Feedback Optical Flow Convolutional Neural Network. 
In IEEE Access,  vol.  6,  pp.  6048-6057,  doi: 
10.1109/ACCESS.2017.2771389. 
Jiang, Z., Zhao, L., Li, S., & Jia, Y. (2020). Real-time object 
detection  method  based  on  improved  YOLOv4-
tiny. ArXiv, abs/2011.04244. 
Krizhevsky,  A.,  Sutskever,  I.  &  Hinton,  G.  E.  (2012). 
ImageNet  Classification  with  Deep  Convolutional 
Neural  Networks.  In  F. Pereira, C. J. C. Burges, L. 
Bottou & K. Q. Weinberger (ed.), Advances in Neural 
Information Processing Systems 25 (pp. 1097--1105) . 
Curran Associates, Inc. 
Kumar,  A.,  Kalia,  A.,  Sharma,  A. et  al.  (2021). A  hybrid 
tiny YOLO v4-SPP module based improved face mask 
detection  vision  system. In  J Ambient Intell Human 
Comput (2021).  https://doi.org/10.1007/s12652-021-
03541-x 
Lalitha,  V.  L.,  Raju,  S.  H.,  Sonti,  V.  K.,  Mohan,  V.  M. 
(2021). Customized Smart Object Detection: Statistics 
of  detected  objects  using  IoT.  In International 
Conference on Artificial Intelligence and Smart 
Systems (ICAIS),  pp.  1397-1405,  doi: 
10.1109/ICAIS50930.2021.9395913. 
Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., 
Belongie,  S.  (2017).  Feature  Pyramid  Networks  for 
Object  Detection.  In  2017 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), pp. 
936-944, doi: 10.1109/CVPR.2017.106. 
Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P. (2020). 
Focal  Loss  for  Dense  Object  Detection.  In  IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence,  vol.  42,  no.  2,  pp.  318-327,  doi: 
10.1109/TPAMI.2018.2858826. 
 Liu W, Anguelov D, Erhan D, SzegedyC, Reed S, Fu CY, 
Berg,  A.  (2016).SSD:  single  shot  MultiBox  detector. 
arXiv. https://arxiv.org/abs/1512.02325. 
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J. (2018). Path 
Aggregation  Network  for  Instance  Segmentation.  In 
2018 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition,  pp.  8759-8768,  doi: 
10.1109/CVPR.2018.00913. 
 Nowozin S. (2014). Optimal decisions from probabilistic 
models:  the  intersection-over-union  case.  In 
Proceedings of the 2014 IEEE Conference on 
Computer Vision and Pattern Recognition, pp 548–555. 
https://doi.org/10.1109/CVPR.2014.7. 
Rane, S., Dubey, A., Parida, T. (2017).  Design of IoT based 
intelligent  parking  system  using  image  processing 
algorithms. In International Conference on Computing 
Methodologies and Communication (ICCMC),  pp. 
1049-1053, doi: 10.1109/ICCMC.2017.8282631. 
Redmon J, Divvala S, Girshick R, Farhadi A. (2016). You 
only look once: unified, real-time object detection. In  
Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR),  Las  Vegas, 
NV,  USA  2016,  pp  779–788.  https://doi.org/10.1109/ 
CVPR.2016.91. 
Redmon  J,  Farhadi  A.  (2017).  YOLO9000:  better,  faster, 
stronger. In 2017 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), Honolulu, HI, USA, 
pp  6517–6525.  https://doi.org/10.1109/CVPR.2017.6 
90. 
Redmon,  J.,  Farhadi,  A.  (2018).  Yolov3:  An  incremental 
improvement. arXiv preprint arXiv:1804.02767. 
Simonyan,  K.  and  Zisserman,  A.  (2015).  Very  Deep 
Convolutional  Networks  for  Large-Scale  Image 
Recognition.  In  The 3rd International Conference on 
Learning Representations (ICLR2015). 
https://arxiv.org/abs/1409.1556. 
Srivastava, S., Divekar, A.V., Anilkumar, C. et al. (2021).  
Comparative analysis of deep learning image detection 
algorithms.  In  J Big Data 8,  66 
https://doi.org/10.1186/s40537-021-00434-w 
Uddin, M. I., Alamgir, M. S., Rahman, M. M., Bhuiyan, M. 
S.,  Moral,  M.  A.  (2021).    AI  Traffic  Control System 
Based on  Deepstream  and  IoT Using  NVIDIA  Jetson 
Nano.  In  2nd International Conference on Robotics, 
Electrical and Signal Processing Techniques 
(ICREST),  pp.  115-119,  doi: 
10.1109/ICREST51555.2021.9331256. 
Wu,  X.,  Xu,  H.,  Wei,  X.,  Wu,  Q.,  Zhang,  W.,  Han,  X. 
(2020).  Damage  Identification  of  Low  Emissivity 
Coating  Based  on  Convolution  Neural  Network. 
In IEEE Access,  vol.  8,  pp.  156792-156800,  doi: 
10.1109/ACCESS.2020.3019484. 
Zhang, Y., Zhao, P., Li, D., Konstantin, K. (2020). Spatial 
Attention Based Real-Time Object Detection Network 
for Internet of Things Devices.  In IEEE Access, vol. 8, 
pp.  165863-165871,  doi: 
10.1109/ACCESS.2020.3022645.