
On Tracking Ransomware on the File System

Luigi Catuogno1 a and Clemente Galdi2 b

1Dipartimento di Informatica, Università degli Studi di Salerno, Fisciano, Salerno, Italy
2Dipartimento di Studi Politici e Sociali, Università degli Studi di Salerno, Fisciano, Salerno, Italy

Keywords: Ransomware, Ransomware Detection, Ransomware Tracking, Malice Indicators, File System Hooking,
Testbed.

Abstract: Ransomware detection is gaining growing importance in the scientific literature because of widespread and
economic impact of this type of malware. A successful ransomware detection system must identify a malicious
behaviour as soon as possible while reducing false positive detection. To this end, different strategies have been
explored. Recently, a promising approach has risen. It consists in looking for possible running ransomware
by measuring the different activities every process does on the filesystem. Such measurements are represented
with quantitative “indicators”. Indicators selection and their interpretation, is a critical and challenging task. In
this paper we survey some of most representative file-system centered ransomware detectors and describe their
chosen behavioural indicators and strategies used to measure them. Then we compare the different solutions
and discuss pros, cons and open issues of every approach.

1 INTRODUCTION

Young and Yung (1996) first envisioned in 1996 the
threat of crypto-viruses, malware intended to block
(using cryptographic algorithms) or steal user data
for extortion intents. Since their seminal paper, “ran-
somware” have turn out as a major plague for desktop
computer.

Ransomware are a specific type of malware and
require specific strategies to be contained. Indeed,
nowadays ranswomware increasingly threaten tradi-
tional malware prevention systems such as signature-
based detection systems and anomaly detection sys-
tems (ADS).

On one hand, the number of ransomware that
leverage polymorphic code or that introduces some
randomization in the code execution (Ma et al., 2012,
Milosevic et al., 2016, Oberheide et al., 2009), in or-
der to circumvent signature scanning, is constantly
growing. Moreover, new virus variants evolve so
rapidly that sometimes the deployment of signature
updates gets left behind.

On the other hand, ransomware mimic ordinary
processes. Indeed, very often, ransomware samples
feature an execution profile quite similar to the one
of legitimate processes, so that, it is increasingly dif-

a https://orcid.org/0000-0002-6315-4221
b https://orcid.org/0000-0002-2988-700X

ficult, for ADSes to identify deviating activities. In
this case, raising ADSes sensitivity may result in
an unacceptable growth of false positives (Le, 2015,
Viswanathan et al., 2013).

Furthermore, generic malware present a wide
range of tasks and objectives that might require a cer-
tain time to be achieved while ransomware is imme-
diately dangerous. When a sample is discovered, it is
probably too late.

Ransomware pursue a sole plan: encrypting the
user data stored on the victim’s computer in order to
request the payment of a fee (ransom). To this end,
ransomware always perform these actions: run an al-
gorithm to select the target files; open such files and
encrypt their content; replace/overwrite their original
contents with the corresponding cyphertexts.

Ransomware are designed to encrypt as much data
as possible in the shortest possible time (i.e., likely
before being detected). Unfortunately, “traditional”
Anomaly Detection Systems need to gather some in-
formation for a while before making a decision about
any suspect ransomware process. In the meantime,
the files that have been accessed by the malicious pro-
cess are gone.

A different approach to ransomware detection can
be set up on the basis of some observation. First,
ransomware processes always perform the aforemen-
tioned operations following essentially the same pat-

210
Catuogno, L. and Galdi, C.
On Tracking Ransomware on the File System.
DOI: 10.5220/0010985000003120
In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 210-219
ISBN: 978-989-758-553-1; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



tern, whereas benign processes may not. Second, un-
like benign processes, ransomware usually perform
massive file system activity.

Taking advantage by these observations, Kharraz
et al. (2016, 2015) proposed to seek evidence of ran-
somware activities by tracking the victim’s file sys-
tem operation. So that, whenever any suspect activity
is discovered, the detection system identifies the re-
sponsible precess(es) and takes the appropriate deci-
sions.

Notice that the difference of this new approach
with respect to traditional ADSes is twofold: (1) the
system looks for those processes whose activity con-
verges to a limited set of expected “malicious behav-
iors” instead of analyzing any deviation from the pre-
sumptive “normal” behavioral model; (2) the detec-
tion process focuses on the effects of the malicious
code rather than its execution.

Moreover, placing the detector at the file system
level has a valuable advantage: detectors are enabled
to trace every suspect activity. So that, whenever any
malicious action is discovered, it is possible to revert
it, as long as a certain data retention capability has
been given to the file system. This allows to recover
every damage to data the malware have done.

In the last three years, this strategy has witnessed
a remarkable development. Several solutions are cur-
rently on the stage. Main differences amongst such
proposals mainly concern of: (a) the technique each
system uses to track per-process file system activ-
ity; (b) the characteristics of this activity each system
takes in account; (c) the way in which collected in-
formation are aggregated and represented as “malice
indicators”; how suspect processes are classified ac-
cording to their indicators and how each system even-
tually takes a decision.

In this paper, we provide a survey of some of the
most representative proposals of “file system centric”
ransomware detection systems. We compare the dif-
ferent solutions according to the way each one deals
with the aforementioned aspects.

Rather than a mere survey of ransomware detec-
tion systems, the main goal of our work is a qualitative
analysis of the “toolbox” that has been made available
over time to counter the threat of ransomware. We an-
alyze the way each tool is used and how it may affect
the overall system performance. Furthermore, we aim
at briefly discussing pros and cons of the different so-
lutions along with possible further developments and
challenges.

