
Improving Integration Process Efficiency through Pull Request
Prioritization

Agustín Olmedo1 a, Gabriela Arévalo2, Ignacio Cassol1 b, Christelle Urtado3 c

and Sylvain Vauttier3 d

1LIDTUA (CIC), Facultad de Ingeniería, Universidad Austral, Buenos Aires, Argentina
2DCyT (UNQ), CAETI (UAI), CONICET, Buenos Aires, Argentina

3EuroMov Digital Health in Motion, Univ. Montpellier & IMT Mines Ales, Ales, France

Keywords: Distributed Version Control System, Distributed Software Development, Pull-based Development, Pull
Request, Software Merging, Merge Conflicts.

Abstract: Pull-based Development (PbD) is widely used in software teams to integrate incoming changes into a project
codebase. In this model, contributions are advertised through Pull Request (PR) submissions. Project ad-
ministrators are responsible for reviewing and integrating PRs. Prioritizing PRs is one of the main concerns
of project administrators in their daily work. Indeed, conflicts occur when PRs are concurrently opened on
a given target branch and propose different modifications for a same code part. We propose to consider the
integration process efficiency (IPE) as the fact that for a given integration cost (i.e., number of conflicts to be
solved) the highest gain is reached (i.e., the largest number of PRs are integrated). The goal of this work is to
optimize the IPE through PR prioritization. We propose a process that provides a sequence of unconflicting
PR groups. This sequence minimizes the number of conflict resolutions and defines an optimized integration
order according to the efficiency of the integration process. We apply our proposal to seven representative his-
torical integration sequences from an open source project. In all seven cases, the IPE obtained by our proposal
is higher than the historical IPE from 28.73% to 156.52%.

1 INTRODUCTION

Many software development teams rely on a Dis-
tributed Version Control System (DVCS) to man-
age concurrent editing of their projects’ source
code (Brindescu et al., 2014) (Rodríguez-Bustos and
Aponte, 2012). Since their appearance in 2001,
DVCSs –notably Git (Chacon and Straub, 2014)–
have transformed collaborative software develop-
ment. Each developer has a personal local copy of
the entire project history. Changes are first applied
locally in the developer copy and are later integrated
into a new shared version. Conflicts between paral-
lel changes need to be solved during this integration
process (Mens, 2002).

The pull-based development (PbD) model is
widely used in collaborative software development
(Gousios et al., 2014)(Gousios et al., 2015). In this
model, contributions are advertised through Pull Re-
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quest (PR) submissions. Members of the project’s
core team (aka project administrators) are responsible
for reviewing and integrating PRs.

In an open-source context, the PbD model encour-
ages contributions since anyone can propose changes
to be integrated into the project, thereby increas-
ing the burden on project administrators who decide
whether to integrate contributions into the main de-
velopment branch or not (Gousios et al., 2015)(Pham
et al., 2013). In large projects, the volume of in-
coming PRs is quite a challenge (Gousios et al.,
2015)(Tsay et al., 2014a). Prioritizing PRs is one of
the main concerns of project administrators in their
daily work (Gousios et al., 2015).

Since contributions can be submitted concur-
rently, more than one PR can propose changes that
modify the same part of the code (i.e., same lines
of the same file). When two PRs are concurrently
opened on a given target branch, proposing different
modifications for identical code parts, a pairwise con-
flict exists. In such case, only the first one can be
integrated automatically, while the second requires a
conflict resolution.

A PRs integration sequence is the chronological
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order in which the project administrator integrates
the opened PRs. The integration sequence defines
the integration process. According to Van Der Veen
(Van der Veen, 2015), there is an integration sequence
in which the number of conflict resolutions is reduced.
Although the actual number of conflicts is not re-
duced, they can be concentrated in a particular PR in-
tegration action, thus reducing the number of conflict
resolutions. The integration process may be there-
fore not as efficient as possible because the number
of conflict resolutions could be smaller or because the
integration of less conflicting PRs (PRs easier to inte-
grate) are inexplicably delayed.

