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Abstract: Motion blur is commonly used in game cinematics to achieve photorealism by modelling the behaviour of
the camera shutter and simulating its effect associated with the relative motion of scene objects. A common
real-time post-process approach is spatial sampling, where the directional blur of a moving object is rendered
by integrating its colour based on velocity information within a single frame. However, such screen space
approaches typically cannot produce accurate partial occlusion semi-transparencies. Our real-time hybrid ren-
dering technique leverages hardware-accelerated ray tracing to correct post-process partial occlusion artifacts
by advancing rays recursively into the scene to retrieve background information for motion-blurred regions,
with reasonable additional performance cost for rendering game contents. We extend our previous work with
details on the design, implementation, and future work of the technique as well as performance comparisons
with post-processing.

1 INTRODUCTION

We showcase a novel real-time hybrid rendering tech-
nique for the Motion Blur (MBlur) effect that com-
bines ray tracing and post-processing, exploiting ray-
traced information within a selection mask to reduce
partial occlusion artifacts in post-processed MBlur.
We provide a thorough illustration and evaluation of
hybrid MBlur, extending our published work (Tan
et al., 2020b) with the following additions:

• Extensive discussion of the design and implemen-
tation details of hybrid MBlur.

• Visual quality and performance evaluations of our
technique in comparison to post-processing.

• Explanation of presented extensions and future
work to the approach.

1.1 Background Information

1.1.1 Hybrid Rendering

Ray tracing is a common approach to produce realis-
tic effects like glossy reflections, depth of field, and
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motion blur. However, its high computation time has
limited its use mostly to offline rendering. On the
other hand, many post-process techniques have been
devised to approximate these effects on rasterized im-
ages to meet the constraint of interactive frame rates
for games, albeit with limited visual quality.

Given recent developments in hardware accelera-
tion, it is now the time to marry ray tracing with ras-
terization for games. Ray tracing can be employed
to correct certain visual flaws originating from pure
post-process approaches, while still adhering to the
performance budgets of real-time rendering. This re-
sults in more realistic and convincing graphics while
keeping the gaming experience interactive, enhancing
the overall immersion of the player in the game.

1.1.2 MBlur

MBlur is the streaking or smearing effect of objects
in the direction of relative motion with respect to the
camera. It is employed in cinematics to emphasize the
relative speed of moving objects, producing a blurring
effect as shown in Figure 1. The MBlur effect has
been used to express the speed of rapid movement, the
disoriented state of mind of a character, or the dream-
like quality of a scene.

In cameras, MBlur is produced with the choice of
exposure time or shutter speed, which is the duration
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Figure 1: MBlur effect. Image from authors.

for which the camera shutter is open per second. This
duration directly correlates to the amount of time the
camera sensor is exposed to light. Hence, when the
exposure time is long, every resulting image does not
represent an instantaneous moment but rather, an in-
terval consisting of successive moments in time. An
object moving in relation to the camera will therefore
appear on multiple areas of the sensor over time, re-
sulting in a directional blur effect of the object corre-
sponding to its motion.

As described in Jimenez (2014), moving objects
blur both outwards and inwards at their silhouettes,
making the region around their silhouettes appear
semi-transparent. Outer blur represents an object’s
blur into its neighbouring background while inner
blur applies to the blur produced within the silhouette
of the object itself. According to Cook et al. (1984),
accurate motion blurring takes into account areas of
background geometry occluded by any blurred fore-
ground. Hence, realistic MBlur should have accu-
rate partial occlusion by recovering true background
colour in inner blur regions instead of approximat-
ing this colour like many post-process approaches.
Background colour recovery in MBlur also helps to
prevent inaccuracies between real and approximated
backgrounds for sharp and blurred regions respec-
tively. Hence, we employ ray tracing in our approach
to retrieve the exact colour of occluded background.

