
On Modelling and Analyzing Composite Resources’ Consumption Cycles
using Time Petri-Nets

Amel Benna1, Fatma Masmoudi2, Mohamed Sellami3, Zakaria Maamar4 and Rachid Hadjidj5
1CERIST, Algiers, Algeria

2Prince Sattam Bin Abdulaziz University, Alkharj, K.S.A.
3Samovar, Télécom SudParis, Institut Polytechnique de Paris, France

4Zayed University, Dubai, U.A.E.
5Department of Computer Science, ABMMC, Doha, Qatar

rhadjidj@gmail.com

Keywords: Composition, Consumption, Petri Net, Resource.

Abstract: ICT community cornerstones (IoT in particular) gain competitive advantage from using physical resources.
This paper adopts Time Petri-Nets (TPNs) to model and analyze the consumption cycles of composite re-
sources. These resources consist of primitive, and even other composite, resources that are associated with
consumption properties and could be subject to disruptions. These properties are specialized into unlimited,
shareable, limited, limited-but-renewable, and non-shareable, and could impact the availability of resources.
This impact becomes a concern when disruptions suspend ongoing consumption cycles to make room for the
unplanned consumptions. Resuming the suspended consumption cycles depends on the resources’ consump-
tion properties. To ensure correct modeling and analysis of consumption cycles, whether disrupted or not,
TPNs are adopted to verify that composite resources are reachable, bound, fair, and live.

1 INTRODUCTION

There is a consensus in the Information and Commu-
nication Technology (ICT) community that the Inter-
net of Things (IoT) is helping achieve Mark Weiser’s
vision about ubiquitous computing that is “...The most
profound technologies are those that disappear. They
weave themselves into the fabric of everyday life un-
til they are indistinguishable from it” (Weiser, 1991).
Whether visible or invisible, today’s things like ambi-
ent sensors and smart watches are used anytime, any-
where producing massive amount of data about peo-
ple and other “things” like vegetable freshness in a
transit facility, and patients’ vitals in an ICU. It is
predicted that the total economic impact of IoT will
reach between $3.9 trillion and $11.1 trillion per year
by the year 2025 (DZone, 2021).

To sustain the IoT economic impact mentioned
above, particular measures should be taken to address
things’ processing, storage, and communication limi-
tations. Indeed, not all things (e.g., ambient sensors)
are embedded with powerful processing capabilities
and not all things (e.g., smart watches) can store large

amount of data nor communicate data quickly. In the
literature, some measures consist of coupling IoT ap-
plications to cloud computing so, that, appropriate
processing, storage, and communication resources are
made available based on these applications’ func-
tional and non-functional requirements (Li et al.,
2020; Ren et al., 2017). In a previous work (Maa-
mar et al., 2021), we associated cloud resources
with consumption properties specialized into
unlimited, limited, limited-but-renewable,
shareable, and non-shareable, allowing a better
control over these resources in terms of availabil-
ity, consistency, and accountability. Each property is
modeled, with Finite State Machine (FSM), as cycle
that tracks the progress of consuming a resource by
an application.

While IoT application/cloud coupling seems the
way to move forward, many critical concerns are
barely touched upon like first, guaranteeing the con-
tinuous availability of cloud resources following the
occurrence of disruptive events (e.g., urgent upgrades
to counter cyber-attacks and urgent demands to exe-
cute last-minute requests) and second, composing re-

Benna, A., Masmoudi, F., Sellami, M., Maamar, Z. and Hadjidj, R.
On Modelling and Analyzing Composite Resources’ Consumption Cycles using Time Petri-Nets.
DOI: 10.5220/0010971900003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 243-250
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

243

sources together to satisfy IoT applications’ require-
ments. We focus in this paper on resource compo-
sition by specializing resources into primitive (pr)
and composite (cr) and then, modeling and verify-
ing composite resources’ consumption cycles using
Time Petri-Nets (TPNs) (Merlin and Farber, 1976).
Compared to what we did in (Maamar et al., 2021)
when modeling consumption cycles of separate prs
using FSM, this modeling technique falls short of cap-
turing the composition of these resources as well as
their concurrent consumption. TPNs are widely used
in the ICT community for representing the structure
and timing of processes and distributed systems in a
more realistic way.