The advantage of an efficient integration process
is that the codebase is kept as up-to-date as possible.
This is very valuable for the software development
process because efficient continuous integration pro-
cesses limit future integration conflicts (Beck, 2000).
In addition, since conflict resolutions are carried out at
the end of the integration process, conflicts are solved
on an updated codebase, applying the most appropri-
ate resolutions to the latest state of the software.

We propose to consider the integration process ef-
ficiency (IPE) as the fact that for a given integration
cost (i.e., number of conflicts to be solved) the high-
est possible gain is reached (i.e., the largest number
of PRs are integrated). Therefore, to achieve an opti-
mized IPE, the number of conflict resolutions should
be minimized and the least conflicting PRs should be
integrated earlier.

We pose the following research questions:
• RQ1. Can the efficiency of the integration pro-

cess be improved by prioritizing PRs according to
conflicts?

• RQ2. To what extent does our proposal improve
the IPE as compared to the historical IPE mea-
sured from a real project history?

The goal of this work is to evaluate the feasibility of
IPE optimization through PR prioritization. We pro-
pose a process that provides a sequence of unconflict-
ing PR groups that minimizes the number of conflict
resolutions and defines an optimized integration order
according to the efficiency of the integration process.

In order to answer the research questions, we ap-
ply our proposal to the sets of PRs corresponding to
seven representative historical integration sequences
from an open source project.

The remainder of this paper is structured as fol-
lows. Section 2 includes background knowledge and
definitions. Section 3 presents our proposed approach
to optimize IPE for a set of PRs. Section 4 explains
how we evaluate our proposal and gives an insight on
the case study that will be used throughout the pa-
per. Section 5 contains results and threats to validity

analyses. Related works are included in Section 6 be-
fore providing our conclusions and perspectives for
this work.

2 BACKGROUND &
DEFINITIONS

In DVCS, versions are created when a developer com-
mits the changes currently staged to the project. Ver-
sions derive from each other and a derivation relation
then links a version to (one of) its predecessor(s). The
graph composed of versions and their derivation re-
lations is called a version history. This history can
be linear, tree-like (several versions can be derived
from the same one, to model software variants for ex-
ample), or, in the most general case, forms a direct
acyclic graph (versions can also be merged). This last
and more generic case is the appropriate framework
for collaborative development. We consider such his-
tories in the remainder of this study.

A branch is the version history up to a specific
version and defines an independent line of devel-
opment. To enable collaborative or concurrent de-
velopment, but also to preserve the contents of the
main development branch, developments are typically
performed on new branches, forked from the latest
version currently available on the main development
branch (Bird and Zimmermann, 2012). This branch
is sometimes called a feature branch as its role in the
development process is to bring up a new feature to
the project.

Tasks that have to be dealt with (to correct, main-
tain or improve the software) are stored as issues in an
issue tracking system (IST) such as Jira 1. Contribu-
tors choose or are provided a ticket to deal with. To do
so, they create a dedicated feature branch in their local
repository from the latest software version (fetched
from the team repository), check-out this version to
get a work copy and make the necessary changes.
These changes can then be committed on the feature
branch in the local repository so as to enact them.
When the development is achieved, the versions lo-
cally commited on the feature branch are checked-in
(pushed) to the remote team repository. A last step is
to submit a Pull Request (PR) to ask the project ad-
ministrator to include the changes into the project’s
main development branch.

A PR is a request to the project administrator(s)
to pull versions from a branch to another one. So,
a PR contains a source branch from which versions
are pulled from and a target branch to which versions

1https://www.atlassian.com/en/software/jira
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are pushed. Project administrators must review and
integrate opened PRs in the project. As a result of
the review process, PRs can be closed as accepted
or rejected. PRs can be accepted with or without
changes. In case of being accepted with changes, the
contributor must apply the changes suggested by the
project administrator by committing a new version in
the source branch of the PR, so that the PR is auto-
matically updated.

