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Abstract:  To develop safe automated driving functions, knowing road-user’s lane change behaviour is critical. This 
detection problem may depend on multiple aspects such as road conditions, location, and weather. To 
understand the effect of these situational variables, this work introduces a lane change detection algorithm 
and assessed its performance under various light conditions, road types and weather conditions. The algorithm 
was developed in L3Pilot: a large-scale European pilot project on level 3 automation. In the current study, the 
algorithm was tested with data from a Dutch Field Operational Test on SAE Level 2 systems. The algorithm 
was assessed against manually annotated video recordings. New is that validation was executed with Dutch 
Field Operational Test data of different participants and vehicles, distinguishing three situational variables 
factors. These were day vs night, motorways vs trunk roads and dry vs rain. A bootstrap procedure was used 
to assess the statistical significance of differences among the conditions. The conclusion is that the algorithm 
in combination with the provided data is effective in detecting lane changes when data is collected on a sample 
of Dutch motorways, irrespective of light and precipitation conditions. However, the quality of the sensor 
signals was worse on trunk roads, yielding significantly worse lane change detection performance (for all 
light and precipitation conditions).

1 INTRODUCTION 

More and more automated vehicle driving functions 
are introduced and have the potential to make the 
driving task easier and more relaxing, contributing to 
traffic safety and efficiency (Sun et al., 2018). With 
higher levels of automation, when driver is not a 
backup for the automated system, it becomes 
increasingly more important to ensure and certify that 
these vehicles are indeed safer and more efficient. 

One activity that influences traffic safety 
immensely is that of lane change manoeuvres. For 
example, You et al. (2015) showed that lane change 
manoeuvres are responsible for almost 5% of total on-
road accidents. Therefore, in the evaluation of new 
automated driving (AD) functions by means of Field 
Operational Tests (FOTs), the identification of lane 
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change manoeuvres plays an important role. FOTs 
allow performance indicators to be assessed in 
multiple real world scenarios. In this context a 
scenario is defined as a use case in a specific situation, 
for example vehicle driving on a motorway, without 
rain during the day (FESTA, 2018). So given that a 
lane change manoeuvre is conducted, it can be 
investigated if this is done differently when 
introducing an AD system. At the same time, one can 
investigate how the frequency of occurrence of lane 
change manoeuvres varies as a function of different 
AD systems, allowing to evaluate their impact on 
driving behaviour and safety. Such analyses are done 
in post-processing; real-time detection of lane 
changes is out of scope for this type of work.  

In past studies, detection of lane change 
manoeuvres has been performed using various types 
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of data and variables therein (Das et al., 2020). Some 
authors have used for example GPS data (Bogard & 
Fancher, 1999), yaw rate (Miller & Srinivasan, 2005) 
or degree of curvature (Koziol et al., 1999).   Further, 
some studies use the lateral vehicle position on the 
road. For example, Xuan et al. (2006) where the 
lateral position of the vehicle was determined by 
means of the deviation from reference trajectories 
constructed by differential Global Positioning System 
(dGPS). 

Lane changes have been detected in different 
scenarios, e.g. Ayres et al. (2004) used yaw rate and 
velocity to detect lane changes on different road 
categories or Das et al. (2020) who investigated the 
addition of weather variables in the lane change 
detection using various machine learning techniques. 
However, no studies have evaluated lane change 
manoeuvre detection in more extensive scenarios 
where different situational variables are considered, 
e.g. weather, road category and light conditions. 
Since this extension of the operational design domain 
is a crucial step to enable higher levels of vehicles 
autonomy, in this work a lane change detection 
algorithm previously developed in the H2020 project 
L3Pilot (Hiller et al., 2020) was evaluated and applied 
using data from a Dutch project in which a FOT on 
SAE Level 2 systems was conducted (Stapel et al., 
2021). The Operational Design Domain (ODD) of 
this data set covered a wide set of driving conditions 
including light conditions, road types and bad 
weather. These driving conditions might influence the 
data quality, and possibly also the quality of the lane 
change detection. The lane change algorithm was 
evaluated and validated with respect to ground truth 
annotated video recordings, containing data of 
multiple driving participants and vehicles in eight 
different scenarios, defined by three situational 
factors: light conditions (day/night), road category 
(motorway or trunk roads), and rain (present or 
absent). It was foreseen that due to these various 
conditions, new challenges for the detection of a lane 
change will appear. For example, it is possible that 
due to rain, darkness or road type, the lane markings 
are not detected perfectly when using a vision-based 
sensor system. This could influence the quality of the 
total chain assessment as bad input data will result in 
bad detection output. If under certain conditions (e.g. 
during rain), less lane changes are detected, it is 
desired to understand and make sure that this is 
indeed a change in driver behaviour in this scenario, 
and not a shortcoming in detection of lane changes by 
the system.  