For illustration purposes, let us assume a compos-
ite resource that calls for some primitive resources.
For a successful composite resource modeling and
verification, we raise many questions for instance,
how to ensure the consistency of this composite re-
source’s consumption cycle that is made of separate
but collaborating primitive resources’ consumption
cycles, how to verify the correctness of the compos-
ite resource’s consumption cycle, and how to track
the overall consumption of the composite resource
despite the disruptions that could impact its primi-
tive resources. In this paper, we present a TPN-based
approach for modeling and verifying composite re-
sources’ consumption cycles. The rest of this paper is
organized as follows. Section 2 presents a motivating
example. Section 3 briefly defines TPNs and primitive
resources. How these resources are modeled in TPNs
is presented in Section 4. Contrarily, Section 5 is ded-
icated to modeling and analysing composite resources
in TPNs. Prior to concluding in Section 7, we discuss
the simulation of the modeled TPNs and the verifica-
tion of some associated properties in Section 6.

2 MOTIVATING EXAMPLE

Our motivating example, yet, simple illustrates how
resources could be composed when completing jobs.
A surveillance organization is in charge of monitor-
ing different parts of the city using cameras broad-
casting real-time images to a private cloud for storage
(Figure. 1). To comply with local authorities’ regu-
lations, the cameras’ recordings must be backed up
for at least a year in a highly durable manner. For
this purpose, the organization deploys the data stor-
age on Amazon Web Services (AWS) public cloud.
This consists of compressing the recordings using an
in house tool (app1) that consumes CPU thanks to
a private cloud-based virtual machine (pr1). Dur-
ing compression, the recordings are tagged with de-

tails like timestamp and location before saving them
on the AWS cloud offering the necessary storage
resources (pr2 and pr3). During each backup re-
quest, a serverless solution is configured by calling
a Lambda function1 (f1) that saves the recordings in
an archive storage (pr2) and the associated details in
a NoSQL database (pr3) on the public cloud.

The organization's private cloud

(pr1)

disruption

video
+

details

compressed video
+

details

(app2)

(app1)

Public AWS cloud

(f1)

(pr2)

(pr3)
compressed video

details

Figure 1: Video surveillance backup in action.

During the consumption of the composite resource
cr={pr1, pr2, pr3}, many disruptive events could
happen. For instance, the full capacity of pr1 was
needed to compress app1’s recordings but, then, an
urgent request to scan app2’s recordings is received
suspending the compression. Handling the disruption
that pr1 faces along with ensuring the consumption
continuity of other resources part of cr (i.e., pr2
and pr3) might vary depending on these resources’
characteristics like availability and shareability. With
respect to pr1’s disruption, many questions are raised
as per the following cases: (i) since pr3 is consumed
for storing the compressed recordings’ details and
other data transmitted by app2, will pr3 remain avail-
able for consumption by app2 despite the disruption
impacting pr1? (ii) since pr2 is only consumed dur-
ing the backup of recordings by f1, will the disrup-
tion of pr1 impact pr2?, and (iii) assuming that the
consumption of pr1 happens sequentially with pr2
and pr3, what will be impact of pr1’s disruption ,
will pr2 and pr3 remain available for consumption,
and is this impact the same in case the consumption
of pr1 happens concurrently with pr2, and pr3? In
this paper, not only we address these questions but
also other cases by modeling and analysing resources’
consumption cycles using TPNs ensuring the com-
pleteness of these cycles, for example.

1AWS Lambda is an event-driven, serverless computing
platform.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

244

3 BACKGROUND

This section briefly presents TPNs, and, then primitive
resources’ consumption properties and cycles.

3.1 TPN in Brief

Petri Nets (PN)s are widely used for the study
and analysis of concurrent systems (Peterson, 1977).
PN is a directed bipartite graph that has 2 types
of vertices : place (which can contain tokens)
and transition. Distribution of tokens over the
places represent a configuration of the net called a
marking. Arcs run from a place to a transition or
vice versa, never between places or between tran-
sitions. A transition is enabled if each place con-
nected to it as input contains at least a number
of tokens greater or equal to the weight of corre-
sponding input arc. Time Petri Nets (TPNs) (Mer-
lin and Farber, 1976) extend PNs to enforce the du-
ration of a system’s activities. Different variations
of TPNs exist with focus in this paper on those
with bounded data variables, called Interpreted
Time Petri Nets (ITPN) (Hadjidj and Boucheneb,
2013), to model resources’ consumption cycles (Sec-
tion 3.2). In an ITPN, each transition has, on top of
a time interval, a guard and a set of update opera-
tions on user defined data variables and the number
of token. An enabled transition can be fired if its as-
sociated guard is true in the current state of the ITPN
model. Once a transition is fired, its updates are ap-
plied.