The accepted PRs are integrated, that is, the
changes of the versions of the source branch since it
was forked from the target branch are incorporated
into the target branch. If versions have been com-
mited on the target branch since the source branch
of the PR was forked, there may be merge conflicts
since the head version of the source branch do not
derive anymore from the head version of the target
branch. We consider the changes as text file modifi-
cations as Git does. A change is the modification of
a text chunck in a file or the addition or deletion of a
file. Therefore, merge conflicts between changes are
due to the fact that the same line(s) of the same file
are modified in both branches.

When there are merge conflicts between the
changes of the source branch and the changes of the
target branch of a PR, the PR is considered as a con-
flicting PR. Conflicting PRs require a conflict resolu-
tion to integrate their changes into the target branch
whereas for unconflicting PRs, the changes are auto-
matically integrated. In the PbD approach, a pairwise
conflict exists between two PRs when the integration
of a PR would entail a future conflict when integrat-
ing the other one to their shared target branch (and
reciprocally).

The integration of all opened PRs implies that all
conflicts are solved. The final cost of the integration
process is therefore the same regardless of the integra-
tion sequence. Even though, the IPE can be improved
since it is possible to propose an integration sequence
that provides greater gain earlier at a lower cost, as
compared with other integration sequences. Particu-
larly, the integration process is more efficient when
all unconflicting PRs are integrated first because, up
to that point in the integration process, the IPE is op-
timal since these PRs are integrated automatically.

3 OUR APPROACH: IPE
OPTIMIZATION

Our approach takes as its inputs a set of opened PRs
and generates a sequence of PR groups that defines
an optimized integration process. The proposal takes
as an hypothesis that all the pairwise conflict resolu-

Figure 1: IPE optimization steps with their corresponding
artifacts.

tions have the same mean cost (the study of an accu-
rate cost model is a perspective for this work). Thus,
we do not consider the elementary conflicts (like con-
flict between files or line blocks, depending on the
considered detail level) but only pairwise conflicts.

PR groups are composed of unconflicting PRs.
These can thus be integrated altogether in an auto-
matic manner. In addition, PR groups are ordered so
as to integrate first the less conflicting PR group, i.e.,
the group with the best trade-off between the number
of PRs in the group and the number of pairwise con-
flicts that need to be solved to integrate the PRs of the
group. Our approach lies on a four stepped process
shown in Figure 1.
Pairwise Conflict Representation. It processes the
set of PRs to obtain the existing pairwise conflicts.
Conflicts between PRs are obtained by performing an
in-memory merge2 of the latest version of the source
branch of each PR. A pairwise conflict graph is gen-
erated where nodes represent each individual PR and
edges represent the existence of merge conflicts be-
tween PRs pairs.
Unconflicting PR Clustering. It processes the pair-
wise conflict graph to generate a set of groups that
each contains unconflicting PRs. Thus, the integra-
tion of each PR group into the target branch is opti-
mized because its PRs can be automatically integrated
as a single composite PR, resulting in a single conflict
resolution process. Among the set of possible solu-
tions to this clustering problem, our proposal gives
preference to those ones that have a smaller number
of the biggest possible groups. In this way, we mini-
mize the number of conflict resolutions to be actually
handled (one for each group).

Our approach solves this clustering problem as a
graph coloration problem (Kubale, 2004). The graph
coloring algorithm colors nodes that are not adja-

2https://git-scm.com/docs/git-merge
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cent with the same color. In the pairwise conflict
graph, two nodes are adjacent when the PRs repre-
sented by those nodes have conflicts. Therefore, the
non-adjacent nodes are those that do not conflict with
each other and these are the ones that are colored with
the same color. In this way, unconflicting PRs are
grouped together. In addition, the coloring algorithm
tries to find the solution with the minimum number of
colors, thus the minimum number of unconflicting PR
groups.

We model the graph coloration problem as a Con-
straint Satisfaction Problem (CSP) as follows:

• A variable, colors, associated with the definition
domain [0,#PRs], that models the set of colors
available to color the graph. We use as an upper
bound the number of nodes (the trivial coloring
solution).

• A set of variables vi, associated with the definition
domain [0,#PRs], that model the color affected to
each node.

• A set of constraints vi < colors, to model that
nodes cannot use more than the available colors.

