 𝑐. 

First, we scale the all the signals (18) by 
maximum observed value at each timestep 𝑗 =1, … , 𝑠, 

𝑌෨௜ = ቊ𝑦: (𝑌௜)௝max௞(𝑌௞)௝ , 𝑗 = 1, … , 𝑠ቋ. (19)

Second, we scale the outputs 𝛼௜, 𝜃௜, 𝑐௜  that 
correspond to each of the 𝑖-th signal. For relaxation 
times 𝜃௜, we use min-max scaling, ∀𝑖, 𝑗: 

൫𝜃෨௜൯௝ = (𝜃௜)௝ − min௞((𝜃௞)௝)max௞൫(𝜃௞)௝൯ − min௞((𝜃௞)௝). (20)

For amplitudes and intercept parameters we 
additionally scale them on signal maximum, ∀𝑖, 𝑗: 

(𝛼෤௜)௝ = (𝛼௜∗)௝ − min௞((𝛼௞∗ )௝)max௞൫(𝛼௞∗ )௝൯ − min௞((𝛼௞∗ )௝), (21)

𝑐̃௜ = 𝑐௜∗ − min௞(𝑐௞∗)max௞(𝑐௞∗) − min௞(𝑐௞∗), (22)

where ∀𝑖 : 𝛼௜∗ = ఈ೔୫ୟ୶ೕ(௒೔)ೕ  and 𝑐௜∗ = ௖೔୫ୟ୶ೕ(௒೔)ೕ  are 

scaled by maximum signal value amplitude and 
intercept coefficient. 

Proposed data preprocessing makes inputs and 
outputs balanced. Predicted parameters can be 
transformed to their initial form, by knowing the 
signal characteristics and parameters involved in 
(20)-(22) evaluations. 

The same transformations (19)-(22) were applied 
to test dataset, except for minimum and maximum 
parameters, which were taken from the train dataset. 

3.2 Artificial Neural Network Model 

In this study we utilized multi-layer perceptron as 
ANN structure. The structure of the model is given in 
Table 1. At this stage of the research, we use a simple 
architecture with rectified linear activation units and 
do not apply regularization or dropout. 
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Table 1: The structure of ANN. 

Layer Activation Neurons
1 ReLU 256
2 ReLU 128
3 ReLU 64
4 ReLU 128
5 Linear 9

When training the model, we used 25% of train 
dataset for validation. The training process stops 
when the error on validation dataset begins to grow. 
The histograms, showing the parameters square error 
sum (PSES) is given in Figure 1. The PSES is in 
logarithmic scale for better representation of the 
parameter estimations error. The histogram showing 
the distribution of parameter square error (PSE) for 
each parameter prediction is given in Figure 2. 

 
Figure 1: Histogram of PSES distribution for ANN-based 
parameters predictor. 

 
Figure 2: Histogram of PSE distribution for ANN-based 
parameters predictor. 

As one can see, the square sum of error is large. 
That happens, because some parameters in the 
prediction are predicted worse than others and their 
squared value is large.  

Histogram in Figure 2 shows that there are many 
parameters which are predicted well and close to the 
initial ones. Average error for amplitudes estimation 

is 5.99, average error for relaxation times in 
exponential form is 0.13 and average error of PSES is 
24.52. Trained model with its characteristics will be 
used as baseline model in the further studies. 

4 PREDICTION MODEL IN 
GENERATING INITIAL 
POPULATION 

Generating initial population for DE algorithm is 
performed according to (15)-(17) random values 
distributions. These distributions fit the real 
parameters values boundaries. 

The next step of our research is to combine ANN 
models with optimization algorithm by generating 
initial population partly according to distributions 
(15)-(17) and partly by predictions of the machine 
learning model. 

Let 𝑎௜, 𝑖 = 1, … , 𝑛௣஺ேே − 1, be the alternative in 
DE algorithm initial population, where 𝑛௣஺ேே < 𝑛௣ is 
the number of solutions generated on the basis of 
ANN model prediction. Let the 𝑎௡೛ಲಿಿ  be an 
alternative that is exactly the ANN model prediction 
for the current signal input. Then for 𝑖 =1, … , 𝑛௣஺ேே − 1: (𝑎௜)௝ = ቀ𝑎௡೛ಲಿಿቁ௝ + 𝑟, (23)

where 𝑟~𝑁(0, 𝜎௥) and 𝜎௥ is control parameter.  
Generating initial population according to (23) 

adds distorted ANN predictions and to the alternative 
set and by controlling parameters 𝑛௣஺ேே  and 𝜎௥  one 
can tune the approach and find the best balance 
between the randomly generated alternatives and 
alternatives distributed normally around ANN 
prediction of parameters. 

5 EXPERIMENTAL RESULTS 

First, we need to examine if the fitting criteria (2) 
allows us to find the solution for the identification 
problem (4). For that purpose, we run DE algorithm 
for different combinations of its parameters: 𝑐௥ ∈ሼ0.01, 0.05, 0.1, 0.2, … , 0.9, 0.95ሽ, and 𝐹 ∈ሼ0.1, 0.2, … , 2ሽ. It is important to mention that each 
run of optimization algorithm is done for the same 
initial population, so different algorithm settings are 
equal in their initial point. In this part of research, we 
generated 20 of different initial populations that were 
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used by algorithm with each setting combination. For 
each DE algorithm parameters and initial population 
combination, we do 20 launches if different is not 
mentioned. As a result, for each parameter 
combination we have 20 × 20 = 400  algorithm 
runs. The idea of using the same initial population for 
algorithm with different settings is explained in 
(Jensen, 2013). 