To this end, the contribution of this work is an 
extended analysis of a lane change algorithm to 

additional situations variables and ODD and an 
identification of the boundaries of the current 
detection capabilities when facing challenging or 
more complex scenarios. 

The paper is structured as follows. First, in 
Section 2 the used lane change detection algorithm is 
described. The system used for data logging and the 
data sets are then introduced in Section 3. In Section 
4 the lane change detection is analysed for different 
variables and in Section 5 a more extensive 
discussion on the results it done. Finally, in Section 6 
conclusions and suggestions for future work are 
presented.  

2 LANE CHANGE DETECTION 
ALGORITHM 

The algorithm that was used to detect lane changes 
(Hiller et al., 2020) detects lane changes from the ego 
vehicle in post-processing, i.e., after the raw data 
were collected. An overview of the algorithm is 
shown in Figure 1. The algorithm consists of the 
following steps.  

 
Figure 1: Overview of the lane change event detection 
algorithm. 

 
Figure 2: Measurement variables with respect to the lane. 
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Table 1: Parameters and initial values of algorithm. 

Parameter Range Initial 
Value 

Symbol Unit 

windowSize [0,200] 100 W [-]
startLCThreshold  [0,50] 0 S [m]
endLCThreshold [0,50] 0 E [m]

deadzone [0,10] 5 D [-]
laneChangeSpeed [0,5] 2 C [m/s]
minimalDistance [0,5] 0.2 M [m]

1. Input: 
At the start of the algorithm, the input data (i.e. lateral 
distance to the left 𝑙 and right 𝑟 lane, see Figure 2) 
and some parameters are loaded. The default values 
of these parameters are listed in Table 1. The 
parameter windowSize W represents the number of 
samples used going backward or forward from a 
detected lane change event. Given the 10 [Hz] 
sampling frequency of the data used, the initial value 
of 100 equals 10 [s]. The startLCThreshold parameter 
(S in [m]) is a threshold value to detect the beginning 
of a lane change in the lateral distance to a lane 
marking. The endLCThreshold (E in [m]) is a 
threshold value to detect the end of a lane change 
from the lateral distance to a lane marking. The 
deadzone D is a filter value which prevents the 
algorithm from capturing spurious lane changes (i.e., 
lane changes that follow too soon on a previously 
detected lane change). The initial value of 5 samples 
represents 0.5 s for the data used. The 
laneChangeSpeed parameter (C in [ms]) defines the 
minimal lateral speed towards a lane marking for 
detecting a lane change. The minimalDistance (M in 
[m]) defines the minimal distance to the lane marking 
for detecting a lane change (see Figure 3).  

 
Figure 3: Visualization of the left (red) and right (blue) 
distance to a road marking, including a left and right lane 
change, with corresponding parameters as used in the lane 
change detection algorithm (green: windowSize; gray: 
deadzone; black: startLCThreshold and endLCThreshold). 

