
Critical Vehicle Detection for Intelligent Transportation Systems

Erkut Akdag∗, Egor Bondarev and Peter H. N. De With
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5612AZ, The Netherlands

Keywords: Vehicle Detection, Vehicle Classification, Vision in Transformer, CNN, Intelligent Transportation.

Abstract: An intelligent transportation system (ITS) is one of the core elements of smart cities, enhancing public safety
and relieving traffic congestion. Detection and classification of critical vehicles, such as police cars and
ambulances, passing through roadways form crucial use cases for ITS. This paper proposes a solution for
detecting and classifying safety-critical vehicles on urban roadways using deep learning models. At present,
a large-scale dataset for critical vehicles is not publicly available. The appearance scarcity of emergency
vehicles and different coloring standards in various countries are significant challenges. To cope with the
mentioned drawbacks and to address the unique requirements of our smart city project, we first generate a
large-scale critical vehicle dataset, combining images retrieved from various sources with the support of the
YOLO vehicle detection model. The classes of the generated dataset are: fire truck, police car, ambulance,
military police car, dangerous truck, and standard vehicle. Second, we compare the performance of the Vision
in Transformer (ViT) network against the traditional convolutional neural networks (CNNs) for the task of
critical vehicle classification. Experimental results on our dataset reveal that the ViT-based solution reaches
an average accuracy and recall of 99.39% and 99.34%, respectively.

1 INTRODUCTION

Surveillance cameras are increasingly adopted to ob-
serve traffic flow in public places to improve public
safety and reduce traffic congestion. In the event of
high travel demand, or a dangerous traffic incident,
traffic congestion is likely to happen, especially in ur-
ban places. For instance, at large intersections or in
cities with a high traffic density, accidents arise fre-
quently. In case of an accident, a rapid medical trans-
fer of the affected people may be necessary, where
even a short delay can be lethal. Considerable delay
in the first response emergency services can occur due
to various reasons. For example, emergency vehicles,
such as ambulances, fire trucks, and police cars, get
occasionally trapped in traffic jams, thereby increas-
ing overall response time. In addition to the accidents,
trucks with dangerous cargo in city centers threaten
traffic flow and public safety. To address these prob-
lems, intelligent transportation systems (ITS) propose
beneficial solutions via automated traffic regulation
and notification systems. Detection and tracking of
critical vehicles (emergency vehicles and trucks with
dangerous loads) become an essential part of such a
solution.
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Artificial neural networks (ANN), support vector
machines (SVM), and deep learning studies mainly
concentrate on regular vehicle classes, such as bus,
auto, cyclist, and van. At present, there is limited re-
search work on critical vehicle detection. The existing
studies focus on subsets of emergency vehicles, i.e.
excluding trucks carrying dangerous goods or mili-
tary police cars. However, inclusion of these classes
in the critical vehicle landscape is crucial. Critical ve-
hicles in this paper are a combination of emergency
vehicles (ambulances, fire trucks, police cars, and
military police cars) and trucks with dangerous goods,
named “dangerous trucks“ throughout the paper.

This study aims at developing models for the crit-
ical vehicle detection problem, based on state-of-the-
art networks (e.g., YOLOv5, ViT, EfficientNet, and
ResNet) as a first step. To this end, we construct a
large-scale dataset by the YOLOv5 detection model
and label correction. As a second step, we gener-
ate critical vehicle models by applying three differ-
ent classification architectures: EfficientNet, ResNet-
50, and ViT, and evaluate the experimental results.
All models are publicly available (Wightman, 2019;
Glenn Jocher, 2021).

This paper is organized as follows. Section 2 pro-
vides an overview of the related work, including vehi-
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cle detection and classification for different use cases.
Section 3 explains the dataset creation and model gen-
eration approaches. The experimental results are eval-
uated in Section 4, while section 5 concludes the pa-
per.