2 RELATED WORK

2.1 Hybrid Rendering

The use of ray tracing to complement rasterization
techniques to achieve high graphics quality while
maintaining interactive frame rates has been at-
tempted for several visual effects over the years. In
Beck et al. (1981) and Hertel et al. (2009), shadow
mapping is employed to mark shadow boundaries
and reduce the actual number of shadow rays to be

traced, of which only rays from regions deemed po-
tentially inaccurate by shadow mapping are traced
in Lauterbach and Manocha (2009) to generate pre-
cise and alias-free shadows. For realistic reflections,
Macedo et al. (2018) invokes ray tracing only on pix-
els with reflections that cannot be solved with just
screen space information. In Marrs et al. (2018), tra-
ditional temporal anti-aliasing (TAA) is also extended
with ray-traced supersampling for regions with a high
chance of TAA failure.

In Cabeleira (2010), diffuse illumination is com-
puted via rasterization while reflections and refrac-
tions are handled by ray tracing. In more general
pipeline approaches, Chen and Liu (2007) substitutes
the generation of primary rays in recursive ray tracing
(Whitted, 1979) with rasterization for improved per-
formance. This approach is extended in Andrade et al.
(2014) which adheres to a render time limit by tracing
rays only for objects of the highest importance.

2.2 MBlur

Current implementations of MBlur include the use of
an accumulation buffer. Within the exposure time
when the camera shutter is set to be open, a series
of discrete snapshots rendered at multiple time offsets
from the actual time value of the image is integrated to
produce MBlur such as in Korein and Badler (1983)
and Haeberli and Akeley (1990). However, as dis-
cussed in McGuire et al. (2012), this approach is com-
putationally expensive in terms of shading time. Fur-
thermore, in the case of undersampling, this method
can lead to a series of disjoint ghosting artifacts in the
direction of motion instead of a continuous blur.

Stochastic sampling (Cook, 1986) for MBlur is
a Monte Carlo technique based on Halton (1970)
in which sampling is performed in a randomized
and nonuniform manner along the time dimension.
McGuire et al. (2010) incorporates stochastic sam-
pling with ray tracing by conservatively estimating
the total convex hull bound for the area of each
moving triangle during the exposure time, leverag-
ing hardware rasterization. Stochastically distributed
rays are then shot into the scene within this bound for
shading. This approach makes use of distributed ray
tracing (Cook et al., 1984), where rays are distributed
in time and the colour at each hit point is averaged to
produce the final image.

Cook et al. (1987) translates micropolygons for
each sample according to a jittered time. On the
other hand, Fatahalian et al. (2009) and Sattlecker and
Steinberger (2015) achieve efficiency in performance
by extending the bounding box of each micropolygon
to consider its pixels and their associated velocities in-
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stead. Hou et al. (2010) is an approach that makes use
of 4D hyper-trapezoids to perform micropolygon ray
tracing. Methods of approximating the visibility func-
tion to sample have also been devised such as in Sung
et al. (2002). However, as explained in Sattlecker and
Steinberger (2015), at low sample rates, these meth-
ods will also exhibit ghosting artifacts whereas in-
creasing the number of samples would lead to noise.

To produce the right amount of blur, some real-
time approaches like Rosado (2007), Ritchie et al.
(2010) and Sousa (2013) make use of per-pixel ve-
locity information by accumulating samples along the
magnitude and direction of velocities in the colour
buffer. Other techniques in Korein and Badler (1983),
Catmull (1984) and Choi and Oh (2017) accumulate
the colours of visible passing geometry or pixels with
respect to a particular screen space position while
Gribel et al. (2011) makes use of screen space line
samples instead. Potmesil and Chakravarty (1983)
represents the relationship between objects and their
corresponding image points as point-spread functions
(PSFs), which are then used to convolve points in
motion. Leimkühler et al. (2018) splats the PSF of
every pixel in an accelerated fashion using sparse
representations of their Laplacians instead. Time-
dependent edge equations, as explained in Akenine-
Möller et al. (2007) and Gribel et al. (2010), and 4D
polyhedra primitives (Grant, 1985) have also been
used for MBlur geometry processing. Recently, a
shading rate-based approach involving content and
motion-adaptive shading in Yang et al. (2019) has also
been developed for the generation of MBlur.

In particular, attempts to simulate nonlinear
MBlur include Gribel et al. (2013) and Woop et al.
(2017). Our hybrid technique only considers linear
inter-frame image space motion for now, but we in-
tend to provide support for higher-order geometry
motion in the future. We also assume mainstream
ray tracing acceleration architecture widely available
in modern gaming workstations. The GA10x RT
Core of the newest NVIDIA Ampere architecture
provides hardware acceleration for ray-traced motion
blur (NVIDIA Corporation, 2021) but is only found in
the premium GeForce RTX 30 Series graphics cards.