To detect a lane change, first the absolute lateral 
vehicle speed relative to the left, 𝑣 and right,𝑣, lane 
markings was computed by 𝑣 = |(௧ା∆௧)ି(௧)|∆௧ , with 𝑖 ∈ ሼ𝑟, 𝑙ሽ, (1)

where -𝑟 and 𝑙, represents the lateral distance of the 
vehicle. Next, a preliminary detection of lane changes 
is done for each time index t for a left lane change by: 𝐿𝐶 = 𝑙𝑒𝑓𝑡 ⇔ ൜ 𝑀 > 𝑙(𝑡)𝑣(𝑡) > 𝐶 (2)

or as a right lane change with: 𝐿𝐶 = 𝑟𝑖𝑔ℎ𝑡 ⇔ ൜−𝑀 < 𝑟(𝑡)𝑣(𝑡) > 𝐶  (3)

with M and C as defined in Table 1. If neither 
condition did hold, then no lane change was flagged 
at t. 

2. Determination of start and end points of a lane 
change:  

 
Figure 4: Subcomponent of lane change detection algorithm 
for determining the start and end points of a detected lane 
change. 

The next step was finding the begin time index 𝑡௦௧௧  and end time index 𝑡ௗ  of these 
preliminary lane changes. This was done with the 
subcomponent of the algorithm as shown in Figure 4. 
This subcomponent had as input the time steps where 
a lane change was detected in step 3. These time 
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indices were defined as 𝑡௧. For every 𝑡௧, the range 
(ൣ𝑡, 𝑡ௗ൧) in which the real lane change was 
searched was defined with: 𝑡 = 𝑡௧ − 𝑊 ∈ [𝑡, 𝑡ௗ] (4)

and 𝑡ௗ = 𝑡௧ + 𝑊 ∈ [𝑡, 𝑡ௗ], (5)
with W as defined in Table 1. Depending on if the 

event at 𝑡௧  was identified as a left or right lane 
change, different calculations were made to find the 
start time index 𝑡௦௧௧of the lane change. This time 
was determined with a preliminary start time index 𝑡௧௦௧௧ , which was corrected to arrive at a more 
accurate estimate of 𝑡௦௧௧. For a left lane change, 𝑡௧௦௧௧ was determined as follows: 𝑡௧௦௧௧ = min  ୀଵ… (𝑧 > 𝑆) 

where 𝑧 = [𝑧ଵ, 𝑧ଶ, … , 𝑧, … , 𝑧ିଵ, 𝑧] =[𝑙(𝑡௧ − 𝐷) − 𝑙(𝑡௧ − 𝐷 − 1), … , 𝑙(𝑡௧ −𝑊) − 𝑙൫𝑡൯]. 
(6)

For a right lane change 𝑡௧௦௧௧ was determined, 
as follows: 𝑡௧௦௧௧ = min  ୀଵ,… (𝑤 < 𝑆) 

where 𝑤 = ൣ𝑤ଵ, 𝑤ଶ, … , 𝑤, … , 𝑤ିଵ, 𝑤൧ =[𝑟(𝑡௧ − 𝐷) − 𝑟(𝑡௧ − 𝐷 − 1), … , 𝑟(𝑡௧ −𝑊) − 𝑟൫𝑡൯]  
(7)

𝑡௧௦௧௧  was updated to 𝑡௦௧௧  , with the ordering 
index (I.e. 𝑊 − 𝑡௧௦௧௧ − 𝐷 ): 𝑡௦௧௧ = 𝑡 + 𝑊 − 𝐷 − 𝑡௧௦௧௧. (8)

The next step was finding the end time index 𝑡ௗ 
of the lane change. Depending if 𝑡௧  was a 
temporarily left or right lane change, different 
calculations were made to find 𝑡ௗ. This time was 
determined with a temporary end time index 𝑡௧ௗ, 
which was corrected to 𝑡ௗ . 
For a left lane change 𝑡௧ௗ  was determined, as 
follows: 𝑡௧ௗ = min  ୀଵ,…,௦ (𝑞 > 𝐸) 

where 𝑞 = [𝑞ଵ, 𝑞ଶ, … , 𝑞, … , 𝑞௦ିଵ , 𝑞௦] =[𝑙(𝑡௧ + 𝑊) − 𝑙(𝑡ாௗ), … , 𝑙(𝑡௧ + 𝐷) −𝐿(𝑡௧ + 𝐷 − 1)]. 
(9)