• A set of constraints vi 6= v j, for any couple of
nodes (vi,v j) connected by an edge, to model that
nodes connected by edges cannot have the same
color,

• An objective that is minimize(colors), so the
solver will try to find not only a solution but the
best solution and will use the objective to prune
some search branches.

Unconflicting PR Groups Representation. It is
quite straightforward from the output of 2nd step. It
consists in representing a graph whose k nodes repre-
sent colors (unconflicting PR groups) from previous
step and whose edges correspond to integration con-
flicts between PR groups. As any pair of PR groups
is in conflict (otherwise they would have the same
colour and have been regrouped), the resulting graph
is complete. The edges of the graph are labelled with
the number of pairwise conflicts that exist between
the members of the connected PR groups.
PR Groups Integration Sequence Optimization.
This step provides an ordered set of PR groups which
constitutes our calculated optimized PR group inte-
gration sequence according to the IPE. This order is
calculated by traversing the PR group graph to search
for the best trade-off that maximizes gain (integrate as
much PRs as possible) while minimizing cost (avoid
conflict resolutions as much as possible). The travers-
ing algorithm is shown in Algorithm 1. It starts with
the biggest node (line 10). In each step (lines 12-29),
it looks for the best neighbor node, which is the one

with the best trade-off between node size and the cu-
mulative cost of the paths from the node to the nodes
already visited (i.e., the total cost of integrating the
group assuming the already integrated groups).

Input: G is a PR group graph
Output: S is a sequence of nodes

1 S = []
/* select biggest node of G */

2 V = null
3 maxNodeSize = 0
4 for node in G.nodes do
5 if node.size > maxNodeSize then
6 V = node
7 maxNodeSize = node.size
8 end
9 end

10 S.add(V)
/* traverse graph nodes starting with the

biggest node */
11 while length(S) < length(G.nodes) do
12 neighbors = G.adjacentsOf(V) - S
13 bestNeighbor = null
14 bestTradeoffValue = 0
15 for neighbor in neighbors do
16 nodeSize = neighbor.size
17 EdgeAccumWeight = 0
18 for s in S do
19 E = G.edgeBetween(s, neighbor)
20 EdgeAccumWeight =

EdgeAccumWeight + E.weight
21 end
22 tradeoffValue = nodeSize /

EdgeAccumWeight
23 if tradeoffValue > bestTradeoffValue

then
24 bestNeighbor = neighbor
25 bestTradeoffValue = tradeoffValue
26 end
27 end
28 V = bestNeighbor
29 S.add(V)
30 end
31 return S

Algorithm 1: Get PR group integration sequence.

4 EVALUATION ON A CASE
STUDY

In this section we explain how we evaluate our pro-
posal. We set up a case study that consists in extract-
ing integration sequences from the history of a soft-
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Table 1: Historical integration sequence from October 16,
2017 to October 30, 2017 of Antlr4 project.

PR ID Integration timestamp
2052 2017-10-21 16:19:55
2058 2017-10-21 16:20:28
2055 2017-10-21 16:20:57
1978 2017-10-21 16:38:02
2062 2017-10-21 19:00:49
2032 2017-10-21 19:26:30
2057 2017-10-21 19:26:35
2063 2017-10-21 19:47:26
2011 2017-10-21 19:53:54
2064 2017-10-21 19:55:32
1996 2017-10-21 19:58:33
1983 2017-10-21 20:00:03
1955 2017-10-21 20:13:49
1974 2017-10-21 20:16:24
1917 2017-10-22 15:52:31
2033 2017-10-23 16:25:40
2070 2017-10-23 21:43:22
2077 2017-10-25 20:16:46
2072 2017-10-27 15:26:04
2073 2017-10-27 15:26:48
2074 2017-10-27 15:27:10
2075 2017-10-27 15:27:47
2076 2017-10-27 15:28:15
2067 2017-10-27 15:28:57
2068 2017-10-27 15:29:27
1951 2017-10-27 17:45:27
1990 2017-10-27 22:54:29
2083 2017-10-29 16:18:09
1930 2017-10-29 22:57:07

ware project and applying our proposal to the set of
PRs for each integration sequence.