3 DESIGN

Our hybrid MBlur approach, as illustrated in Fig-
ure 2, compensates for missing information in post-
processed MBlur with the revealed background pro-
duced by a ray trace-based technique.

A Geometry Buffer (G-Buffer) is first gener-
ated under a deferred shading set-up, rendering tex-

tures containing per-pixel information such as cam-
era space depth, screen space velocity and rasterized
colour. The same depth, velocity and colour infor-
mation for background geometry is produced by our
novel ray reveal pass within a ray mask for pixels in
the inner blur of moving foreground objects. A tile-
dilate pass is then applied to these 2 sets of buffers
to determine the sampling range of our gathering fil-
ter in the subsequent post-process pass. Both the ray-
revealed and rasterized output are blurred by this post-
process pass and lastly composited together.

3.1 Post-process

The McGuire et al. (2012) post-process MBlur ren-
ders each pixel by gathering sample contributions
from a heuristic range of nearby pixels. We adapt
this approach to produce a motion-blurred effect sep-
arately for rasterized and ray-revealed information.

As suggested in Rosado (2007), motion vectors
are given by first calculating per-pixel world space
positional differences between every frame and its
previous frame, followed by a translation to screen
space. By using the motion vector between the last
frame and the current frame, we simulate the expo-
sure time of one frame. Then, we follow the approach
of McGuire et al. (2012) in calculating the displace-
ment of the pixel within the exposure time by scal-
ing the inter-frame motion vector with the frame rate
of the previous frame as well as the exposure time.
Considering the full exposure as one unit of time,
this displacement can be interpreted as a per-exposure
velocity vector. This approach uses the assumption
that the motion vector of each pixel between the pre-
vious frame and the current frame remains constant
throughout the exposure time.

Jimenez (2014) is a technique that is based on
McGuire et al. (2012). As described in Jimenez
(2014), the major problems to be addressed when
producing a post-processed MBlur are the range of
sampling, the amount of contribution of each sam-
ple as well as the recovery of background geometry
information for inner blur. With our method for cal-
culating per-exposure velocities, we adopt McGuire
et al. (2012)’s approach in determining the magni-
tude of the sampling range and representing different
amounts of sample contribution, as illustrated in the
Appendix for completeness. As shown in Figure 3,
McGuire et al. (2012) centers the sampling area at
the target pixel, creating a blur effect both outwards
and inwards from the edge of the object. Although
this produces a more uniform blur for thin objects and
the specular highlights of curved surfaces, it poses the
problem of having to smoothen the transition between
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Figure 2: Hybrid MBlur rendering pipeline.

the inner and outer blur. Hence, we let the pixel be
at the end of the sampling area instead, so inner and
outer blur can be considered separately without much
change to the pipeline. We also enhance the inner blur
with ray-revealed background information.

3.2 Ray Reveal

McGuire et al. (2012) approximates the inner blur
region of objects with colour information of nearby
samples. This is based on the reasoning that approx-
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Figure 3: Range of samples for each pixel.

imate background information is still better than the
absence of any background. With our ray reveal algo-
rithm, we ray trace to obtain true background infor-
mation for the inner blur.

3.2.1 Ray Mask

We adopt selective rendering (Chalmers et al., 2006)
in generating a ray mask that determines regions of
inner blur corresponding to geometry edges and only
shoot rays within the mask for better performance like
in adaptive frameless rendering (Dayal et al., 2005).

For every pixel with a nonzero speed, we first
translate it by its velocity for one magnitude of its
estimated displacement within the exposure time to
predict its next screen space position at the end of
the exposure duration and compare their mesh ID and
depth. A target pixel is filtered out of the mask if the
following conditions are not met:

mn 6= mt (1)

zn− zt > SOFT Z EXTENT (2)

mn and mt refer to the corresponding mesh ID of
the pixel’s next and current positions respectively. We
assume that every object has uniform speed through-
out its geometry, so we reject the case when the mn
and mt are equal. zn and zt refer to the camera space
depth of the pixel’s next and current position respec-
tively. For a target pixel to be in the inner blur region
of a foreground object, it would have to be shallower
than its next position. Hence, zn has to be deeper
than zt by a value greater than SOFT Z EXTENT, a
scene-dependent variable with a positive value as in-
troduced in the McGuire et al. (2012) paper for calcu-
lating sample contribution.