A number of TPN software tools exist2 allowing
for instance, to evaluate some performance charac-
teristics and formally verify a TPN against a set of
properties (Berthomieu and Diaz, 1991). In our work,
we use Real Time Studio (RT-Studio3). It allows
both guards and update actions on transitions and the
use of variables, that other TPN tools do not sup-
port (e.g., TAPAAL).

3.2 Primitive Resources in Brief

As stated earlier, jobs consume resources with re-
spect to one of the 5 consumption properties (Maa-
mar et al., 2021): unlimited (ul), shareable (s),
limited (l), limited but-renewable (lr), and
non-shareable (ns). The first two are not explained
due to their simplicity.

• Limited means that the consumption of a re-
source is restricted to a particular capacity and/or

2www.informatik.uni-hamburg.de/TGI/PetriNets/tools/
quick.html

3sites.google.com/view/rachid-hadjidj/rt-studio.

period of time.
• Limited-but-renewable means that the con-

sumption of a resource continues to happen since
the (initial) agreed-upon capacity has been in-
creased and/or the (initial) agreed-upon period of
time has been extended.

• Non-shareable means that the concurrent
consumption of a resource must be coordi-
nated (e.g., one at a time).

Each consumption property is associated with a
consumption cycle (cc) depicting the current state of
a primitive resource. For instance, the consumption
cycle of a limited resource pr is represented as
follows ccl: prepared

consumptionApproval−−−−−−−−−−−−−→ consumed
consumptionU pdate−−−−−−−−−−−−→ done

consumptionCompletion−−−−−−−−−−−−−−→withdrawn,
where prepared and consumed are exam-
ples of states and consumptionApproval and
consumptionUpdate are examples of transitions
linking these states together. In preparation for
modeling and verifying composite resources’ con-
sumption cycles in ITPNs (TPN for short), we briefly
discuss next how primitive resources are modeled in
TPNs. We also show how to handle suspensions due
to disruptions.

4 MODELING PRIMITIVE
RESOURCES USING TPNS

We identify 6 places and 9 transitions, connecting
these places together, that would constitute a prim-
itive resource’s non-disrupted consumption cycle in
a TPN. The places are prepared (the resource is cre-
ated), consumed (the resource is bound by a consumer
due to the ongoing consumption), done (the resource
is unbound by a consumer after successful consump-
tion), locked (the resource is booked for a consumer
in preparation for its consumption), unlocked (the
resource is released by a consumer after its consump-
tion), and withdrawn (the resource ceases to exit after
unbinding all consumers from the resource).

For illustration purposes, we consider the TPN-
based consumption cycles without/with disruption for
l, lr, and s resources. In the remaining illustra-
tive figures of a TPN-based consumption cycles, blue
places and transitions correspond to the non-disrupted
part. Contrarily, gray places and transitions corre-
spond to this cycle’s disrupted part.

4.1 Limited Resource-model

A l resource’s consumption cycles can be impacted
by its capacity/and or availability. Figure. 2 illus-

On Modelling and Analyzing Composite Resources’ Consumption Cycles using Time Petri-Nets

245

Table 1: Some conditions and actions on transitions for a l resource.

Transition Condition Action

consApproval
job’s time-interval/capacity falls into resource’s
time-interval/capacity —

consUpdate
no disruption or all disruptive jobs completed their
consumption (consumed= 1) and enough capacity/time

update resource’s
capacity/time interval

consUpdateS
consumed> 1 (at least one disruptive job did not complete
its consumption)

update resource’s
capacity/time interval

consRejection
job’s time interval/capacity do not falls into resource’s time
interval/capacity —

suspension
disrupting job’s time interval/capacity falls into resource’s time
interval/capacity

update resource’s
capacity/time interval

trates these cycles. A transition consRejection from
prepared to withdrawn is enabled if the required ca-
pacity to consume the job exceeds the capacity of the
resource or the job’s time interval does not fall into
the resource’s time interval.