The paper is organized as follows. In Section 2 we
introduce the main techniques and frameworks ran-
somware detectors use to collect information about
how suspect processes access the file system. In Sec-

tion 3 we examine the different criteria to select the
information to be gathered for each process along
with the techniques for malice indicators computa-
tion and interpretation. Section 4 provides a brief sur-
vey of the ransomware detection systems we consid-
ered in our study. Section 5 introduces some of main
datasets related to ransomware samples activity that
have been made available to test and train new detec-
tion systems. Section 6 concludes the work.

2 TRACKING RANSOMWARE ON
THE FILE SYSTEM

In this section we survey the main techniques and
tools that are currently used to gather information
about the file system activities of running processes.
Hence, we propose a discussion about the way they
are employed for ransomware detection and some of
the most challenging open issues.

File System API Hooking. Modern operating sys-
tems provide development tools and APIs which al-
low to extend the file system services by adding
new features, as well as implementing diagnostic and
monitoring functionalities. In particular, in such OSes
the Virtual File System layer (VFS) features some
hooks in every system call implementation. This
makes possible, for example, to intercept every sys-
tem call invoked by any user-level process having r/w
access to each parameter (including read or to-be-
written data buffer), as well as intercepting its results
before the call returns. Ransomware detection may
leverage such a feature to track whatever a process
does on the file system and in the files it opens.

The WindowsTM Operating Systems features dif-
ferent levels of file system hooking. In particular, the
File System Minifilter Driver (Microsoft Inc., 2014)
provides a high-level API which addresses moni-
toring applications, including profiling and antivirus
tools.

With Android’s FileObserver (Google Inc., 201x)
applications register their listener to the file system
manager in order to be notified whenever any event
such as OPEN, ATTRIB, CLOSE occurs on any file of
interest.

Virtual Machine Introspection (VMI). Virtual
Machine Introspection (VMI) is a technique firstly
proposed by Garfinkel and Rosenblum (2003). In
VMI, the monitored system (target) runs in a Vir-
tual Machine (VM), whereas a monitoring applica-
tion (monitor) is executed in a privileged VM or

On Tracking Ransomware on the File System

211



plugged into the hypervisor itself. The monitor has
access to every aspect of the target operation through
an interface oriented to hardware-level details such as
target’s memory page allocation, CPU register status,
interrupts, memory access and so on. Nowadays, Lib-
VMI (Payne et al., 2015) is probably one of most suc-
cessful VMI framework and is widely used for mal-
ware analysis.

However, the inspection of the target operating
system at a finer-grained level (e.g., tracing per-
process file system activity) through such low-level
interfaces is quite hard due to the so called “semantic
gap” as argued by Chen and Noble (2001) and More
and Tapaswi (2014). To cope with this problem, the
monitor should be provided of adequate information
concerning the VM/Guest OS internal organization
and current status (e.g., the Guest’s kernel symbols
map, etc.)

The DRAKVUF toolkit (Lengyel et al., 2014),
is built upon LibVMI and features higher level API
which help to develop ad hoc plug-ins tailored to
monitor specific Guest OS-level data structures and
events.

Sandboxing. Sandboxing is a technique which
makes possible to safely run an untrusted/untested
software within a confined execution environment
(the sandbox) which resembles the legacy execution
environment. Nevertheless, computational resources
assigned to the “sandboxed” application are strictly
controlled and configurable according the needs of
testing.

Running a malicious application into a sandbox,
allows to gather useful information about its be-
haviour ensuring that while executing, it can neither
harm the host machine nor spread through the net-
work. It has been shown in Catuogno and Galdi
(2016) that different security models, coming from
academia and industry essentially identify the same
security perimeter, thus guaranteeing the above prop-
erty being granted independently of the specific se-
curity model under evaluation. In case of malware
execution. To this end, plenty of sandboxing sys-
tems have been proposed. Amongst the most rep-
resentatives we mention the Cuckoo Sandbox (Clau-
dio Guarnieri, 2011).

We highlight some differences between sandboxes
and VMI-based tools. First, sandboxes mainly col-
lect information about “how a given malware sample
behaves” instead of “how an infected VM behaves”.
Second, sandbox components observe the target pro-
cess through the OS data structure, whereas VMI col-
lects information at a lower level. Finally, sandboxes
feature some components that run in the same envi-

ronment of the malware sample in the same environ-
ment, while VMI tools are designed to remain stealth
(and external) with respect to the guest environment.

2.1 Discussion

Ransomware detection systems (monitors) are used in
two different scenarios, each raising different issues
and requirements. We denote these scenarios respec-
tively: operational and testbed. Notice that every de-
tection system can be indifferently used in both sce-
narios.

In the operational scenario, monitors are used on
computers which are actually deployed in their oper-
ational environment (e.g., the corporate network). In
this case, primary goals are: early detection of any
in-progress threat and mitigating its effects/impact.

Performance is a crucial issue. Indeed, the moni-
tor is required not to introduce significant overhead to
the system performance, both in terms of throughput
and in computational resource consumption.

Table 1 summarizes file system performance over-
head claimed by some of most recent proposal ad-
dressing the operational scenario and leveraging both
virtualization and hooking (such proposals are intro-
duced in Section 4). These values depend on multiple
factors and reflect different ways of measuring perfor-
mance.