For pixels that are not filtered out, they are passed
through a 5× 5 Sobel convolution kernel which es-
timates how extreme an edge is. The kernel is ap-
plied to the G-Buffer to obtain an approximate deriva-
tive of the gradient associated with each pixel, based
on the depth and surface normal information of its
vicinity readily accessible from the deferred shading
stage. The depth derivatives identify the divide be-
tween overlapping objects where the colour of one

object might be revealed through the other, while the
normal derivatives can locate pronounced differences
in the orientation of primitive faces within objects
themselves near their silhouettes. The output of each
pixel from this filter is hence computed as follows:

x = δd +δn (3)

xn = saturate(1− 1
x+1

) (4)

Here, δd and δn refer to the depth derivative and
length of normal derivatives respectively from the So-
bel operator. The normalized x, xn, is subsequently
evaluated against an edge threshold e, which is set
to be high in order to effectively eliminate non-edges
from the mask. Only pixels that pass the threshold
test will be marked in the edge mask.

Lastly, a range check pass is applied. Each pixel
with a nonzero speed then samples along the direction
of its velocity. If any of its samples is marked in the
edge mask, the pixel passes into the final ray mask.

3.2.2 Recursive Ray Tracing

To obtain more accurate information behind fore-
ground objects for compositing inner blur, our ray
tracing approach, as illustrated in Figure 4, adapts the
idea of recursive ray tracing (Whitted, 1979) where
we shoot rays and iteratively advance them deeper
into the scene until a different object is found. At the
end of the recursion, the occluded background is then
revealed with the final hit point. Revealing more lay-
ers deeper into the scene with this method increases
the accuracy of our motion-blurred background but
at diminishing returns. Hence, we limit the ray re-
veal process to only one background layer and post-
process (i.e. approximate using neighbour informa-
tion) it instead.

For every pixel marked in the ray mask, we shoot
a ray from the camera into its world space position
and immediately spawn a second ray along the same
direction after the first hit. Currently, we use a sim-
ple indicator, the difference in luminance, to identify
different objects. Hence, we terminate the recursion
when the latest hit point reads a luminance different
from the first hit or the maximum number of recur-
sions is reached.

4 IMPLEMENTATION

To implement our hybrid MBlur approach, we made
use of the NVIDIA Falcor real-time rendering frame-
work (Benty et al., 2020) on DirectX 12 for ray trac-
ing acceleration. The scenes used for testing our ap-
proach are THE MODERN LIVING ROOM (commonly
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Figure 4: Ray tracing approach.

referred to as PINK ROOM) (Wig42, 2014), UE4 SUN
TEMPLE (Epic Games, 2017) and the interior scene
of AMAZON LUMBERYARD BISTRO (BISTRO INTE-
RIOR) (Amazon Lumberyard, 2017).

For our post-process tile-dilate pass, we followed
McGuire et al. (2012)’s approach of taking a neigh-
bourhood size of n = 3 but found that a tile size of
m = 40 generally worked better than m = 20 for us in
our test scenes with fast-moving foreground objects.
This is because the tile length scales the amount of
blur we can observe in the final image, and we re-
quire a substantial amount of blur to expose and in-
spect the quality of semi-transparencies of foreground
silhouettes through which background geometry is re-
vealed. Hence, we also tested our scenes at long ex-
posure times or low shutter speeds of 1/60 s, against
high frame rates of 100 to 300 fps so as to scale our
per-exposure velocities effectively. As for our sample
count, we took 15 samples along the magnitude of the
dominant neighbourhood velocity as recommended in

McGuire et al. (2012). Our SOFT Z EXTENT was
3 cm (PINK ROOM and SUN TEMPLE) and 5 mm
(BISTRO INTERIOR), which are also within the sug-
gested range of values from McGuire et al. (2012).