For a right lane change 𝑡௧ௗ was determined, as 
follows: 𝑡௧ௗ =  min  ୀଵ,…, (𝑝 < 𝐸) 

where 𝑝 = ൣ𝑝ଵ, 𝑝ଶ, … , 𝑝, … , 𝑝ିଵ,𝑝൧ =[𝑟(𝑡௧ + 𝑊) − 𝑟(𝑡ாௗ), … , 𝑟(𝑡௧ + 𝐷) −𝑟(𝑡௧ + 𝐷 − 1)]. 
(10)

𝑡௧ௗ was corrected to 𝑡ௗ by using: 𝑡ௗ = 𝑡௧ + 𝑡௧ௗ + 𝐷 − 1. (11)

3. Output:  
The algorithm produced a time series with three 
possible states in each sample: no lane change, a lane 
change to the right, or a lane change to the left. An 
example is visualized in Figure 3. This figure shows 
that during a left lane change the distance towards the 
left lane marking decreases, followed by a large 
increase when the vehicle enters the adjoining lane. 
At the same time, the distance to the right lane 
marking increases (becomes more negative) when 
leaving the original lane and jumps to zero when 
entering the adjoining lane. For a right lane change 
this pattern is reversed. Figure 3 also shows that the 
moment the car crosses the line, a lane change was 
marked by a start time and an end time. 

3 METHODS 

3.1 Experimental Vehicles 

The data used in this paper were collected during a 
Dutch FOT on SAE-L2 systems, by using a video 
camera-based system, the Mobileye (C-270 & ME5), 
together with GPS, mounted in a passenger vehicle. 
The Mobileye system was not used as input to a driver 
assistance system but only as a sensor system, used to 
collect (amongst others) lateral lane position data.  

3.2 Collected Data 

To detect lane changes several variables were 
recorded with a frequency of 10 [Hz], as shown in 
Figure 2. Herein, 𝑣௪  is the vehicle width, 𝑙 [m] the 
distance to the left lane and −𝑟 [m] the distance to 
right lane. When l is positive it is left of the middle, 
as also indicated by the axes direction.  

The complete data set contains data collected on 
both motorways and trunk roads in The Netherlands. 
On Dutch motorways, the lines have a width of 0.20 
[m] on the outside and 0.15 [m] on lines between 
lanes (RWS, 2019). On trunk roads, narrower lines 
(down to 0.1 [m]) may also occur (CROW, 2013; 
Schermers and Van Pettegem, 2013).  

3.3 Situational Variables 

Situational Variables (SVs) were recorded in the FOT 
to distinguish among different environmental 
conditions. The quality of data collection, by using 
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video-based sensor systems, may be different under 
these SV conditions, either because visibility 
conditions may be more challenging for the sensor 
system, or because lane line characteristics may differ 
among road categories.  

The first SV was the road category, which was 
determined using the logged GPS data in combination 
with map matching tools. Motorways and trunk roads 
were included in this work. To validate this SV, the 
classification was verified by visual inspection, 
crosschecking with video loggings. The second SV 
was weather condition (i.e., raining vs dry) which was 
determined by the activation of the wipers and visual 
inspection of the video loggings. The last SV was 
light conditions, i.e. driving during the day or night, 
hence having the sun above or below the horizon. 
This was determined in post-processing, using the 
date, time and location of the vehicle in combination 
with known sun rise and sun set times. When these 
three SVs are combined (i.e., road category, weather 
and light conditions), it leads to eight distinct 
conditions where the lane changes of the ego vehicle 
can be investigated (e.g., vehicle drives on a 
motorway vs trunk road, with vs without rain, during 
the day versus night). 