At first sight, in presence of virtualization-based
monitors, users/applications experience the highest
overhead. However such an overhead is mainly due
to the virtualization infrastructure rather than the de-
tection services. For example, Gutierrez et al. (2018)
highlight that overhead due the file system operation
analysis is only a slight percentage (between 0.13%
and 1.54%) of the total (which is up to 20%). More-
over, as suggested by Subedi et al. (2017), monitors
performance is significantly influenced by the under-
lying hypervisor.

Hooking-based monitors promise better overall
performance as, in principle, throughput slowdown
mainly affects file system bound processes. How-
ever, beyond the callbacks computational costs, over-
all performance degradation largely depends on the
number of hooked calls and their invocation fre-
quency. Systems like CryptoLock (Scaife et al.,
2016) and ShieldFS (Continella et al., 2016) feature
the highest overhead as they intercept and “inspect”
numerous file system calls. Furthermore, prevent-
ing data losses by featuring per-file shadowing and
snapshotting mechanisms (such as in ShieldFS and
R2D2 (Gutierrez et al., 2018)) increases the latency
in those file system operations which entail the cre-
ation and removal of different file versions/copies.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

212



Table 1: Ransomware detectors fitting the operational application scenario: performance summary. Legenda: waylaying
techniques (WT): hooking (H), Virtual Machine (VM).

System WT Benchmark Performance overhead
CryptoLock H n/a open,read: 1ms; close: 1.58ms; write, rename: 9−16ms
ShieldFS H n/a “user-perceived” overhead can reach 45−75%
DAD H WPT, CrystalDiskMark write, info: 0.011ms, 46−82%
R2D2 VM PCMark 8 1.4−9.29% of total latency
RDS3 VM fio serial read: 41−58%; serial write: 30−65% (depending on the VMM)
Redemption H IOZone read: 2.8%; write: 3.4%; rewrite and create: up to 9%
RansomCare H n/a 8.7% overhead measured during the execution of a sample task.

Measuring how much these factors affect the file
system performance, depends on: (a) file system char-
acteristics including its morphology as well as the
amount, the size and the types of files it stores; (b)
statistical considerations concerning how monitored
processes access stored files.

Furthermore, we point out that it is quite hard
doing any quantitative comparison amongst existing
anti-ransomware systems due to the variety of bench-
marking tools used by the authors (see Table 1). In
facts, different benchmarks behave rather differently
each other as they stress different aspects of the file
systems operation. For example, we have bench-
marks which perform bulk r/w operations (e.g., IO-
Zone (Don Capps et al., 2002)) as well as tools which
aim at simulating more realistic file system opera-
tion such as PCMark (Underwriters Labs LLC, 2013).
Nevertheless, we notice that even launching the same
test on differently populated file systems may lead to
rather different results.

To this regard, we argue that common guidelines
in evaluating the performance of anti-malware sys-
tems are still due.

In the testbed scenario, the emphasis is on an-
alyzing the behavior of potentially infected systems
and suspected samples, in order to acquire knowledge
suitable to improve the detection process in the oper-
ational scenario. No matter about neither the victim
system performance nor the integrity of the fictitious
data it stores. Here, the main concern is making the
testbed as much realistic as possible.

Ransomware attack strategies are significantly
driven by the victim’s file system layout. For exam-
ple, running a sample on an almost empty (or flat) file
system might not give useful information about its be-
haviour if launched on a computer whose hard disk
is populated with plenty of working document files
and folders. To this end, Kharraz and Kirda (2017)
and Continella et al. (2016) modeled their testbed on
the basis of the activity of a number of volunteers
who worked on fully operational desktop computers
for several weeks. However, Palisse et al. (2017) and
Scaife et al. (2016) have based their model on sev-
eral studies concerning file systems population statis-

tics (Agrawal et al., 2007) and sample files collec-
tions (Garfinkel et al., 2009).

Transparency (stealthiness) of detection systems
has capital importance in both scenarios. Indeed, ran-
somware are increasing their capability of realizing
the presence of detection systems. In such a case, ma-
licious processes may adopt two strategies. On one
hand, it attempts to attack the detector, by subverting
its code or the system features it relies upon. On the
other hand, it may change its behavior (evasion) in
order to avoid to be analyzed (Bordoni et al., 2017,
Bulazel and Yener, 2017).

3 MALICE INDICATORS FOR
RANSOMWARE DETECTION

Once an observation point has been taken, detector
engines gather tracks of any operation is done on the
file system by every single process in order to recog-
nize those patterns which may lead to malicious ac-
tivities.

In literature, statistical measurements of the oc-
currence of such operation patterns are defined as
malice indicators. Each indicator provides a quan-
titative representation (score) of the phenomenon it
is related to. Indicators roughly fall in two cate-
gories (Kharraz and Kirda, 2017): content-based and
behavior-based. The formers (e.g., entropy measure-
ments, similarity, file content r/w and deletion statis-
tics) are related to the way in which the content of
each file changes as a result of accessing processes
operation. The latter are about measuring the ef-
fects that any suspect process activity produces on the
whole file system.

This section briefly introduces and discusses some
of main proposals about such indicators. Table 2 sum-
marizes the malice indicators considered in some of
most recently proposed ransomware detectors.

Read/write Access Statistics. These indicators
measure “how” a process reads and/or writes within
the files it opens. For example, highly frequent over-

On Tracking Ransomware on the File System

213



writes of the whole file as well as high frequency of
writes performed to multiple files might be an evi-
dence of ransomware activity.