As for our ray mask, we employed a strict edge
threshold e of 0.9 (PINK ROOM), 0.98 (SUN TEM-
PLE) and 0.96 (BISTRO INTERIOR) which were effec-
tive in detecting the intricate edges of scene objects
while rejecting non-edges well. For the ray tracing
pass, we limited the recursion level to 5. However,
for complex scenes with concave objects that lead to
a significant amount of self-occlusion, this level can
be increased.

When the target pixel is deeper than its sample by
at least SOFT Z EXTENT in the post-process pass,
we artificially magnify w f by 30 for a smooth colour
transition from the object’s edge to its outer blur. On
the other hand, we deem the pixel to be in the in-
ner blur region based on whether it is marked in the
ray mask. If the pixel is in the mask, we also op-
tionally magnify its overall background colour weight
(w in background colour) and diminish its foreground
colour weight (w in foreground colour) accordingly
by the same magnitude of 3, so background geometry
can be observed more clearly through the silhouette
of foreground objects with partial occlusion.

5 RESULTS

Our hybrid MBlur approach (d) aims to improve
the visual quality of the post-process technique in
McGuire et al. (2012) with reasonable additional per-
formance cost. Besides the original rasterized colour
(a) and an adapted version of the post-process tech-
nique at the new sampling range as shown in Fig-
ure 3 (b), we also evaluate our approach against
state-of-the-art post-process MBlur from Unreal En-
gine 4 (UE4) (c), which adopts a similar technique
to McGuire et al. (2012). UE4 also produces MBlur
by comparing the velocity of each pixel to that of its
neighbours (Epic Games, 2020). The ground truth
is given by the distributed ray tracing approach from
Cook et al. (1984) (e). Our demo video (link) pro-
vides more detailed comparisons of the results.

5.1 Graphics Quality Comparison

Post-process MBlur inaccurately reconstructs the
background by reusing neighbouring information
available in the initial sharp rasterized image, which
creates artifacts such as mismatched patterns when
the background contributing to the inner blur is not
of a uniform colour. In Figure 5, we choose a shot
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(a) (b) (c) (d) (e)
Figure 5: Comparison of partial occlusion quality.

from PINK ROOM with a moving red vase in front of
a white sofa with a pink cushion on it. For the adapted
post-process MBlur from McGuire et al. (2012), the
silhouette of the cushion incorrectly terminates at the
edge of the vase. While the pink colour from the
cushion should extend towards the bottom right di-
rection into the geometry of the vase, it is blocked by
a horizontal division created by motion vector-based
sampling. This artifact is more noticeable for UE4,
where the background colour within the inner blur
is practically a linear translation from the left of the
edge, as shown in the yellow circle. However, our
hybrid method samples what is behind the inner blur
of moving objects, hence we can obtain the desired
background, which in this case is the extension of the
cushion silhouette in the green circle corresponding
to the ground truth.

However, it can be seen that hybrid MBlur does
not achieve as much semi-transparency as compared
to the ground truth, where the background colour
is more visible within the silhouette of the vase.
Nonetheless, the rendering time of the ground truth
is 13 fps at 200 rays per pixel (rpp), which is a lot
slower than 205 fps for hybrid MBlur. In practice, it
is not common to use distributed ray tracing to ren-
der MBlur in real-time as it is difficult to meet inter-
active frame rates, while reducing the rpp to achieve
ideal performance will introduce a significant amount
of sampling noise.

Against the ground truth, our hybrid MBlur
method performs well in objective visual metrics
PSNR and SSIM when compared to other state-of-
the-art post-process methods, as presented in Table 1.
It is also interesting to note that the improved MBlur
method implemented in the latest version of UE4 does
not fare as well as the basic adapted post-process
method from McGuire et al. (2012).

Table 1: Comparison of similarity to ground truth.

PSNR SSIM
Adapted Post-Process 24.20 0.91
UE4 Post-Process 12.32 0.68
Hybrid MBlur 25.69 0.92

5.2 Performance

Although the Falcor framework helped facilitate the
implementation of our technique by taking care of
scene loading, pipeline set-up and the creation of
ray tracing acceleration structures, the abstraction of
many low-level details from Direct3D makes it dif-
ficult to optimize rendering. However, even without
substantial optimization, we have managed to achieve
relatively interactive frame rates and pass durations,
as shown in Table 2 based on shots of varying ge-
ometric complexity in Figure 6. Our measurements
are taken with the Falcor profiling tool on an Intel
Core i7-8700K CPU at 16GB RAM with an NVIDIA
GeForce RTX 2080 Ti GPU.