4.1 Case Study Definition

Project Selection. We selected the project Antlr4 3

since it (i) is publicly available in GitHub, (ii) has
more than ten thousand stars, (iii) has more than two
thousand forks, and (iv) follows a PbD process. In
addition, its history has more than a thousand PRs,
which is an adequate number to evaluate the proposal.
Therefore, the project is suitable because it is popular
and has a good number of contributors and contribu-
tions.
Integration Sequence Extraction. Based on a time
window (t1, t2), we extract the integration sequence
from the project history. The range of the selected
time windows in the case study is 2 weeks based on
the usual sprint length in agile methodologies such as
Scrum (Diebold et al., 2015) or the size of the merge
window used in the Linux kernel project (German
et al., 2016). Opened PRs within the time window
(t1, t2) can be integrated or rejected within or after the

3https://github.com/antlr/antlr4

Figure 2: PR types according to their project life cycle for
a time window. Type 5 and 6 are targets of our case study
because those PRs are integrated into the defined time win-
dows (t1, t2).

time window or remain open indefinitely. Figure 2
shows all these PR types for PRs that are created be-
fore the time window and those that are created within
the time window. Our case study includes all the PRs
integrated within the time window to obtain the inte-
gration sequence. In Figure 2, these PRs correspond
to PR types 5 and 6. Rejected PRs (types 1, 4, 7 and
9) and those that are never closed (types 2 and 10) are
not incuded in the case study because those PR types
are not integrated into the project history. PR types
3 and 8 are not included because they are not inte-
grated within the considered time window. Therefore,
we obtain an integration sequence by extracting inte-
grated PRs within the time window (t1, t2) and sorting
them by their integration timestamp. This sequence
is the historical integration sequence. Table 1 shows
an example of a historical integration sequence of the
Antlr4 project corresponding to a time window from
October 16, 2017 to October 30, 2017.

4.2 Historical IPE

We evaluate the case study by calculating the IPE as a
function of the cumulative cost and gain of each inte-
gration step where the cost is the number of pairwise
conflicts to solve and the gain is the number of inte-
grated PRs.

Table 2 shows the cumulative cost and gain val-
ues for each integration step corresponding to the his-
torical integration sequence shown in Table 1. The
pairwise conflicts corresponding to this integration
sequence can be seen visually in Figure 4. We start
considering that the first 10 PRs of Table 1 do not con-
flict with each other. They are integrated at zero cost
since project admininstrator does not have to solve
any conflict to integrate them. Since PR #1996 con-
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Table 2: Cumulative cost and gain values of each integra-
tion step for the historical integration sequence shown in
Table 1.

Integration
step PR ID Cumulative

Cost (x)
Cumulative

Gain (y)
1 2052 0 1
2 2058 0 2
3 2055 0 3
4 1978 0 4
5 2062 0 5
6 2032 0 6
7 2057 0 7
8 2063 0 8
9 2011 0 9
10 2064 0 10
11 1996 7 11
12 1983 7 12
13 1955 7 13
14 1974 8 14
15 1917 8 15
16 2033 8 16
17 2070 8 17
18 2077 8 18
19 2072 8 19
20 2073 8 20
21 2074 8 21
22 2075 8 22
23 2076 8 23
24 2067 8 24
25 2068 8 25
26 1951 8 26
27 1990 20 27
28 2083 20 28
29 1930 22 29

flicts with 7 already integrated PRs (#2052, #2058,
#2055, #2062, #2057, #2063 and #2064), it is re-
quired to solve conflicts with those PRs to integrate
it. Therefore the cost of integrating PR #1996 is 7. As
PRs #1955 and #1983 do not conflict with any PR al-
ready integrated, then they are integrated at zero cost
and the cumulative cost is still 7. PR #1974 conflicts
with PR #2011, so the cumulative cost is 8. The fol-
lowing 12 PRs (#1917, #2033, #2070, #2077, #2072,
#2073, #2074, #2075, #2076, #2067, #2068, #1951)
do not conflict with the previously integrated PRs,
thus they are integrated at zero cost and the cumula-
tive cost is still 8. As PR #1990 conflicts with 12 pre-
viously integrated PRs (#2052, #2058, #2055, #2062,
#2057, #2063, #2064, #1996, #2070, #2077, #2067,
#2068), the cost is 12 and the cumulative cost is 20.
PR #2083 does not conflict with any of the previously
integrated PRs, so it is integrated at zero cost and the
cumulative cost is still 20. Finally, PR #1930 conflicts
with PRs #1951 and #2083, thus the integration cost
is 2 and the cumulative cost is 22.