3.4 Validation Data 

The amount of data as used for the validation of each 
combination of SVs, is presented in Table 2. All these 
data were collected in different vehicles (two BMW 
vehicles and one Mercedes vehicle), during different 
trips (a trip is defined as the time between activating 
the vehicle and deactivating the vehicle) and different 
drivers (four out of twenty data loggers, where a data 
logger corresponds to a certain vehicle).  

Table 2: Amount of data used for detection of lane changes 
for each scenario. 

Scenario Number 
of 

vehicles 

Number 
of unique 

trips 

Annotated 
time 

hh:mm:ss
Rain, day, motorway 2  6 00:37:01 
Dry, day, motorway 3  10 03:18:27 
Rain, night, motorway 2  4 00:53:24 
Dry, night, motorway 3  8 01:11:27 
Rain, day, trunk road 2  6 00:29:18 
Dry, day, trunk road 2  5 00:20:49 
Rain, night, trunk road 2  4 00:40:43 
Dry, night, trunk road 3  8 01:03:44 

 

4 LANE CHANGE DETECTION 
FOR DIFFERENT 
SITUATIONAL VARIABLES 

4.1 Performance Indicators 

To assess the quality of the lane change detection in 
the data (which may depend on the parameters listed 
in Table 1 and on the SVs), the lane changes were 
annotated by visual inspection of the front view 
videos. This ground truth were compared with the 
lane changes detected by the algorithm, by looking at 
the amount of true positives (TP) (i.e. a lane change 
is detected correctly), false positives (FP) (i.e. a lane 
change is detected, but does not exist), false negative 
(FN) (i.e. a lane change is not detected) and 
confusions (conf) (i.e. a left lane change is detected 
as a right lane change or vice versa). 

 
Figure 5: F1LR score for different time interval tMargin for 
lane changes for tripid = 539 when W=100, S=0,D=5,C=2 
and M=0.2. 

In the annotation process, lane changes were 
marked as instantaneous events with a certain time 
stamp. However, in Figure 3 it was shown that the 
lane change detection algorithm produces a time 
interval to mark the entire lane change manoeuvre. To 
make it possible to match this with the annotations, 
the middle time of the interval was selected to 
represent the single moment in time that reflects a 
certain lane change. A detected and annotated lane 
change where flagged as a true positive when the time 
between the detection and annotation was less than 7 
seconds (i.e. |𝑡௧௧ − 𝑡ௗ௧௧| < 7[𝑠] ). In 
Bakhit et al. (2017), Das et al. (2020), Hou et al. 
(2015), Li et al. (2018) and Mandalia and Salvucci 
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(2005) an interval from 1 to 5 [s] was selected. 
However, in this study multiple intervals were 
investigated, and the 7 [s] interval gave the best 
results for F1LR (see Figure 5). Based on the number 
of true positives, false positives, false negatives and 
confusions, the quality of the lane change detection 
was expressed as precision and sensitivity (for the left 
and right lane separately). By calculating the 
harmonic mean of precision and sensitivity, the 
F1−score was calculated (Chinchor, & Sundheim, 
1993). This was done for the left lane and for the right 
lane separately (Eqs. (12), (13) and (14)). The newly 
introduced overall algorithm detector quality called 
F1LR score, was determined as the harmonic mean of 
the left and right F1−scores (Eq. (15)). 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  ௧௨ ௦௧௩௧௨ ௦௧௩ା௦ ௦௧௩  (12)𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ௧௨ ௦௧௩ ௧௨ ௦௧௩ା௦௦  (13)𝐹1 = ଶ∗௦∗௦௦௧௩௧௬௦ା௦௦௧௩௧௬   (14)𝐹1ோ  = ଶ∗ிଵ ∗ிଵೝிଵ ା ிଵೝ   (15)