Figure 2: Consumption cycle for a l primitive resource.

During the consumption cycle of this resource,
disruptions could occur initiating a disrupted con-
sumption cycle (d-cc). For instance, d-ccl : consumed
suspension−−−−−−→ consumed

consU pdateS−−−−−−−→ controlSuspension .
The suspension transition initiates the disruptive
consumption cycle by putting on-hold the consump-
tion of the active job making room for the dis-
rupting job4. Since the disrupting job can in turn
be suspended and so on, we assume that firing
consUpdateS transition concludes the consumption
of the last job that triggered a disruption. The
suspension transition is disabled when the number
of allowed suspensions is reached while the disrup-
tive jobs have not completed their consumptions. To
control this number of allowed suspensions, we define

4Firing the suspension transition leads to accumulating
a new number of tokens at the output place, i.e 2 tokens are
added to the consumed place waiting for consumption.

a place called controlSuspension5. For instance, in
Figure. 2, if n is set to three, a new job that suspended
the initial job can in turn be suspended to initiate a
new job that also can be suspended.

To resume the initial/first suspended job, the tran-
sition consUpdate from consumed to done needs to
satisfy the condition that a resource still has some
capacity and/or time left for the suspended job and
all the disruptive jobs completed their consumptions.
Otherwise, this job’s consumption cycle remains sus-
pended and no transition is enabled. In Table. 1, we
associate transitions in Figure. 2 with the necessary
firing conditions (guards) and actions to take in re-
sponse to this firing.

4.2 Limited-but-Renewable
Resource-model

Figure 3: Consumption cycle for a lr primitive resource.

For a lr resource in term of either capacity or
time, its non-disrupted consumption cycle (cc) is
represented as follows: cclr: prepared

consApproval−−−−−−−−→

5where n refers to the number of allowed disruptions

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

246

consumed
consU pdate−−−−−−−→ done

renewableApproval−−−−−−−−−−−→ prepared.
And, its TPN-based consumption cycle is illustrated
in blue in Figure. 3. In this cycle, the transition
from done to prepared allows a resource to be
regenerated for another round of consumption, if
deemed necessary. Otherwise, the consumption cy-
cle takes on withdrawn state. For a lr resource, in
addition to conditions and actions on consApproval,
consUpdate, and consUpdateS transitions described
in Table. 1, firing the renewableApproval transition
extends the resource’s capacity and/or time interval.
The disruptive cycle for a lr resource follows the
same disruptive cycle of a l resource. However, as
lr resource is extensible, a resumption’s failure after
disruption is less recurrent.

4.3 Shareable Resource-model

Figure 4: Consumption cycle for a s primitive resource.

Modeling a primitive resource’s consumption cy-
cle using a TPN depends on its consumption property
and potential occurrence of disruptions.

A s resource allows its concurrent consumption
by many jobs. In this case, at least 2 consumers that
require the same resource are simultaneously acti-
vated. Figure. 4 illustrates the s resource’s TPN-based
consumption cycles. The transition from prepared
to consumed is satisfied if 2 or several consumers
that require the same resource are simultaneously ac-
tivated. When no pending jobs consuming this re-
source exist, the transition from done to withdrawn
is enabled. If a disruption occurs, we assume that all
jobs are suspended making room for the disrupting
job. Table. 2 associates transitions in Figure. 4 with
the necessary firing conditions (guards) and actions
to take in response to this firing.

5 MODELING AND ANALYZING
COMPOSITE RESOURCES
USING TPNs

Setting-up the consumption of a composite resource
refers to a group of sequential and/or concurrent
primitive resources that could be disrupted impact-
ing this consumption. Using Backus-Naur Form nota-
tion (Knuth, 1964), we specify a composite resource
with Listing 1:

Listing 1: BNF representation of composite resources.