Figure 3 maps the cost/gain to a trajectory where
axis x is the cumulative cost, axis y, the cumulative
gain. Each (x,y) coordinates is an integration step and

Figure 3: Integration trajectory corresponding to the histor-
ical integration sequence shown in Table 1. The area under
the trajectory represents the IPE.

Figure 4: Pairwise conflict graph obtained from the set of
PRs of Table 1.

the line between points is the integration step cost.
The trajectory models the integration sequence. The
area under the trajectory represents the IPE because
a larger area means that a higher gain is achieved at
a lower cost. The IPE corresponding to the historical
integration sequence represented on Figure 3 is 449.
In addition, the number of conflict resolutions is 4,
corresponding to the integration of PRs #1996, #1974,
#1990 and #1930.

4.3 Optimized IPE

We apply our approach to the set of PRs correspond-
ing to the historical integration sequence shown in Ta-
ble 1. Figure 4 shows the pairwise conflicts graph re-
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Figure 5: Colored pairwise conflict graph resulting from ap-
plying the second step of the proposal to the pairwise con-
flict graph of Figure 4.

Figure 6: PR group graph obtained from the colored pair-
wise conflict graph of Figure 5.

sulting from applying the first step of the proposal to
the set of PRs of the historical integration sequence.
Figure 5 shows the corresponding colored graph after
applying the second step of the proposal. The chro-
matic number k is 3 meaning that PRs can be grouped
into three groups where PRs do not conflict with each
other. Figure 6 shows the PR group graph obtained
after applying the third step of the proposal to the col-
ored pairwise conflict graph of Figure 5. Lastly, ap-
plying the fourth step of the proposal to the PR group
graph results in the following PR group integration
sequence: G0 → G1 → G2. So, 25 PRs can be au-
tomatically integrated into the target branch and the
remaining 4 PRs require manual conflict resolution.
The three PRs corresponding to G1 do not conflict
with each other but 14 pairwise conflicts need to be
solved to integrate them into the target branch. Fi-
nally, it is needed to solve 8 pairwise conflicts to inte-
grate the PR belonging to G2 to the target branch.

Table 3: Cumulative cost and gain values of each integration
step for the proposed PR group integration sequence.

Integration
step Group Cumulative

Cost (x)
Cumulative

Gain (y)
1 G0 0 25
2 G1 14 28
3 G2 22 29

Figure 7: Comparative graph between the historical integra-
tion trajectory and the PR group integration trajectory.

We evaluate the integration sequence optimized
by our proposal by calculating its IPE. Figure 7 shows
both the historical and our optimized integration se-
quences. The IPE corresponding to our optimized
integration sequence is 578 (28.73% higher than the
historical one). In addition, its number of conflict res-
olutions is 2, corresponding to the integration of the
G1 and G2 groups.

5 EXPERIMENTAL RESULTS

In this section, we report and discuss the main re-
sults achieved in our work. We extract PR informa-
tion from the GHTorrent dataset4 (Gousios and Zaid-
man, 2014). It should be noted that we obtain pair-
wise conflicts from the project history considering the
head version of the PRs on the submission date.