The parameters as visible in Eq. (12), (13), (14) 
and (15) were used to determine if a certain selection 
of Table 1 parameters is better than the other. A 
selection of parameters had a better performance, 
when the scores as calculated with Eq. (12), (13), (14) 
and (15), is larger than the previous set of parameters. 
The selection of Table 1 parameters was done until 
the values in Eq. (12), (13), (14) and (15) were at their 
individual maximum. The selection of Table 1 
parameters, was done by first optimizing the first 
parameter (i.e. windowSize) towards the best 
performance, by hand. Then the second parameter 
was optimized, with a fixed first parameter. All 
parameters were optimized, with fixed earlier 
optimized parameters. When all parameters were 
optimized, the procedure was repeated one more time 
in reverse order, to be sure that the correct parameters 
were selected.  

The performance was also statistically validated, 
by determining if the performance is significantly 
better in a certain scenario. The statistical 
significance of differences among F1LR scores values 
was assessed using a bootstrap procedure as proposed 
by Keller et al. (2005). Bootstrapping is a test that 
uses random sampling with replacement. Given a 
certain value, which is an estimate of a sample of data, 
then bootstrapping is able to assign measures of 
accuracy to this sample estimate (Efron & Tibshirani, 

1994). By using this method, the following 
hypotheses were made: 

1. H0 = Both F1LR score values are equal  
2. H1 = they are not equal. 

The null hypothesis was rejected when the p-value 
was below 0.05. 

4.2 Optimal Algorithm Parameters for 
Extended Data 

In this section, the selection process of the optimal 
parameters for the algorithm is shown. As a remark, 
the parameters were selected by using a data set 
consisting of one hour driving on a motorway, during 
the day with no rain. Therefore, the optimal input and 
the performance of the algorithm was based on this 
data set input. The algorithm had a set of default 
parameters (see Table 1), the results of the default 
parameters algorithm in combination with the 
provided data set are shown in Table 3. A note should 
be made here, the default values were selected 
without any severe validation, the performance 
results of the algorithm with these values, cannot be 
considered as valid. The optimization process of the 
parameter values resulted in the parameter values as 
shown in Table 4. The results of the algorithm with 
the provided data set and the new parameter values, 
are visible in Table 5. When Table 5 is considered, it 
is visible that sensitivity has a maximum score (i.e. 
sensitivity = 1). Further, precision and F1LR 
approach a maximum score (i.e. precision → 1 and 
F1LR →  1). Therefore, the lane change detection 
algorithm worked almost perfectly for the provided 
data. The selection of parameters and the algorithm, 
was validated with two other trips containing 30 
minutes of data each, with 31 lane changes in total. 
These trips contained data of different vehicles and 
participants, to be sure that the selected values were 
universal for the data as used in this verification. In 
these trips the vehicle was driving during the day, 
with no rain, on a motorway. Similar results to the one 
in Table 5 where found (see Table 6 and Table 7). By 
validating the results of the algorithm with various 
data sets, it could be made sure that the found results 
was not a local minimum. A note should be made 
here, Table 5 shows an almost perfect result, however 
the precision value is not perfect. Therefore, in the 
selection of parameters a trade-off was made between 
precision and sensitivity. In this process the precision 
was reduced. 
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Table 3: Confusion matrix lane changes for tripid = 539, 
when W=100, S=0, E=0, D=5, C = 2 and M = 0.2. 
FP=False Positive; TP=True Positive; Conf=confusion 
left/right.  

  Ground Truth   
L R

Detected 
  

1 FN 0 FN
L 3 FP 26 TP 0 Conf
R 1 FP 0 Conf 25 TP 

  Precision 0.897 0.962 
Sensitivity 0.963 1.000 
F1  0.929 0.980
F1LR 0.954

Table 4: Parameters in algorithm and selected values given 
data set of tripid = 539.  