In this part of research, we would generate the 
amplitudes in smaller area: from 0.1 to 1, instead of 
20, as in (15). The initial signal was produced by the 
following parameters of model (1): 𝛼௥ = (0.1, 0.2, 0.3, 0.4),  𝜃௥ = (0.004, 0.01, 0.018, 0.035),  𝑐௥ = 0. (24)

Let us start with criteria (2) without penalties, 
population size of 100 and 500 iterations of 
algorithm. The mean square error (MES) between 
model and observations for different optimization 
parameters is given in Figure 3. Similar plot but for 
PSES criterion is given in Figure 4. 

 
Figure 3: Influence of DE parameters on MSE. No 
penalties. Number of iterations equals 500. 

 
Figure 4: Influence of DE parameters on PSES. No 
penalties. Number of iterations equals 500. 

As one can see, different settings are better for 
MSE and PSES criteria. But in real world we do not 
know the real parameters and cannon calculate the 
PSES criterion and, according to the results, we 
cannot guarantee that improving of algorithm 
performance for MSE criterion leads to better 
parameters predictions. 

Let us compare alternatives MSE and PSES 
criteria on a scatter plot in Figure 5. 

 
Figure 5: MSE vs PSES criteria for all solutions found by 
DE with different parameters. No penalties. Number of 
iterations equals 500. 

Figure 5 shows that even though fitting criterion 
has small values, parameter estimation can be far 
from the real ones. There are many different peaks of 
the PSES criterion, and those peaks are formed by 
alternatives, which have too large 𝜃෨  parameters. 
Since these parameters are in exponential form, these 
exponents are becoming close to 0. In case of 0, 
algorithm can find any amplitude as its multiplier and 
that is why the criterion can have such a large value. 
Also, there are other reasons for bad estimation of the 
parameters, such as solutions with negative values. 
But we know that these parameters cannot be too 
large or negative, that is why we add penalties to the  
 

 
Figure 6: MSE vs PSES criteria for all solutions found by 
DE with different parameters. Criterion with penalties. 
Number of iterations equals 500. 
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fitting function and use criteria (6). The similar scatter 
plot for fitting criterion with penalties is given in 
Figure 6. 

Our next step is to increase the computational 
resources: we set the number of iterations to 7500 
instead of 500. The scatter plot of MSE versus PSES 
criterion is given in Figure 7. 

 
Figure 7: MSE vs PSES criteria for all solutions found by 
DE with different parameters. Criterion with penalties. 
Number of iterations equals 7500. 

Now we can see that there is a linear trend 
between fitting and parameter estimation criteria and 
can conclude that with these amounts of resources 
algorithm finds good estimations when model fits the 
observations. Heatmap for different DE parameters 
influence on MSE is given in Figure 8 and their 
influence on PSES in given in Figure 9.  

 
Figure 8: Influence of DE parameters on MSE. Criterion 
with penalties. Number of iterations equals 7500. 

For this number of iterations, the best algorithm 
parameters match both criteria. In the next part we 
will use algorithm with 7500 iterations, 𝑐௥ = 0.9 and 𝐹 = 0.6, as the best discovered algorithm settings. 

 
Figure 9: Influence of DE parameters on PSES. Criterion 
with penalties. Number of iterations equals 7500. 

Now we examine algorithm on solving more 
complex problem, where amplitudes can take values 
from 0.1 to 20, as in (15). And for examination of 
algorithm performance, we will use signals from 
ANN training dataset. 

We compared all three approaches in Table 2 by 
different characteristics: criteria average and the 
number of solutions that have logarithm of PSES 
criteria smaller than 0, 1 and 2. We provided 
Wilcoxon test, which p-value of 2.2𝑒ିଵ଺ proves that 
average of DE and DE+ANN algorithm is different. 

Table 2: Characteristics of different approaches: ANN, DE 
and DE+ANN. 

Characteristic ANN DE DE+ANN 
Average 

PSES 
24.52 63.37 39.12 

Average log 
of PSES 

2.93 -2.57 -6.31 

Average 
MSE 

5.65𝐸ିଷ 1.04𝐸ି଻ 𝟑. 𝟏𝟐𝑬ି𝟖 

Average log 
of MSE 

-5.97 -31.46 -36.76 

Log of PSES 
< 0, number 

1 80 128 

Log of PSES 
< 1, number 

12 98 148 

Log of PSES 
< 2, number 

69 131 189 

Let us compare DE algorithm with DE algorithm 
that involves ANN prediction in population 
generating (23). Boxplot showing the difference in 
MSE values between DE and DE+ANN algorithm is 
given in Figure 10. Boxplot showing the difference in 
PSES values is given in Figure 11. 
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Figure 10: Boxplot for logarithm of best alternatives MSE 
values found by DE and DE+ANN approaches. 

 
Figure 11: Boxplot for logarithm of best alternatives PSES 
values found by DE and DE+ANN approaches. 

According to Wilcoxon test, Figures 10-11, and 
results in Table 2, we can conclude that combination 
of ANN and DE outperforms other approaches. 

6 CONCLUSIONS 

In this study we examined three different approaches 
for solving signal parameter identification by 
observations. We applied evolutionary algorithm 
with adjusted criterion, deep learning-based 
approach, and a combination of those. We 
numerically proved that fitting problem is related to 
parameter identification problem. We trained a 
baseline ANN model and optimization algorithm. 

Numerical results proves that a combination of 
DE and ANN for performing DE’s initial population 
gives better results in solving signal parameter 
recognition problem. Proposed approach outperforms 
baseline approaches for different metrics, except for 
average of parameter values error. This happens 
because errors in its prediction are bigger than in 
ANN’s but appears in fewer cases. The same proves 
counting of PSES logarithm cases less than 0 or 1. 

Further study is focused on designing deep 
learning architectures and their combinations with 
evolutionary algorithms that outperforms the 
proposed approached and baseline approaches in this 
study. 
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