We apply our proposal to seven representative
historical integration sequences of the Antlr4 project.
The selection criterion for these sequences is the
number of unconflicting PR groups obtained by ap-
plying the coloring algorithm to the pairwise conflict
graph corresponding to the integration sequences.
Table 4 shows information about the pairwise conflict
graphs corresponding to the selected integration
sequences. The number of PRs (# PRs) and the
number of pairwise conflicts (# Pairwise Conflcits)
corresponds to the number of nodes and edges of
the pairwise conflict graph respectively. The number
of potential conflict resolutions (# Potential conflict

4We download the latest backup dated 2019-06-01 from
https://ghtorrent.org/downloads.html
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resolutions) corresponds to the worst case of the
number of conflict resolutions for the case study.
Finally, the number of unconflicting PR groups (#
Unconflicting PR Groups) corresponds to the number
of groups (colors) that we obtained by applying the
coloring algorithm explained in Section 3.

RQ1. Can the efficiency of the integration process be
improved by prioritizing PRs according to conflicts?

Table 5 shows the comparison between the
historical IPE and the optimized IPE obtained by
our proposal for each integration sequence shown in
Table 4. We observe that for all selected integration
sequences our approach improves the historical
IPE, which means that less conflicting PRs are inte-
grated earlier in the proposed PR group integration
sequence. In addition, the number of conflict resolu-
tions resulting in the proposed PR group integration
sequence is less than or equal to the historical one.
Therefore, we can conclude that prioritizing PR
according to conflicts can improve the IPE.

RQ2. To what extent does our proposal improve the
IPE as compared to the historical IPE measured from
a real project history?

Table 5 shows a percentage of improvement of the
IPE between 28.73% and 156.52% as compared to
the historical IPE. We can thus conclude that our pro-
posal can help project administrators significantly by
optimizing their integration work when the number of
pairwise conflicts is proportionally large with respect
to the number of PRs and the number of potential con-
flict resolutions is close to the optimal.

It should be noted that our solution allows project
administrators to systematically reduce the number of
conflict resolutions but not the number of conflicts to
be solved.
Threats to Validity. The criteria defined in order to
extract conflicts between PRs already integrated into
the project history could be further discussed. An-
other identified validity threat could be related to the
fact that the proposal was evaluated on a limited num-
ber of historical integration sequences. On the other
hand, we consider they are representative and include
a wide variety of cases. Finally, it would be argued
that the evaluation was not performed on distinct soft-
ware projects. In this way, we prioritized the selection
of the case studies in order to ensure real different sce-
narios more than the inclusion of many projects that
could contain no significant differences.

6 RELATED WORK

In recent years, researchers have conducted several
studies to better understand the PbD model usage and
to improve the development process in this model
(Tsay et al., 2014a) (Tsay et al., 2014b) (Gousios
et al., 2014) (Gousios et al., 2015) (Gousios et al.,
2016). We can distinguish two processes within the
PbD model that are closely related: the review and in-
tegration processes. The review process reviews the
code to meet the project’s quality standards and de-
cides to accept or reject a contribution. The integra-
tion process integrates the accepted PRs by solving
merge conflicts for conflicting PRs.

From the review process viewpoint, works that
study latency factors are (Gousios et al., 2014),
(Zhang et al., 2014), (Yu et al., 2015), (Yu et al.,
2016b) and (Kononenko et al., 2018) that propose dif-
ferent quantitative / qualitative analyzes to identify la-
tency factors in the PR review process. These studies
inspired our proposal to study and improve the latency
of the PR integration process. Other works study
the PR acceptance factors (Tsay et al., 2014a), (Rah-
man and Roy, 2014), (Gousios et al., 2015), (Zam-
petti et al., 2019), (Legay et al., 2018) identifying
and analyzing the social and technical factors behind
PR acceptance or rejection. Gousios et al. (Gousios
et al., 2014) indicates that 27% of rejected PRs are
conflicting PRs. Therefore, our work could also im-
prove the acceptance rate by reducing the number of
conflicting PRs. Some works recommend the most
suitable project administrator for reviewing a given
PR (Thongtanunam et al., 2014), (Ying et al., 2016),
(Yu et al., 2016a), (Jiang et al., 2017) and (Jiang et al.,
2019).

