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Abstract: The recent advances in neural machine translation enable it to be state-of-the-art. However, although there
are significant improvements in neural machine translation for a few high-resource languages, its performance
is still low for less-resourced languages as the amount of training data significantly affects the quality of the
machine translation models. Therefore, identifying a neural machine translation architecture that can train
the best models in low-data conditions is essential for less-resourced languages. This research modified the
Transformer-based neural machine translation architectures for low-resource polysynthetic languages. Our
proposed system outperformed the strong baseline in the automatic evaluation of the experiments on the public
benchmark datasets.

1 INTRODUCTION

Machine translation is a helpful mechanism to tackle
language barriers that potentially lead to frustration,
isolation, and racism. The state-of-the-art machine
translation, Neural Machine Translation (NMT), re-
quires extensive training data to build competitive
models despite its usefulness. There are signifi-
cant improvements in NMT for a few high-resource
languages. However, since the amount of training
data significantly affects the quality of NMT models
(Koehn and Knowles, 2017; Lample et al., 2018), per-
formance levels are still low for less-resourced lan-
guages. Of the approximately 7000 languages spoken
today, very few have adequate resources for NMT.
If we neglect less-resourced languages, there will
be grave consequences in integrating societies in to-
day’s globalized world. Even worse, in the long run,
this leads to the danger of digital language death, a
massive die-off caused by the digital divide (Kornai,
2013).

For less-resourced languages, tuning hyperparam-
eters for low-data conditions, including modifying the
system architecture in low-resource settings, is indis-
pensable. Hyperparameters incorporate basic settings
such as the learning rate, mini-batch size, system ar-
chitecture, and regularization. Specifically, the sys-
tem architecture provides the number of layers, the
number of hidden nodes per layer, the choice of acti-
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vation functions, and others.
Prior work has proposed different architectures for

low-resource NMT (Östling and Tiedemann, 2017;
Nguyen and Chiang, 2018; Sennrich and Zhang,
2019). Each architecture exhibits an extra level of
performance based on training data size. The pre-
vious work primarily modified the Recurrent Neu-
ral Network (RNN) for NMT. While RNN-based ar-
chitectures (Sutskever et al., 2014; Bahdanau et al.,
2015) have been used for NMT to obtain good results,
the Transformer-based ones are even attaining better
successes in high-resource data conditions (Vaswani
et al., 2017).

In this research, we adapted the Transformer-
based NMT system for low-resource polysynthetic
languages. We also developed a baseline phrase-
based Statistical Machine Translation (SMT) system.
We evaluated our proposed and baseline systems with
public benchmark datasets of Amharic-English and
Turkish-English. We chose these language pairs since
they have different morphology and orthography fea-
tures. Turkish is primarily an agglutinative language,
in which a space-delimited word is a concatenation of
several morphemes. Amharic is chiefly a fusion lan-
guage, in which an orthographic word is a blending
of several morphemes without clear boundaries. En-
glish has a relatively simple morphology while shar-
ing both features. Besides, Amharic uses the Ethiopic
script, whereas the other languages use Latin-based
scripts.
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Figure 1: The Transformer architecture. Adapted from Vaswani et al. (2017).

2 SYSTEM ARCHITECTURE

To train NMT models, we used the encoder-decoder
architecture implemented with Transformers. The
encoder, shown in the left half of Figure 1, com-
prises a stack of N identical Transformer blocks.
Each Transformer block contains a multi-head self-
attention layer followed by a fully-connected feed-
forward layer with residual connections and layer nor-
malizations. The decoder, shown in the right half of
Figure 1, is similar to the encoder, except it includes
a masked multi-head self-attention layer, which is a
modification of multi-head self-attention to prevent
positions from interfering in subsequent computa-
tions.

It would be difficult for a single Transformer block
to learn to capture all of the different kinds of complex

relations among its inputs. For example, words in a
sentence can simultaneously relate to each other in
many different ways. Likewise, distinct syntactic, se-
mantic, and discourse relationships can hold between
verbs and their arguments in a sentence. Transform-
ers model these complex relations with multihead
self-attention layers. These are sets of self-attention
layers, called heads, that reside in parallel layers at
the same depth, each with its own set of parameters.
Given these distinct sets of parameters, each head can
learn different aspects of the relationships among in-
puts at the same level of abstraction.

With Transformers, information about the order
of the inputs is not an integral part of the network.
Therefore, nothing would allow them to use infor-
mation about the relative or absolute positions of the
elements of an input sequence. Thus, positional en-
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Table 1: Differences between TransformerShallow1, TransformerShallow2, and TransformerDeep.