Divergence Measures in Overwritten Buffers.
Significant entropy variations within file read/write
buffers might entail that a process is overwriting
clear/structured data with encrypted data (Lin, 1991).
Amongst further measures commonly considered for
this purpose, we mention the Kullback-Liebler di-
vergence (Kullback and Leibler, 1951) and the χ2

goodness-of-fit test (Cochran, 1952, Pont et al.,
2020). Performance achieved by leveraging such met-
rics are rather variable. Content-based indicators are
sensible to the type of analyzed files and their config-
ured thresholds . We argue that a comprehensive com-
parison of the performances achieved by using these
indicators is worth of on-the-field

Similarity. Evaluating the similarity between r/w
buffers may help to discover fraudulent encryption
activity. Similarity-aware hash functions (Roussev,
2010) have been proposed to be used in conjunction
with the entropy measurement with the aim of reduc-
ing false positives.

Moving/Removing Files. Frequency of files moves
and removals a process performs on the file system is
a behavior potentially related to ransomware activity.
In facts, frequently ransomware do not directly over-
write their target file. Instead, this kind of adversary,
creates a new file in which it stores the encrypted ver-
sion of its victim and, eventually, it deletes the origi-
nal file and replaces it with the encrypted one.

Files Type Modification Rate. The suitability of
this indicator relies on the following fact. Data en-
cryption obviously entails that files structured accord-
ing any type (images, videos, documents, etc.) are
changed into files of unknown (or non-existing) type.
This is a straightforward consequence of ransomware
activity, whereas benign process operation with the
same effect is rather unfrequent.

File Types Access Statistics and “funneling”. File
type funneling is a quantitative measure concerning
the relationship between the number of files any pro-
cess opens and the number of their types. Applica-
tions handle (both as input and output) files belong-
ing to a well defined set of types. Therefore, a pro-
cess which opens many files of an unexpectedly high
number of different types may be worth of growing
attention.

A simple (though not the only) definition for fun-
neling is due to Scaife et al. (2016):

File System Traversal. Ransomware may thor-
oughly explore the victim’s file system looking for
target files. To this end, the malicious process uses
directory-related APIs and system calls with a un-
usual frequency.

Files Access Statistics. Usually, benign processes
open a limited subset of the files stored in the whole
file system. In malicious processes, the number of
accessed files is generally larger and grows with the
execution time.

Further Malice Indicators. Further malice indica-
tors, not only related to file system operation, have
been proposed to be “aggregated” with the formers,
in order to mitigate false positives and to improve the
classification process.

The system proposed in Song et al. (2016) lever-
ages processor, and memory usage statistics, in order
to enrich information obtained with file access moni-
toring. PayBreak Kolodenker et al. (2017a) is a sys-
tem which tells apart suspicious processes by search-
ing the memory for evidences of in-progress execu-
tion of encryption algorithms.

Hardware performance counters in ARM based
devices (running the Android OS) are the basis of the
proposal presented in Demme et al. (2013).

Power consumption promises to be a viable malice
indicator. Indeed, peaks in the amount of energy used
by a process can reveal that potential harmful activi-
ties (e.g., compulsory data encryption and file system
access) are in progress. Current operating systems
provide the possibility of measuring the power used
by a specific process/set of processes Catuogno et al.
(2017, 2018) that, in turn, might be used to identify
the resources such processes use.

T. J. Richer Richer (2017) investigates the possi-
bility of measuring the entropy of obuscated network
messages, in order to tell apart botnet (and, arguably,
ransomware) C&C communications.

3.1 Discussion

Typically, ransomware are assumed to follow a
“greedy” strategy - i.e. once in execution, they at-
tempt to seek and encrypt the largest number of user
files in the shortest possible time. This is to in-
crease the probability of capturing “precious” docu-
ments and to minimize the probability to be detected
in the meantime. Therefore, ransomware behaviors
may deviate quite soon from that of benign processes,

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

214



Table 2: Summary of most widely used indicators of potential ransomware activity.

Sh
ie

ld
FS

U
N

V
E

IL

R
ed

em
pt

io
n

M
bo

la
nd

Sa
di

gh
ia

n

D
aD

C
ry

pt
ol

oc
k

R
an

so
m

C
ar

e

Per file R/W stats !

Entrophy variation in overwrites ! ! ! ! !

Kullback-Liebler !

χ2 !

Similarity !

File moving/removal stats ! ! !

Files type modification rate ! ! !

Accessed file types stats and funneling ! !

File system traversals ! !

Files access statistics ! !

if measured with an adequate set of indicators. Nev-
ertheless, it is possible that benign processes may ap-
pear to behave as ransomware if considering single
(or few) indicators. Typical examples of such pro-
cesses are zip-archivers which usually open plenty of
files (of multiple types) and feature high differences
between read and written data entropy. However, it
must be pointed out that such “benign misbehavings”
occur only occasionally and temporarily, while within
ransomware, they happen on regular basis.

To cope with this aspect, some indicators come
with a threshold which can be chosen according dif-
ferent policies. Whenever the score of an indicator
exceeds the threshold, the event is notified to the com-
ponent which makes decision about suspected pro-
cesses (classifier). Optionally, at every event occur-
rence, a counter (related to the event itself) is incre-
mented and only whether in turn the counter exceeds
its own threshold, the decision-maker component is
notified.