Among the works that study PR prioritization we
find some that prioritize PRs by response and accep-
tance likelihood (Van Der Veen et al., 2015), (Azeem
et al., 2020a) and (Azeem et al., 2020b). The goal of
these prioritization strategies is minimizing the time
required to obtain updates from contributors on the
most useful PRs. Zhao et al. (Zhao et al., 2019) pro-
pose a learning-to-rank approach to prioritize PRs that
can be quickly reviewed by project administrators in
order to review more PRs in a period of time or be
able to review any PR when they have a few minutes.
Recently, Saini and Britto (Saini and Britto, 2021) use
a Bayesian Network to prioritize PRs based on accep-
tance probability, change type (i.e. bug fixing, new
feature, refactoring) and presence or absence of merge
conflicts. Their main goal is to decrease the overall
lead time of code review process along with helping
to reduce the workload of project administrators. The
work presented in this paper also prioritizes PRs us-

Improving Integration Process Efficiency through Pull Request Prioritization

69



Table 4: Information about selected historical integration sequences.

Case Study Time Window
Start Date

Time Window
End Date # PRs # Pairwise

Conflicts

# Potential
Conflict

Resolutions

# Unconflicting
PR Groups

1 2017-02-12 2017-02-26 32 23 22 2
2 2017-10-16 2017-10-30 29 22 15 3
3 2018-07-14 2018-07-28 10 7 4 4
4 2018-10-28 2018-11-11 16 29 11 5
5 2017-10-01 2017-10-15 16 47 14 6
6 2017-10-08 2017-10-22 30 74 25 7
7 2018-11-05 2018-11-19 36 63 15 8

Table 5: Comparison between the historical and the optimized IPE obtaining by our proposal for each integration sequence
shown in Table 4.

Case Study Historical Optimized IPE
improvement (%)# Conflict

Resolutions IPE # Conflict
Resolutions IPE

1 3 503 1 690 37.17
2 4 449 2 578 28.73
3 3 23 3 59 156.52
4 7 294 4 387 31.63
5 11 480 5 632 31.66
6 17 1138 6 1978 73.81
7 11 1065 7 2014 89.11

ing a strategy very similar to that proposed by Zhao et
al. (Zhao et al., 2019), but with the aim of improving
the integration process instead of the review process.

From the integration process viewpoint, works
that study pairwise conflicts (Ma et al., 2017), (Zhang
et al., 2018) propose an analysis of the frequency and
difficulty of resolution. The tool proposed by Van
Der Veen et al. (Van Der Veen et al., 2015) offers
an alternative view to Github’s PR interface, which
allows developers to sort opened PRs by their num-
ber of pairwise conflicts. This information is use-
ful for project administrators to be aware of the im-
pact of integrating a PR in the integration process.
Other works are focused on the detection of dupli-
cate PRs (Li et al., 2017), (Ren et al., 2019), (Wang
et al., 2019), (Li et al., 2021) by comparing the textual
similarity of title and description or by the similarity
between code changes. Duplicate PRs are not consid-
ered in this paper.

7 CONCLUSIONS

In this paper, we optimize the efficiency of the inte-
gration process through PR prioritization. In particu-
lar, our approach is able to automatically calculate a
sequence of unconflicting PRs groups that minimizes
the number of conflict resolutions and orders the inte-
gration of the groups with the best trade-off between
the number of PRs and the number of conflicts still
to be solved. We evaluate the effectiveness of our ap-

proach applying it to seven representative historical
integration sequences of the Antlr4 project. Results
of our study show that the IPE of the integration se-
quence calculated by our approach is higher than the
historical IPE from 28.73% to 156.52%.

It should be noted that applying the approach in a
real environment could have side effects on the work
habits of the people involved in the project.

We plan to conduct an empirical study on a large
number of projects that use PRs intensively. We also
plan to propose a tool integrated into platforms that
support PbD (e.g.,GitHub, Bitbucket, etc.), in order
to (i) further evaluate the usefulness of our proposal,
(ii) study the side effects on the work habits when us-
ing our proposal, and (iii) discover additional factors
that can be used to improve the IPE performed by our
proposal. The study of accurate models for the eval-
uation of the cost and the gain of PR merges is also a
perspective for our work.
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