Hyperparameter TransformerShallow1 TransformerShallow2 TransformerDeep
Batch size 1024 4096 1024
Filter size 512 512 2048

Hidden size 128 128 512
Number of heads 4 4 8

Transformer blocks 2 2 6

coding combines Transformer inputs to each specific
position in an input sequence. Vaswani et al. (2017)
discuss further details about the overall architecture.

Because of the long training times of NMT mod-
els, we followed the best practices of previous re-
search in low-resource settings instead of working
with all possible hyperparameters, including various
architectures. In RNN-based NMT systems, there are
mixed findings on the size of training batch sizes in
low-data conditions. While Morishita et al. (2017)
and Neishi et al. (2017) are using large batch sizes,
Sennrich and Zhang (2019) recommend small batch
sizes. There is also a trend to use smaller and fewer
layers (Nguyen and Chiang, 2018).

Therefore, we proposed three different architec-
tures: TransformerShallow1, TransformerShallow2,
and TransformerDeep. All systems use Adam opti-
mizer (Kingma and Ba, 2015) with varied learning
rate over the course of training, dropout (Srivastava
et al., 2014) rate of 0.1, and label smoothing (Szegedy
et al., 2016) of value 0.1. Table 1 details the dif-
ferences between the three architectures. Transform-
erShallow1 and TransformerShallow2 differ only in
training batch sizes. Here, training batch sizes are
the source and target language tokens. We give all
the common hyperparameters shared among the three
systems in the appendix.

We used Google’s tensor2tensor1 (Vaswani et al.,
2018) library to implement our system. The precon-
figured hyperparameters in tensor2tensor are the basis
for the aforementioned three architectures.

3 BASELINE SYSTEM

Our phrase-based SMT baseline system had set-
tings that were typically used by Ding et al. (2016),
Williams et al. (2016), and Sennrich and Zhang
(2019). We used the Moses (Koehn et al., 2007)
toolkit to train phrase-based SMT models. First, we
used GIZA++ (Och, 2003) and the grow-diag-final-
and heuristic for symmetrization for word alignment.
Then, we used the phrase-based reordering model
(Koehn et al., 2003) with three different orientations:

1Available at: https://github.com/tensorflow/tensor2tensor

monotone, swap, and discontinuous in backward and
forward directions conditioned on the source and tar-
get languages.

We used five-gram language models smoothed
with the modified Kneser-Ney (Kneser and Ney,
1995). The system applied KenLM (Heafield, 2011)
language modeling toolkit for this purpose. Initially,
we have not used big monolingual corpora for lan-
guage models. This is because they are no longer the
exclusive advantages of phrase-based SMT, as NMT
can also benefit from them (Sennrich and Zhang,
2019). Afterward, to prove this claim, we used the
Contemporary Amharic Corpus2 (CACO) (Gezmu
et al., 2018) for English-to-Amharic translation.

The feature weights were tuned using Minimum
Error Rate Training (MERT) (Och, 2003). We also
used the k-best batch Margin Infused Relaxed Algo-
rithm (MIRA) for tuning (Cherry and Foster, 2012) by
selecting the highest-scoring development run with a
return-best-dev setting.

In decoding, we applied cube pruning (Huang
and Chiang, 2007), a distortion limit of six, and the
monotone-at-punctuation (do not reorder over punc-
tuation) heuristic (Koehn and Haddow, 2009).

4 EXPERIMENTS AND
EVALUATION

We evaluated the performance of our baseline and
proposed systems. The experiments used the same
datasets for each system; preprocessing, training, and
evaluation steps were similar.

Table 2: The number of sentence pairs in each dataset.

Language pair Dataset Sentence pairs
Amharic-English Test 2500

Development 2864
Training 140000

Turkish-English Test 3010
Development 3007

Training 207373

2Available at: http://dx.doi.org/10.24352/ub.ovgu-2018-144
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Table 3: Performance results of TransformerShallow1, TransformerShallow2, and TransformerDeep.