〈cr〉 |= 〈resource〉 〈chronology〉 〈resource〉

〈resource〉 |= 〈pr〉 | (〈cr〉)

〈pr〉 |= (〈name〉 , 〈property〉)

〈property〉 |= ul | l | s | ns | lr

〈chronology〉 |= sequential | concurrent

〈name〉 |= STRING | INT | 〈name〉STRING | 〈name〉INT

Applying the notation above to the motivating ex-
ample results into (pr1,l) sequential ((pr2,lr) con-
current (pr3,s)) schema. Here, pr1 has a limited CPU
capacity that is consumed during the compression of
recordings. This happens sequentially with pr2 and
pr3 both consumed concurrently. pr2 has a limited-
but-renewable storage capacity/time and pr3 has a
shareable but limited storage capacity. To model a
composition of resources we develop first, a TPN for
the controller that will oversee the composition
progress and second, a TPN for each primitive re-
source in this composition according to its consump-
tion property. Figure. 5 is the controller’s TPN that
includes 1 place, controller, with m6 tokens and
2 transitions, launch! and success?, that initiate
and receive the end of the consumption of primitive
resources, respectively.

Figure 5: Controller overseeing the consumption of primi-
tive resources.

Regarding launch and success transitions, they
synchronize the different TPNs of the composed prim-
itive resource. For each primitive resource’s TPN,
launch? transition, used to receive messages from
the controller to initiate the resource’s consumption,

6Varies according to the number of resources that are
consumed concurrently.

On Modelling and Analyzing Composite Resources’ Consumption Cycles using Time Petri-Nets

247

Table 2: Some conditions and actions on transitions for a s resource.

Transition Condition Action

consApproval
c*>1 and consumers job’s time-interval/capacity falls into
resource’s time-interval/capacity –

consUpdate
controlSuspension= n**, no disruption or all disruptive jobs
completed their consumption and enough capacity/time

update resource’s
capacity/time-interval

consUpdateS
controlSuspension< n (at least one disruptive job
did not complete its consumption)

update resource’s
capacity/time-interval

consCompletion no pending consumer consuming this resource exists –
* c refers to the number of concurrent consumers’
** n refers to the number of allowed disruptions.

is connected to the prepared place in this TPN, and
success! transition, used to send messages to the
controller, is connected to both done and withdrawn
places in this TPN as well. These messages received
by the controller can inform either about the suc-
cessful consumption completion and unbinding of re-
source by the its consumer or about unbinding of all
its consumers.

Depending on the consumption properties and
consumption chronology, the occurrence of a disrup-
tion targeting a primitive resource (could be many)
could impact the consumption of the remaining primi-
tive resources. Table. 3 summarizes this impact on the
composition of pr as per the occurrence or not of the
consumption resumption of the disrupted resource.

Figure. 6 is a simulated TPN, using RT-Studio,
of the composite resource described in the motivating
example. The following discusses the disruption im-
pact on each primitive resource per type of consump-
tion, sequential versus concurrent.

- pr1 disruption during sequential consumption:
the primitive resource consumed after pr1 might
be impacted due to pr1’s disruption. Indeed,
an unsuccessful resumption could make the
consumption of both pr2 and pr3 fail and thus,
the composite resource consumption too. The
consumption cycle of pr1 after firing launch?
is described as follows: pr1.cclr: pr1.prepared
pr1.consApproval−−−−−−−−−−→ pr1.consumed

pr1.suspension−−−−−−−−→
pr1.suspended pr1.consumed−−−−−−−−→ pr1.consumed
pr1.consU pdateS−−−−−−−−−−→ pr1.controlSuspension. The
transition pr1.consUpdate remains disabled and
only a new disruptive job that falls into the time
interval and remaining capacity of the resource
can be consumed. Otherwise all transitions are
disabled. It is worth noting that a disrupted
unlimited primitive resource has no impact on the
consumption of other primitive resources.

- pr2/pr3 disruption during concurrent consump-
tion: the respective consumption of pr2 and pr3
happens independently from each other and the

disruption targets either pr2 or pr3. Assuming
that the consumption’s resumption of pr2 is un-
successful leading to its failure, pr3 would com-
plete its consumption and vice-versa. After firing
launch? the consumption cycles for each primi-
tive resource are as follows:

◦ pr1.ccl: pr1.prepared
pr1.consApproval−−−−−−−−−−→

pr1.consumed
pr1.consU pdate−−−−−−−−−→ pr1.done, where

pr1 is consumed by app1;