Table 2: Pass durations (in ms) and frame rates.

Shot Processor PR ST BI
CPU 0.26 0.54 1.74G-Buffer GPU 1.19 3.54 6.43
CPU 0.05 0.05 0.06Ray Mask GPU 0.33 0.38 0.33
CPU 1.13 2.27 2.99Ray Trace GPU 0.59 0.65 0.62
CPU 0.05 0.06 0.08Tile-Dilate GPU 1.48 1.44 1.43
CPU 0.03 0.04 0.04PP-Composite GPU 0.85 0.82 0.82
CPU 3.14 4.67 3.48Others GPU 0.39 0.42 0.29
CPU 4.66 7.63 8.39Total Duration GPU 4.83 7.25 9.92

Frame Rate 205 148 112

Hybrid MBlur, which contains an additional ray
reveal process, is expectedly slower than the adapted
post-process McGuire et al. (2012) approach that has
a frame rate of 295 fps for PR. As seen in Table 2,
the creation of the ray mask and the ray trace pass
are the major components of the ray reveal algorithm.
The ray trace pass increases in duration on the CPU
with the geometric complexity of each shot. As such,
it is expected that the G-Buffer pass aligns with this
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(a) PINK ROOM (PR) (b) SUN TEMPLE (ST) (c) BISTRO INTERIOR (BI)
Figure 6: Shots used for profiling.

trend as it is where deferred shading is carried out.
However, the durations of the other passes appear to
be independent of this geometric complexity.

5.3 Limitations and Future Work

Since our work is focused on the main idea of real-
time hybrid MBlur, some common spatial sampling
constraints in MBlur are used for simplicity con-
siderations. These constraints include linear inter-
frame motion and stable lighting within the expo-
sure time, as well as moderate screen space veloc-
ity for a reasonable tile size. However, it is possible
to accommodate nonlinear MBlur at low cost with a
curve-sampling scatter approach, as demonstrated in
Guertin and Nowrouzezahrai (2015).

Additionally, the ideal indicator for termination in
our ray reveal algorithm should be the difference in
velocity and not luminance. However, it is inefficient
to check the velocity of a hit point during the ray
tracing process. Hence, as a future improvement to
our approach, we hope to incorporate GeometryIndex
from DirectX Raytracing Tier 1.1, which will enable
the ray tracing shader to distinguish geometries. This
will be more suitable than luminance in scenes with
multiple overlapping moving objects of the same lu-
minance value.

Moreover, it is possible to improve the efficiency
of our pipeline by restricting the computation of ve-
locities to a user-defined depth for the scene, if ge-
ometry movement is localized. We also intend to
integrate hybrid MBlur with other real-time hybrid
rendering effects, such as depth of field (Tan et al.,
2020a) where we mitigate similar problems of partial
occlusion from post-processing approaches.

6 CONCLUSION

We present a real-time hybrid motion blur rendering
technique that produces more accurate partial occlu-
sion semi-transparencies on the silhouettes of moving
foreground geometry as compared to state-of-the-art

post-processing techniques. By leveraging hardware-
accelerated ray tracing within a ray mask, we have
achieved relatively interactive frame rates for real-
time rendering in games without extensive optimiza-
tion. We aim to integrate and optimize multiple hy-
brid rendering techniques including depth of field into
our hybrid rendering engine, which will be open-
sourced for the benefit of the research community and
industry.
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APPENDIX

Post-process Sampling Range

McGuire et al. (2012) uses the dominant velocity
within a neighbourhood of pixels as a heuristic. It first
produces a per-exposure velocity from an inter-frame
motion vector, then applies a tile-dilate pass to select
the dominant velocity in the neighbourhood with the
largest magnitude. Here, the per-pixel velocities are
clamped at the length of each tile for the tile-dilate
pass to capture the maximum velocity from all possi-
ble contributions, preventing tiling artifacts.