In order to improve the classification process (and
in particular for the sake of reducing the rate of false
positives), indicators can be weighted on the basis of
experimental findings and incremental refinements as
well as hierarchies amongst indicator can be intro-
duced (Scaife et al., 2016).

The set of thresholds and weights, implicitly de-
fines the edge between ransomware and benign soft-
ware. The point is that several researches have
pointed out that ransomware might implement strate-
gies through which they can carry out their job with-
out triggering any event or fatally delaying their dis-
covery.

Indicator Evasion. techniques have been widely
investigated in literature. Ransomware might cir-
cumvent frequency based indicators (both content-
based and behavioral) by slowing down the pace
of their file accesses; encrypting files in multiple
rounds (Continella et al., 2016) or by encrypting only
specific parts of each file instead of encrypting it en-
tirely (Kharraz et al., 2016).

Content-based indicators pose several issues.
Firstly, these metrics looks rather prone to high rates
of false positives if related to processes perform-
ing files compression, (legitimate) files encryption
and compressed images manipulation (Gaspari et al.,
2021, Pont et al., 2020).

Secondly, such indicators may be eluded by pro-
ceeding to encrypt/overwrite files content following
rather simple heuristics. For example, a malicious
process could avoid entropy related indicators by
interleaving cyphertext overwrites with low-entropy
paddings when encrypting files (Kharraz and Kirda,
2017, Mbol et al., 2016, Palisse et al., 2017).

A suitable solution to this problem is “aggregat-
ing” indicators. Indeed, it looks quite unlikely that a
malicious process is able to mimic benign processes
according all considered indicators. To this end the
CryptoLock (Scaife et al., 2016) system features a
union indicator which is triggered by the simultane-
ous occurrence of the events related to its primary in-
dicators. Experiments show that this solution helps to
lower false positives.

Multi-process ransomware are still considered an
insidious threat. In facts, such viruses distribute their
different file re-encryption subtasks among multiple
agents. Each agent is likely to avoid to be detected
due to its individual subtask may not be classified as

On Tracking Ransomware on the File System

215



malicious activity (Gaspari et al., 2020, Palisse et al.,
2017)

4 FILE SYSTEM-CENTRIC
RANSOMWARE DETECTION

This section briefly reports recent ransomware de-
tection systems that use strategies described above.
Amongst seminal papers concerning file system-
centric ransomware detection, we mention the study
due Kharraz et al. (2015) and the UNVEIL sys-
tem (Kharraz et al., 2016). In particular, UNVEIL
leverages a malice indicator based on entropy. The
Redemption (Kharraz and Kirda, 2017) system, of-
fers a comprehensive indicators-based approach, and
investigates the possible solutions to aggregte multi-
ple indicators into a single malice score.

ShieldFS (Continella et al., 2016) features mul-
tiple behavioral indicators in order to detect ran-
somware activity. Indicators include: entropy, frac-
tion of accessed filetypes, fraction of accessed files
(r/w). A versioned filesystem is used to reverse pos-
sible malicious files encryption. RDS3 (Subedi et al.,
2017) is similar to ShieldFS though it uses backups
data in spare/unused storage space that is supposed
ransomware cannot touch. The data retention mecha-
nism is put in charge to a trusted virtual machine.

CryptoLock (Scaife et al., 2016) follows a sim-
ilar approach. In order to reduce the occurrence
of false positives and to quicken ransomware detec-
tion, authors divides indicators in two categories: pri-
mary and secondary. Primary indicators include: per-
process file-type changing rate, Shannon entropy and
similarity measurement (Roussev, 2010). Secondary
indicators are file deletion per process and funneling.
A union indicator, related to the simultaneous rise of
the primary indicators is also featured.

Mbol et al. (2016) leverage the Kullback-Liebler
divergence (Kullback and Leibler, 1951) to realize
whether a process is turning a structured file data (e.g.,
a jpeg image) into an encrypted file.

R2D2 (Gutierrez et al., 2018) addresses the detec-
tion of so called “wiper” ransomware. The system,
which is built on top of a virtualization infrastructure,
leverages VMI to detect the execution of secure dele-
tion algorithms on the target file system.

FlashGuard (Huang et al., 2017) aims at prevent-
ing/delaying clear data deletion by leveraging SSD
hard disks properties. In facts, SSDs do not directly
overwrite chunks of data in their final destination (due
to a certain delete latency). FlashGuard, operates at
firmware level making possible to retain such out-of-
place temporary copies as “backup” of overwritten

data.
The DaD (Data Aware Defense) (Palisse et al.,

2017) system monitors processes’ file activity at
run-time and measures variations in data distribu-
tion using a metric based on χ2 goodness-of-fit
test (Cochran, 1952) instead of Shannon entropy. In
order to validate the achieved results, authors also
propose a full-featured test environment Malware-o-
Matic which actually is suitable for application in the
testbed scenario. RansomCare (Faghihi and Zulker-
nine, 2021) measures the extent of changes in the files
structure and in the files content entropy. A mal-
ice score is computed for each Application. When-
ever the score reaches the configured Anomalous Data
Limit (ADL) the system stops the application and
warns the user.

Honeypots can be used to improve ransomware
detection as in DcyFS (Kohlbrenner et al., 2017) and
R-Locker (Gómez-Hernández et al., 2018) . The ap-
proach is the following. Decoy files (whose content is
assumed to never change) are disseminated through-
out the filesystem and an agent periodically verifies
wether their content have been changed since the pre-
vious check. Changes in decoy files reveals that unau-
thorized file system activity is in progress.