Parameter  Selected 
value  

Symbol  

windowSize  100  W
startLCThreshold  1  S
endLCThreshold  0  E

deadzone  1  D
laneChangeSpeed  2.2  C
minimalDistance  0.3  M

Table 5: Confusion matrix lane changes for tripid = 539, 
when W=100, S=1, E=0, D=1, C = 2.2 and M = 0.3. 
FP=False Positive; TP=True Positive; Conf=confusion 
left/right. 

Ground Truth
L R

Detected 
  

0 FN 0 FN
L 1 FP 27 TP 0 Conf
R 0 FP 0 Conf 25 TP

Precision 0.964 1.000
Sensitivity 1.000 1.000
F1  0.982 1.000
F1LR 0.991

4.3 Statistical Analysis of Performance 

It was validated if the algorithm in combination with 
the provided data also works well, in other conditions, 
than the ones used to optimize the parameters. The 
length of data, the number of trips and vehicles, as 
used for each scenario is shown in Table 2.  

The F1LR (see Eq. (15)) of these different 
conditions were determined, leading to the results as 
visible in Figure 6. The bootstrap analysis yielded the 
following results. First, the difference between any  
 

Table 6: Confusion matrix lane changes for tripid = 4393, 
when W=100, S=1, E=0, D=1, C = 2.2 and M = 0.3. 
FP=False Positive; TP=True Positive; Conf=confusion 
left/right. 

 Ground Truth 

   L  R 

Detected
 

0 FN 0 FN
L 0 FP 7 TP 0 Conf
R 0 FP 0 Conf 7 TP

 Precision 1.000 1.000
Sensitivity 1.000 1.000
F1 1.000 1.000
F1LR 1.000

Table 7: Confusion matrix lane changes for tripid = 5491, 
when W=100, S=1, E=0, D=1, C = 2.2 and M = 0.3. 
FP=False Positive; TP=True Positive; Conf=confusion 
left/right. 

 Ground Truth 

   L  R 

Detected   0 FN 0 FN 

L 0 FP 8 TP 0 Conf
R 0 FP 0 Conf 9 TP

 Precision 1.000 1.000
Sensitivity 1.000 1.000
F1 1.000 1.000
F1LR 1.000

condition on the trunk road and any condition on the 
motorway was statistically significant [all p < 0.005]. 

Secondly, within the trunk road, the situation 
“rain, dark” differed from the three other situations 
[all p < 0.085], showing that performance in this 
condition was worse. Finally, within the motorway 
condition, the situation “rain, light” differed 
significantly from the three other situations [all p < 
0.014]. Within the motorway scenarios, there was a 
significant difference between rain versus no rain 
during the day, with better performance in dry 
conditions. Within the trunk road conditions, there 
was a significant difference between rain versus no 
rain during the night, with better performance in dry 
conditions.  

The reason for this could be the quality of the data. 
The Mobileye system produces a confidence level 
ranging from 0 (small) to 3 (high) as a quality 
indicator. These data were analysed, yielding results 
shown in Figure 7. This figure confirms that the 
confidence level of the signals was lower on trunk 
roads than on motorways. Combining these results,  
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Figure 6: F1LR-score of lane changes detection algorithm as 
a function of the Situational Variables.  

 
Figure 7: Mean confidence levels (0-3) of the lane distance 
measures as a function of the Situational Variables. 

there is a clear relationship between the F1LR score 
and the confidence level of the lane position signals 
(see Figure 8). This means that if the quality of the 
input to the algorithm is low, the performance of the 
overall detection will reduce as well. This should be 
considered when using this algorithm with low 
quality data. From Figure 8 it can be concluded, if the 
confidence > 2.5 then the performance of the 
detection is fine. However, when confidence < 2 then 
the performance will reduce. 

In conclusion, the performance of the lane change 
detection algorithm in combination with the provided 
data, was significantly better when the data were 
collected on motorways, then on trunk roads, 
probably due to better lane markings. There was no  
 

 
Figure 8: Mean confidence levels as a function of F1LR and 
the Situational Variables. 

overall effect of rain on the FlLR score, but in half of 
the road type x daylight configurations, detection 
performance was significantly worse in rain 
compared to dry weather (trunk roads in darkness and 
motorways in daylight).  