◦ pr2.cclr: pr2.prepared
pr2.consApproval−−−−−−−−−−→

pr2.consumed
pr2.consU pdate−−−−−−−−−→ pr2.done

pr2.renewableApproval−−−−−−−−−−−−−−→ pr2.prepared
pr2.consApproval−−−−−−−−−−→

pr2.consumed
pr2.suspension−−−−−−−−→ pr2.consumed

pr2.consU pdateS−−−−−−−−−−→ pr2.controlSuspension, where
pr2 is consumed by app1 with an extended
capacity/time;

◦ pr3.ccs: pr3.prepared
pr3.consApproval−−−−−−−−−−→

pr3.consumed
pr3.consU pdate−−−−−−−−−→ pr3.consumed

pr3.consU pdate−−−−−−−−−→ pr3.done, where pr3 is consumed
by app1 and app2.

In summary, a failed resumption of a l/lr/s pri ⊂ cr
leads to the failure of the consumption of all the prim-
itive resources, pr j, that are expected to be consumed
sequentially after a peer, for instance pri. Otherwise,
when the primitive resources are consumed concur-
rently and regardless of their consumption properties,
a disruption does not have any impact on other re-
sources. The consumption continuity of the com-
posite resource is maintained but not the composi-
tion model; ((pr1,l) sequential (pr3,s)) instead of
((pr1,l) sequential ((pr2,lr) concurrent (pr3,s)))
when pr2 is disturbed, for example. Moreover, even if
an ul pr j ⊂ cr will always resume after a disruption,
it could have an impact on the remaining consump-
tion cycle of l/lr/s/ns pri ⊂ cr if the consumption
time interval of pri is exceeded after the consumption
of pr j. On another side, a ns prk ⊂ cr that remains
locked has the same impact as a non resumption of a
l/lr/s resource after its disruption.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

248

Table 3: Impact of disruption on composition of resources as per chronology consumption and pr consumption properties.

Consumption
chronology

Consumption properties of the disrupted resources

ul l/s/lr
Successful resumption
of all disrupted pr

Unsuccessful resumption of one
of the disrupted pr.

Sequential successful
consumption

successful
consumption

consumption failure of remaining
resources.

Concurrent
consumption of remaining resources
but without following/respecting
the cr chronology.

Sequential
Concurrent

consumption of remaining concurrent
resources but without following/
respecting the cr chronology.

Figure 6: Illustration of a simulated composition of 3 primitives resources.

6 SIMULATING SOME TPNS

We discuss the simulation of some TPNs that were
used for modeling primitive and composite resources.
Along this simulation some TPNs’ properties were
verified. An online demo is available at https://youtu.
be/aHPJl9Q7Xko. Verifying some important PN prop-
erties like reachability, boundedness, fairness,
and liveness allowed to assess some good behaviors
of our models.

• Reachability assesses if a marking Mn is reach-
able from the initial marking M0 via a sequence of
transitions that transforms M0 into Mn.

• Boundedness states that the number of tokens in
each place of the TPN does not exceed a finite
number k for any marking reachable from the ini-
tial marking M0. For instance, we can verify that
lr resource TPN is bounded in a way that each

place in the consumption cycle holds a limited
number of tokens at any time.

• Fairness states that every transition is expected
to be fired frequently/infinitely in any firing se-
quence. This is satisfied in our case since transi-
tions are enabled over and over again.

• Liveness states that for every reachable marking
it is possible to fire all transitions at least once
by some firing sequence, denoting the absence of
deadlocks. In our case, the lr pr2 cycle is live
since there is no deadlock during the execution.

For the analyse and verification of our TPN model us-
ing model checking for instance, we first need to rep-
resent the behavior of a system as a state graph, then
specify properties of interest in a temporal logic , and
finally explore the state graph to determine whether
these properties hold or not. Reachability anal-
ysis of our TPNs relies on the construction of so-

On Modelling and Analyzing Composite Resources’ Consumption Cycles using Time Petri-Nets

249

called Strong State Class Graph (SSCG) (Berthomieu
and Vernadat, 2003). RT-Studio allows to construct
several abstractions7 of state spaces for TPNs suit-
able to verify Reachability, but also linear and
branching properties.