For the tile-dilate pass, tile-dominant velocities
are first selected for tiles of length m in pixel units,
where m is a common factor of the width and height
of the image buffer resolution. Then, neighbour-
dominant velocities are selected for kernels of length
n in tile units. For example, if we take m = 40, the
size of each tile is hence 40×40 = 1600 pixels. If we
then dilate each tile with n = 3 based on its 8 direct
neighbours, our dilated tile will take the maximum
pixel velocity from 9 tiles × 1600 pixels/tile = 14400
pixels in total.

Compared to approaches that use per-pixel veloc-
ities directly for gathering like Ritchie et al. (2010),
this dominant neighbour velocity approach prevents
issues such as sharp silhouettes as well as moving ob-
jects shrunk in size, as illustrated in McGuire et al.
(2012). Following its idea, the direction of sampling
at each pixel is along the dominant velocity of its
neighbourhood, and the range of samples is within
one magnitude of this velocity.

Post-process Sample Contribution

McGuire et al. (2012) performs a weighted average w
of all corresponding samples for each target pixel.

w = w f +wb +ws (5)

w f = saturate(1+ z)×saturate(1− ∆s
vs
) (6)

wb = saturate(1− z)×saturate(1− ∆s
vt
) (7)

ws = cylinder(vs, ∆s)×cylinder(vt , ∆s)×2
(8)

where
z =

zt − zs

SOFT Z EXTENT
(9)

cylinder(v, s)= 1−smoothstep(0.95v, 1.05v, s)
(10)

In the above formulae, z represents the extent that
the target pixel is deeper into the scene than its sam-
ple (negative when the pixel is shallower), while ∆s
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refers to the distance between the screen space po-
sitions of the target pixel and its sample. vt and vs
are the screen space speeds of the target pixel and its
sample respectively, while zt and zs are their camera
space depths. SOFT Z EXTENT is a positive-valued
scene-dependent variable as introduced in McGuire
et al. (2012) used for the classification of samples into
the foreground or background of the target pixel.

Case 1: Blurry Sample in Front of Any Target

w f considers the first case where outer blur is present:
a shallower sample of speed larger or equal to its off-
set from the target pixel in screen space can contribute
to the pixel’s colour as part of the foreground. The
sample contributes as foreground by covering the tar-
get pixel within the exposure time. On the other hand,
since a sample deeper than the target pixel stands a
higher chance to be blocked during the exposure time,
the first factor in Equation 6 smoothly filters out con-
tribution from deeper samples. Given that faster pix-
els also contribute less for each unit (in our case it is
the length of one pixel) in their trail, a comparison be-
tween the sample’s speed and its distance to the target
pixel is performed as the second factor of Equation 6.

Case 2: Any Sample behind Blurry Target

As for inner blur, the target pixel is moving and
deeper samples within its velocity range are selected
to fill the transparency left by it. Hence, for wb,
the depth comparison is done reversely to filter out
shallower samples. Since Jimenez (2014) illustrates
that the edge of a motion-blurred object should be
a smooth gradient, a comparison between the target
pixel’s speed and its distance to the sample is also per-
formed as part of the second factor of Equation 7 to
assign a lower weight to further samples.

(a) ws excluded (b) ws included
Figure 7: Specular highlight in McGuire et al. (2012) post-
processed MBlur (one-directional).

Case 3: Simultaneously Blurry Target and Sample

A sample at any depth can contribute to the target
pixel’s colour as part of the foreground or background
when both the sample and the pixel are located in
each other’s velocity range. ws blurs the target pixel
and its sample into each other as a supplement to
the cases not handled well by the first two terms in
Equation 5. Since further samples have been assigned
lower weights in w f and wb, the area of the resulting
MBlur for regions of high variance appears to shrink
as the target pixel gets further from these regions. For
instance, in the case of specular highlights, as shown
in Figure 7, the resulting blur appears to be triangular-
shaped with the base at the exact specular highlight in
the sharp rasterized image, while the desirable case
should be rectangular-shaped. Since ws will produce
a positive value when the distance between the target
pixel and its sample is not significantly higher than the
speed of either of them, it creates a more reasonable
blur effect by enlarging the shrinking region.

Hybrid MBlur: A Systematic Approach to Augment Rasterization with Ray Tracing for Rendering Motion Blur in Games

125