To investigate the quality of the detections further, 
the precision and sensitivity were determined (taking 
the harmonic mean over the left and right values). 
Results are shown in Figure 9 and Figure 10. They 
show that sensitivity was always higher than 
precision. Also, the degradation of the detection when 
comparing trunk roads to motorways was much more 
severe in precision than in sensitivity. In other words, 
false positives are more of an issue than false 
negatives.  

 
Figure 9: Precision of the detection algorithm as a function 
of the Situational Variables.  
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Figure 10: Sensitivity of lane changes detection algorithm 
as a function of the Situational Variables.  

5 DISCUSSION 

In this paper a lane change detection algorithm from 
the large-scale, Europe-wide, real-world pilot study 
of SAE Level 3 functions was introduced and was 
validated off-line with in-vehicle recorded data from 
a Dutch project in which a FOT on SAE Level 2 
systems was conducted (Hiller et al., 2020; Stapel et 
al., 2021). The goal of this research is to answer the 
question: ’Is it possible to automatically detect a lane 
change event in a data set of SAE Level 2 automated 
vehicles during different scenarios with different 
situational variables, using the proposed lane change 
manoeuvre detection algorithm?’. The input of the 
algorithm are some parameters and the lateral vehicle 
to road marking distance. These parameters were 
optimized, by using two hours of lateral lane distance 
data of a vehicle that is driving on the motorway, 
during the day without rain. The selection of the 
parameters, resulted in almost perfect lane change 
detection. After the lane change detection algorithm 
was optimized, the performance of the algorithm in 
combination with the provided data was validated in 
eight different scenarios (i.e. during the day/night, 
with/without rain, on motorways/trunk roads). In 
these scenarios, motorways lines have a width of 0.20 
[m] on the outside and 0.15 [m] on lines between 
lanes (RWS, 2019), whereas on trunk roads, narrower 
lines (down to 0.1 [m]) may occur (CROW, 2013; 
Schermers & Van Pettegem, 2013). Further, it is 
assumed that a total lane change has a maximum time 
of 7 [s], which is slightly larger in contrary to existing 
sources which takes a time of 1-5[s] (Bakhit et al. 
2017, Das et al., 2020, Hou et al., 2015, Li et al., 2018 

and Mandalia & Salvucci, 2005). From the validation, 
it could be concluded that the performance of the 
algorithm in combination with the provided data, 
works very well when using data collected on a 
motorway. Results from a bootstrap procedure 
showed that the detection was significantly better for 
motorway data than for trunk road data. However, 
when the motorway scenarios are investigated in 
more detail, it could be concluded that the 
performance of the algorithm in combination with the 
provided data is worse, when the vehicle is driving on 
a motorway during the day, with rain. Further, when 
the trunk road scenarios are investigated in more 
detail, the performance of the algorithm in 
combination with the provided data was significantly 
worse during the night, with rain. This was probably 
due to bad lane detection and data quality in this 
specific scenario. There was a strong correlation 
between the quality of lane change detection and the 
quality of the lane position signals, as expressed in the 
confidence levels provided by the MobilEye system.   
This is in line with findings from Das et al. (2020), 
who reported reduced signal quality of a machine-
vision based lane position signal in snow or heavy 
rain. 

6 CONCLUSIONS   

In conclusion, we have shown that the introduced lane 
change detection algorithm performs excellently 
under motorway conditions. However, for data from 
trunk roads, lane change detection was significantly 
worse. When the vehicle is driving on a trunk road, 
the results of the algorithm in combination with the 
data are significantly different from the results on the 
motorway. Therefore, it is advised to use the current 
algorithm in combination with the data for the off-line 
detection of lane changes on motorways. To optimize 
lane change detection on trunk roads, the key is not in 
further tuning of the current algorithm but rather in 
improving road marking detection and data quality  
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