We used RT-Studio tool to compute the state
space graph to preserve Linear Temporal Logic (LTL)
and branching properties (CTL*) of the simulated TPN
model shown in Figure. 6. This TPN model compo-
nents in line with our motivation example: cameras
broadcasting real-time images to a private cloud for
storage purpose consists of one instance of : the con-
troller model (cr), the limited resource model (pr1),
the limited but renewable resource model (pr2), and
the shareable resource model (pr3). These com-
ponents are synchronized on transitions to simu-
late (pr1,l) sequential ((pr2,lr) concurrent (pr3,s))
schema. An initial capacity and time interval are asso-
ciated with each resource. The controlSuspension
admits 3 suspensions for both pr1 and pr2 while
it allows 4 suspensions for pr3. The latter is
shared between app1 (englobing the Lambda func-
tion) and app2 which requires that pr3’s number of
concurrent customers restricted to only 2. The gener-
ated SSCG can be used as starting point in a refinement
process to generate Atomic State Class Graph (ASCG)
allowing to preserve branching properties (CTL*) of
the TPN model.

7 CONCLUSION

This paper examines the modeling and analysis of
composite resources consumption consisting of sev-
eral primitive (and even composite) resources ar-
ranged sequentially and/or concurrently. During re-
sources consumption, disruptions could arise lead-
ing to potential concerns like the suspension of on-
going business operations, which is not a “pleas-
ant” situation for organizations. To mitigate such
a situation, we resorted to using TPN to capture
composite resources’ consumption cycles according
to their primitive resources’ consumption properties
specialised into unlimited, shareable, limited, limited-
but-renewable, and non-shareable. Along this TPNs
modeling, we used RT-Studio to verify composite re-
sources’ reachability, boundedness, fairness, and live-
ness properties. In term of future work, we would like
to ensure the correctness of composite resources’ con-
sumption cycles through model checking.

7SSCG and ASCG for interval characterization and Con-
crete State Zone Graph (CSZG) for clock characterization.

REFERENCES

Berthomieu, B. and Diaz, M. (1991). Modeling and Veri-
fication of Time Dependent Systems using Time Petri
Nets. IEEE Transactions on Software Engineering,
17(3):259–273.

Berthomieu, B. and Vernadat, F. (2003). State class con-
structions for branching analysis of time petri nets. In
Garavel, H. and Hatcliff, J., editors, Tools and Algo-
rithms for the Construction and Analysis of Systems,
pages 442–457, Berlin, Heidelberg. Springer.

DZone (https://dzone.com/guides/iot-applications-
protocols-and-best-practices, 2017 (visited in
March 2021)). IoT: Application, Protocols, and Best
Practices. Technical report, DZone.

Hadjidj, R. and Boucheneb, H. (2013). RT-Studio: A Tool
for Modular Design and Analysis of Realtime Sys-
tems Using Interpreted Time Petri Nets. In Joint Pro-
ceedings of PNSE’2013 and ModBE’2013, volume
989 of CEUR Workshop Proceedings, pages 247–254,
Milan, Italy. CEUR-WS.org.

Knuth, D. E. (1964). Backus Normal Form vs. Backus Naur
Form. Communications of the ACM, 7(12):735–736.

Li, Z., Wen, L., Liu, J., Jia, Q., Che, C., Shi, C., and Cai,
H. (2020). Fog and Cloud Computing Assisted IoT
Model Based Personal Emergency Monitoring and
Diseases Prediction Services. Computing and Infor-
matics, 39(1):5–27.

Maamar, Z., Sellami, M., and Masmoudi, F. (2021). A
Transactional Approach to Enforce Resource Avail-
abilities: Application to the Cloud. In Proceedings of
RCIS’2021, volume 415 of Lecture Notes in Business
Information Processing, pages 249–264, Cyprus (on-
line). Springer.

Merlin, P. and Farber, D. (1976). Recoverability of Com-
munication Protocols - Implications of a Theoreti-
cal Study. IEEE Transactions on Communications,
24(9):1036–1043.

Peterson, J. (1977). Petri Nets. ACM Computing Surveys,
9(3):223–252.

Ren, J., Guo, H., Xu, C., and Zhang, Y. (2017). Serv-
ing at the Edge: A Scalable IoT Architecture Based
on Transparent Computing. IEEE Network, 31(5):96–
105.

Weiser, M. (1991). The Computer for the 21st Century.
Scientific American, 265(3):66–75.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

250