Translation Direction NMT System BLEU BEER CharacTER
English-to-Amharic TransformerShallow1 17.8 0.485 0.639

TransformerShallow2 18.9 0.498 0.614
TransformerDeep 26.7 0.552 0.523
BaselineMERT 20.2 0.502 0.646
BaselineMIRA 19.4 0.485 0.702

Amharic-to-English TransformerShallow1 24.0 0.523 0.629
TransformerShallow2 25.4 0.530 0.614

TransformerDeep 32.2 0.570 0.539
BaselineMERT 25.8 0.508 0.633
BaselineMIRA 23.3 0.497 0.701

English-to-Turkish TransformerShallow1 7.8 0.418 0.764
TransformerShallow2 9.4 0.439 0.719

TransformerDeep 12.6 0.485 0.613
BaselineMERT 7.8 0.442 0.775
BaselineMIRA 7.6 0.437 0.796

Turkish-to-English TransformerShallow1 10.2 0.434 0.803
TransformerShallow2 11.6 0.444 0.773

TransformerDeep 16.3 0.498 0.665
BaselineMERT 10.7 0.465 0.737
BaselineMIRA 9.1 0.446 0.804

Table 4: Performance results of English-to-Amharic translation using the CACO corpus.

NMT Model BLEU BEER CharacTER
BaselineMERT 20.2 0.502 0.646

BaselineMERT + CACO 21.4 0.503 0.640
TransformerDeep 26.7 0.552 0.523

TransformerDeep + 1×authentic 26.2 0.554 0.517
TransformerDeep + 2×authentic 27.3 0.562 0.505
TransformerDeep + 3×authentic 27.8 0.563 0.501
TransformerDeep + 4×authentic 27.2 0.563 0.504

4.1 Datasets and Preprocessing

We trained our models on the benchmark datasets
of the Amharic-English and Turkish-English parallel
corpora. We used an Amharic-English parallel cor-
pus provided by the Data and Knowledge Engineer-
ing Group at the University of Magdeburg3 (Gezmu
et al., 2021a). For Turkish-English translation, we
used the datasets provided by the Conference on Ma-
chine Translation4. Turkish-English datasets have al-
ready been preprocessed with standard Moses tools
(Koehn et al., 2007) and are ready for machine trans-
lation training. Table 2 shows the number of sentence
pairs in each dataset.

We tokenized the English datasets with Moses’
tokenizer script; we modified Moses’ script to to-
kenize the Amharic datasets. Next, the Amharic

3Available at: http://dx.doi.org/10.24352/ub.ovgu-2018-145
4Available at: http://data.statmt.org/wmt18/translation-

task/preprocessed/

datasets were transliterated with a transliteration
scheme, Amharic transliteration for machine trans-
lation5, which is fully discussed in (Gezmu et al.,
2021b). Finally, all but the Amharic datasets were
true-cased with Moses’ true-caser script.

We removed sentence pairs with extreme length
ratios of more than one to nine and sentences longer
than eighty tokens for the phrase-based SMT base-
line. For open vocabulary NMT, the tokens were
split into a 32000 word-piece vocabulary as Wu et al.
(2016) recommended. We used the word-piece im-
plementation in Google’s tensor2tensor library.

4.2 Training and Decoding

The situation of training NMT models is complex be-
cause the training of NMT models is usually non-
deterministic and hardly ever converges (Popel and

5Available at: https://github.com/andmek/AT4MT
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Bojar, 2018). Most research in NMT does not spec-
ify any stopping criteria. Some mention only an ap-
proximate number of days elapsed to train the models
(Bahdanau et al., 2015) or the exact number of train-
ing steps (Vaswani et al., 2017).

We trained, thus, each NMT model for 250000
steps following Vaswani et al. (2017). For decoding,
we used a single model obtained by averaging the last
twelve checkpoints. Following Wu et al. (2016), we
used a beam search with a beam size of four and a
length penalty of 0.6.

4.3 Evaluation

Eventually, translation outputs of the test sets were
detokenized, detruecased, and evaluated with a case-
sensitive BiLingual Evaluation Understudy (BLEU)
metric (Papineni et al., 2002). For consistency,
we used the metric’s implementation made by Post
(2018), sacreBLEU6. To fill the limitations of BLEU
(Callison-Burch et al., 2006; Reiter, 2018), we also
used BEtter Evaluation as Ranking (BEER) (Stano-
jevic and Sima’an, 2014) and Translation Edit Rate
on Character Level (CharacTER) (Wang et al., 2016)
metrics. Unlike BLEU and BEER, the smaller the
CharacTER score, the better. Moreover, the Amharic
outputs were not back transliterated to use these auto-
matic metrics effectively.