5 DATASETS

Having rich and up-to-date ransomware collections
(datasets) is a central need in developing any ran-
somware detection system. Indeed, datasets are es-
sential both for the sake of detectors tuning/training
and for performance and accuracy evaluation.

Nowadays, several initiatives have arisen for the
purpose of gathering and making available samples of
malware through on-line repositories such as Virus-
Total (Chronicle, 2021), VirusShare (Corvus Foren-
sics, 2021) and Hybrid-Analysis (Hybrid Analysis
GmbH, 2018). In such services, users can (1) con-
tribute to the repository by submitting captured mal-
ware along with any available information concerning
its behavior and origin; (2) submit any suspect exe-
cutable in order to have it analyzed and (3) query the
repository for any malware according its name, clas-
sification, fingerprint and so on. In some cases, mal-
ware repositories provide applications and API (e.g.,
VxAPI GmbH (2018)) to enable registered users to
automate the interaction with the database and to han-
dle high numbers of queries.

Several research labs have made available the
datasets built while developing their projects, for
the sake of the repeatability and reproducibility of
achieved results. Authors of ShieldFS Continella

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

216



Table 3: Experiments setup: testbed filesystem composition, ransomware samples, measured performance.

System testbed Act. samples TP FP FN
CryptoLock Agrawal et al. (2007), Hicks et al. (2008) 492 93% n/a n/a
ShieldFS 11 workstations held by volunteers for “several weeks” 305 97.70% 0 0
DAD DigitalCorpora (Digital Corpora Initiative, 2009) 798 99.37% n/a 0.62%
R2D2 GovDoc (Garfinkel et al., 2009) n/a 99.80% 0.20% 0.20%
Redemption 5 workstations held by volunteers for one week 1174 100.0% 0.8% n/a
UNVEIL n/a (“typical FS layout”) 2121 96.3% 0 n/a
RansomCare Agrawal et al. (2007), Hicks et al. (2008) 2389 98.38% 0.0049% n/a

et al. (2016) disclosed the collection of ransomware
samples, the detailed description the testbed used in
their experiments along with all produced IRP log-
files (Continella et al., 2018). Datasets and further
information about experimental results have been re-
leased in Andronio et al. (2015) for the Heldriod
project and in and in Sgandurra et al. (2016) for
the EldeRan project. Another example is the Pay-
Break (Kolodenker et al., 2017a) team that has made
available the RADDAR toolkit (Kolodenker et al.,
2017b).

6 CONCLUSION

We presented a survey on some existing ransomware
detection systems based on the measurement of quan-
titative indicators representing the activity each pro-
cess performs on the file system. This approach has
proven to be quite effective and promising. In this
paper we put the focus on the strategies in choosing
and interpreting the indicators set up in each system,
investigating their impact on effectiveness and perfor-
mance. For each considered indicator we discussed
how to face problems like containing false positive
and evasion attempts.

In conclusion we would put forth some point thats,
in our opinion, are worth of further reflections. First, a
common indicators specification is still due. In some
cases, the same statistics are computed differently as
well as the same indicator has rather different defi-
nitions (e.g., funneling). Second, testbed filesystems
used for performance evaluation are largely differ-
ent. This makes the different systems quite hard to
be compared as this factor remarkably affect perfor-
mance measurements. Finally, common guidelines
for performance measurements are probably due. Dif-
ferent projects leverage different benchmarking tools,
each measuring different things.

In this work, we pay a great attention to the defi-
nition of malice indicators as we believe that, due to
its characteristics, ransomware can be effectively con-
tained by correctly interpretating the track it leaves on
the file system rather than attempting to recognize its

executable code.
Nevertheless, we left aside aspects related to the

classification of suspect processes. To this end, the
overwhelming majority of ransomware detectors cur-
rently on the shelf leverages machine learning tech-
niques. Different techniques have different perfor-
mance in different scenarios (operational vs testbed).
This may depend from different factors. Moreover,
the quality of datasets and samples is very important
as well. The availability of many datasets and the
growing diffusion of on-line cooperative repositories
(such as VirusShare) has boosted the development of
new interesting solutions. However, the risk that ad-
versaries could submit misleading datasets, in order
to affect the detectors training and testing process, is
concrete and has to be coped with. We plan to extend
our investigation in both this direction.

REFERENCES

Agrawal, N., Bolosky, W. J., Douceur, J. R., and Lorch,
J. R. (2007). A five-year study of file-system meta-
data. ACM Transactions on Storage (TOS), 3(3):9.

Andronio, N., Zanero, S., and Maggi, F. (2015). HelDroid:
Dissecting and detecting mobile ransomware. In In-
ternational Workshop on Recent Advances in Intru-
sion Detection, pages 382–404. Springer.

Bordoni, L., Conti, M., and Spolaor, R. (2017). Mirage: To-
ward a stealthier and modular malware analysis sand-
box for android. In European Symposium on Research
in Computer Security, pages 278–296. Springer.

Bulazel, A. and Yener, B. (2017). A survey on auto-
mated dynamic malware analysis evasion and counter-
evasion: Pc, mobile, and web. In Proceedings of the
1st Reversing and Offensive-oriented Trends Sympo-
sium, page 2. ACM.