5 RESULTS

Table 3 shows the performance results of the three
systems plus the baseline system with BLEU, BEER,
and CharacTER metrics. The TransformerShallow1
model is the least performing model. Note that the
only difference between TransformerShallow1 and
TransformerShallow2 is their training batch sizes.
The system gained more than one BLEU score by in-
creasing the training batch size from 1024 to 4096.
BEER and CharacTER scores also reflect similar im-
provements. The TransformerDeep system produced
the best NMT models.

The baseline system achieved better scores when
feature weights were tuned using MERT than batch
MIRA. Thus, we took the phrase-based SMT system
tuned with MERT as our strong baseline.

The TransformerDeep models outperform the
baseline models by more than six BLEU scores in
the Amharic-English translation; they gained approxi-
mately five more BLEU scores than the baseline mod-
els in Turkish-English translation.

6Signature BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.4.9

Though big monolingual corpora are not integral
components of NMT, both SMT and NMT can bene-
fit from them. Table 4 shows the results of English-
to-Amharic translation using the CACO corpus for
language modeling of the baseline phrase-based SMT
and back-translating (Sennrich et al., 2016; He et al.,
2016; Cheng et al., 2016; Qin, 2020) of the Trans-
formerDeep to produce synthetic training data. Both
models gained more than one BLUE score by us-
ing CACO. The TransformerDeep model attained the
optimum result when we randomly drew three times
the size of the original training data from the CACO
corpus and translated it to English. Then we mixed
the synthetic data with the original (authentic) data to
train the new model. Likewise, Deng et al. (2018) re-
ported exciting results using back-translation of huge
monolingual corpus for English-Turkish translation.

6 CONCLUSIONS AND FUTURE
WORK

Based on the best practices of prior research in
this line of work, we conducted NMT for low-
resource polysynthetic languages. We used the
Transformer-based NMT architecture by tuning the
hyper-parameters for low-data conditions. In low-
data conditions, using smaller and fewer layers de-
grades the performance of the Transformer-based
systems. Furthermore, unlike RNN-based systems,
smaller batch sizes demote their performance. On
the other hand, the TransformerDeep models outper-
form all other models, including the baseline mod-
els whether using an extensive monolingual corpus or
not.

We suggest the experiments be done for additional
language pairs. We also recommend future research
for the adaptation of the universal Transformer-based
architecture (Dehghani et al., 2019) to low-resource
settings.
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APPENDIX

Common Hyperparameters

Activation data type: float32
Attention dropout: 0.1
Batch shuffle size: 512
First kernel size: 3
Dropout: 0.2
Evaluation frequency in steps: 1000
Evaluation steps: 100
Evaluation timeout minutes: 240
FFN layer: dense relu dense
Initializer: uniform unit scaling
Initializer gain: 1
Kernel height: 3
Kernel width: 1
Label smoothing: 0.1
Layer prepostprocess dropout: 0.1
Learning rate: 0.2
Learning rate cosine cycle steps: 250000
Learning rate decay rate: 1
Learning rate decay scheme: noam

Learning rate decay steps: 5000
Length bucket step: 1.1
Max area height: 1
Max area width: 1
Max length: 256
Memory height: 1
Min length bucket: 8
Mixed precision optimizer init loss scale: 32768
Mixed precision optimizer loss scaler: exponential
MOE hidden sizes: 2048
MOE k: 2
MOE loss coef: 0.001
MOE number experts: 16
MOE overhead evaluation: 2
MOE overhead train: 1
Multiply embedding mode: sqrt depth
Multiproblem label weight: 0.5
Multiproblem mixing schedule: constant
Multiproblem schedule max examples: 10000000
Multiproblem schedule threshold: 0.5
NBR decoder problems: 1
Norm epsilon: 0.000001
Norm type: layer
Optimizer: adam
Optimizer adafactor beta2: 0.999
Optimizer adafactor clipping threshold: 1
Optimizer adafactor decay type: pow
Optimizer adafactor memory exponent: 0.8
Optimizer adam beta1: 0.9
Optimizer adam beta2: 0.997
Optimizer adam epsilon: 0.000000001
Optimizer momentum: 0.9
Position embedding: timing
ReLu dropout: 0.1
Sampling method: argmax
Sampling temp: 1
Schedule: continuous train and evaluate
Scheduled sampling gold mixin prob: 0.5
Scheduled sampling method: parallel
Scheduled sampling number passes: 1
Scheduled sampling warmup schedule: exp
Scheduled sampling warmup steps: 50000
Self attention type: dot product
Split targets max chunks: 100
Standard server protocol: grpc
Symbol modality number shards: 16
Training steps: 250000
Vocabulary divisor: 1
Weight data type: float32
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