Catuogno, L. and Galdi, C. (2016). On the evaluation of se-
curity properties of containerized systems. In 2016
15th International Conference on Ubiquitous Com-
puting and Communications and 2016 International
Symposium on Cyberspace and Security (IUCC-CSS),
pages 69–76.

Catuogno, L., Galdi, C., and Pasquino, N. (2017). Mea-
suring the effectiveness of containerization to prevent
power draining attacks. In 2017 IEEE International

On Tracking Ransomware on the File System

217



Workshop on Measurement and Networking (M N),
pages 1–6.

Catuogno, L., Galdi, C., and Pasquino, N. (2018). An effec-
tive methodology for measuring software resource us-
age. IEEE Transactions on Instrumentation and Mea-
surement, 67(10):2487–2494.

Chen, P. M. and Noble, B. D. (2001). When virtual is better
than real [operating system relocation to virtual ma-
chines]. In Proceedings Eighth Workshop on Hot Top-
ics in Operating Systems, pages 133–138.

Chronicle (2021). Virustotal community. https://www.
virustotal.com.

Claudio Guarnieri, e. a. (2011). Cuckoo sandbox web page.
https://cuckoosandbox.org.

Cochran, W. G. (1952). The χ2 test of goodness of fit. The
Annals of Mathematical Statistics, pages 315–345.

Continella, A., Guagnelli, A., Zingaro, G., De Pasquale,
G., Barenghi, A., Zanero, S., and Maggi, F. (2016).
ShieldFS: a self-healing, ransomware-aware filesys-
tem. In Proceedings of the 32nd Annual Conference
on Computer Security Applications, pages 336–347.
ACM.

Continella, A., Guagnelli, A., Zingaro, G., De Pasquale,
G., Barenghi, A., Zanero, S., and Maggi, F. (2018).
Shieldfs website. http://shieldfs.necst.it/.

Corvus Forensics (2021). Virusshare repository. https://
virusshare.com.

Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman,
A., Sethumadhavan, S., and Stolfo, S. (2013). On
the feasibility of online malware detection with per-
formance counters. In ACM SIGARCH Computer Ar-
chitecture News, volume 41, pages 559–570. ACM.

Digital Corpora Initiative (2009). Corpora. http://
digitalcorpora.org/corpora/.

Don Capps et al. (2002). IOZone file system benchmark.
http://www.iozone.org/.

Faghihi, F. and Zulkernine, M. (2021). Ransomcare:
Data-centric detection and mitigation against smart-
phone crypto-ransomware. Computer Networks,
191:108011.

Garfinkel, S., Farrell, P., Roussev, V., and Dinolt, G. (2009).
Bringing science to digital forensics with standardized
forensic corpora. digital investigation, 6:S2–S11.

Garfinkel, T. and Rosenblum, M. (2003). A virtual machine
introspection based architecture for intrusion detec-
tion. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2003, San Diego,
California, USA. The Internet Society.

Gaspari, F. D., Hitaj, D., Pagnotta, G., Carli, L. D., and
Mancini, L. V. (2020). The naked sun: Malicious
cooperation between benign-looking processes. In
Conti, M., Zhou, J., Casalicchio, E., and Spognardi,
A., editors, Applied Cryptography and Network Se-
curity - 18th International Conference, ACNS 2020,
Rome, Italy, October 19-22, 2020, Proceedings, Part
II, volume 12147 of Lecture Notes in Computer Sci-
ence, pages 254–274. Springer.

Gaspari, F. D., Hitaj, D., Pagnotta, G., Carli, L. D., and
Mancini, L. V. (2021). Reliable detection of com-
pressed and encrypted data. CoRR, abs/2103.17059.

GmbH, H. A. (2018). A generic interface and CLI for all
endpoints of the Falcon Sandbox API. https://github.
com/PayloadSecurity/VxAPI.

Gómez-Hernández, J., Álvarez-González, L., and Garcı́a-
Teodoro, P. (2018). R-Locker: Thwarting ransomware
action through a honeyfile-based approach. Comput-
ers & Security, 73:389–398.

Google Inc. (201x). Android fileobserver. https://developer.
android.com/reference/android/os/FileObserver.

Gutierrez, C. N., Spafford, E. H., Bagchi, S., and Yurek,
T. (2018). Reactive redundancy for data destruction
protection (R2D2). Computers & Security.

Hicks, B. J., Dong, A., Palmer, R., and Mcalpine, H. C.
(2008). Organizing and managing personal elec-
tronic files: A mechanical engineer’s perspective.
ACM Transactions on Information Systems (TOIS),
26(4):23.

Huang, J., Xu, J., Xing, X., Liu, P., and Qureshi, M. K.
(2017). Flashguard: Leveraging intrinsic flash prop-
erties to defend against encryption ransomware. In
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages
2231–2244. ACM.

Hybrid Analysis GmbH (2018). Hybrid analyisis. https:
//www.hybrid-analysis.com.

Kharraz, A., Arshad, S., Mulliner, C., Robertson, W., and
Kirda, E. (2016). UNVEIL: A Large-Scale, Auto-
mated Approach to Detecting Ransomware. In 25th
USENIX Security Symposium (USENIX Security 16),
pages 757–772. USENIX Association.

Kharraz, A. and Kirda, E. (2017). Redemption: Real-time
protection against ransomware at end-hosts. In In-
ternational Symposium on Research in Attacks, Intru-
sions, and Defenses, pages 98–119. Springer.

Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., and
Kirda, E. (2015). Cutting the gordian knot: A look un-
der the hood of ransomware attacks. In International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 3–24. Springer.

Kohlbrenner, A., Araujo, F., Taylor, T., and Stoecklin,
M. P. (2017). POSTER: Hidden in plain sight: A
filesystem for data integrity and confidentiality. In
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages
2523–2525. ACM.

Kolodenker, E., Koch, W., Stringhini, G., and Egele, M.
(2017a). Paybreak: Defense against cryptographic
ransomware. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Secu-
rity, pages 599–611. ACM.

Kolodenker, E., William, K., Gianluca, S., and Manuel, E.
(2017b). Real-time Automation to Discover, Detect
and Alert of Ransomware (RADDAR). https://github.
com/BUseclab/raddar.

Kullback, S. and Leibler, R. A. (1951). On information and
sufficiency. Ann. Math. Statist., 22(1):79–86.

Le, T. (2015). A recommended framework for anomaly in-
trusion detection system (ids). In GI-Jahrestagung,
pages 1829–1840.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

218



Lengyel, T. K., Maresca, S., Payne, B. D., Webster, G. D.,
Vogl, S., and Kiayias, A. (2014). Scalability, fidelity
and stealth in the DRAKVUF dynamic malware anal-
ysis system. In Proceedings of the 30th Annual Com-
puter Security Applications Conference, pages 386–
395. ACM.

Lin, J. (1991). Divergence measures based on the Shannon
entropy. IEEE Transactions on Information Theory,
37(1):145–151.

Ma, W., Duan, P., Liu, S., Gu, G., and Liu, J.-C. (2012).
Shadow attacks: automatically evading system-call-
behavior based malware detection. Journal in Com-
puter Virology, 8(1):1–13.

Mbol, F., Robert, J.-M., and Sadighian, A. (2016). An ef-
ficient approach to detect torrentlocker ransomware
in computer systems. In International Conference
on Cryptology and Network Security, pages 532–541.
Springer.

Microsoft Inc. (2014). File system minifilter drivers. https:
//docs.microsoft.com/en-gb/windows-hardware/
drivers/ifs/file-system-minifilter-drivers.

Milosevic, J., Sklavos, N., and Koutsikou, K. (2016). Mal-
ware in iot software and hardware.

More, A. and Tapaswi, S. (2014). Virtual machine intro-
spection: towards bridging the semantic gap. Journal
of Cloud Computing, 3(1):16.

Oberheide, J., Bailey, M., and Jahanian, F. (2009). Poly-
Pack: an automated online packing service for op-
timal antivirus evasion. In Proceedings of the 3rd
USENIX conference on Offensive technologies, pages
9–9. USENIX Association.

Palisse, A., Durand, A., Le Bouder, H., Le Guernic, C.,
and Lanet, J.-L. (2017). Data aware defense (dad):
Towards a generic and practical ransomware counter-
measure. In Nordic Conference on Secure IT Systems,
pages 192–208. Springer.

Payne, B. D., Maresca, S., Lengyel, T. K., and Saba, A.
(2015). LibVMI Github repository. http://libvmi.
com/.

Pont, J., Arief, B., and Hernandez-Castro, J. (2020). Why
current statistical approaches to ransomware detection
fail. In Susilo, W., Deng, R. H., Guo, F., Li, Y., and
Intan, R., editors, Information Security - 23rd Inter-
national Conference, ISC 2020, Bali, Indonesia, De-
cember 16-18, 2020, Proceedings, volume 12472 of
Lecture Notes in Computer Science, pages 199–216.
Springer.

Richer, T. J. (2017). Entropy-based detection of botnet com-
mand and control. In Proceedings of the Australasian
Computer Science Week Multiconference, page 75.
ACM.

Roussev, V. (2010). Data fingerprinting with similarity di-
gests. In IFIP International Conference on Digital
Forensics, pages 207–226. Springer.

Scaife, N., Carter, H., Traynor, P., and Butler, K. R. (2016).
Cryptolock (and drop it): stopping ransomware at-
tacks on user data. In Distributed Computing Systems
(ICDCS), 2016 IEEE 36th International Conference
on, pages 303–312. IEEE.

Sgandurra, D., Muñoz-González, L., Mohsen, R., and
Lupu, E. C. (2016). Automated dynamic analysis of
ransomware: Benefits, limitations and use for detec-
tion. arXiv preprint arXiv:1609.03020.

Song, S., Kim, B., and Lee, S. (2016). The effective ran-
somware prevention technique using process monitor-
ing on android platform. Mobile Information Systems,
2016.

Subedi, K. P., Budhathoki, D. R., Chen, B., and Dasgupta,
D. (2017). Rds3: Ransomware defense strategy by
using stealthily spare space. In Computational Intelli-
gence (SSCI), 2017 IEEE Symposium Series on, pages
1–8. IEEE.

Underwriters Labs LLC (2013). Pcmark 8. https://
benchmarks.ul.com/.

Viswanathan, A., Tan, K., and Neuman, C. (2013). De-
constructing the assessment of anomaly-based intru-
sion detectors. In International Workshop on Re-
cent Advances in Intrusion Detection, pages 286–306.
Springer.

Young, A. and Yung, M. (1996). Cryptovirology: extortion-
based security threats and countermeasures. In Pro-
ceedings 1996 IEEE Symposium on Security and Pri-
vacy, pages 129–140.

On Tracking Ransomware on the File System

219