2 RELATED WORK

This section presents a literature overview on the ve-
hicle detection and classification problem. First, the
existing deep learning models are introduced for the
object detection task. Second, the studies targeting
the detection and classification of regular vehicles are
discussed. Last, an overview is provided of existing
studies on the detection and classification of emer-
gency vehicles.

2.1 Deep Learning Methods for Object
Detection

Deep neural network solutions are widely exploited
in visual recognition tasks such as detection and clas-
sification. The power of deep neural networks comes
from the hierarchical representation of the features,
which can be developed during the model training
phase. CNNs are able to learn and extract rich and
meaningful features that can be utilized for various
visual recognition tasks, such as classification, image
segmentation, and object detection.

In the early studies on object detection, the
region-based convolutional neural network (RCNN)
model (Girshick et al., 2014) was proposed. The per-
formance of the RCNN object detector can be im-
proved significantly by applying heavier and deeper
CNN models at the feature extraction stage, such
as the VGG network (Simonyan and Zisserman,
2014) and the residual network called ResNet-50 (He
et al., 2016), containing 50-layers. After the emer-
gence of the YOLO architecture, urban traffic solu-
tions associated with object detection have switched
to YOLO models, since the inference time of the
YOLOv3 model is faster than the RCNN model. The
work in (Redmon and Farhadi, 2018) concludes that
YOLOv3 is one of the fastest models for object de-
tection, where it can process 45 images per sec-
ond. Therefore, in real-time applications, YOLO or
the single-shot detector (SSD) (Liu et al., 2016) ap-
proaches are predominantly considered. In the litera-
ture, YOLOv3 (Redmon and Farhadi, 2018) is exten-
sively practiced for object detection in surveillance,
including the vehicle detection problem.

2.2 Detection of Regular Vehicle Types

The detection and classification of regular vehicles,
such as cars, buses, and trucks, are mainly studied by
performing experiments on different regular vehicle
datasets.

In the study by (Arinaldi et al., 2018), the au-
thors implement two different methods for the de-
tection and classification of regular vehicles. The
first method is a combination of Mixture of Gaussian
(MoG) (Reynolds, 2009) and support vector machine
(SVM) (Suykens and Vandewalle, 1999), while the
second one is FasterRCNN (Ren et al., 2015). Faster-
RCNN outperforms MoG in vehicle detection, and it
further surpasses SVM for the task of classifying the
vehicle types. Authors report results on the Indone-
sian Toll Road dataset (Arinaldi et al., 2018), and
the public MIT traffic dataset (Wang et al., 2008),
designed to perform traffic scene analysis and study
crowded scenes. In (Suhao et al., 2018), authors
concentrate on regular vehicle classes such as car,
minibus, and SUV, not covering any critical vehicles.
The FasterRCNN (Ren et al., 2015) architecture is ap-
plied to perform the vehicle detection and classifica-
tion task. The VGG16 model is practiced to detect ve-
hicle types in various traffic scenarios. The MIT (Dol-
lar et al., 2011) and Caltech car datasets (Kobayashi
et al., 2007) are utilized for model generation. In the
work by (Shekade et al., 2020), the authors deploy a
dataset with regular vehicles, which involves eleven
types of vehicles including bicycle, bus, car, truck,
and motorbike. In that research, the YOLOv3 ap-
proach is proposed for the vehicle detection task. In
the experiments, the total variety of vehicle motion at
a specific time is examined with the support of count-
ing and classifying vehicles. Authors conduct their
experiments on the MIO vision traffic dataset (Jung
et al., 2017).

2.3 Detection of Emergency Vehicle
Types

The task of emergency vehicle detection and classifi-
cation imposes two specific challenges. Emergency
vehicle datasets are scarce compared to the regular
vehicle datasets. It is challenging to gather data for
the emergency vehicle classes due to their rare occur-
rence on the public roads. Another challenge is that
the visual appearances of emergency vehicles vary be-
tween countries, for instance, the stripes or colors can
be different in each country.

One of the studies focusing on emergency vehi-
cles is performed by (Roy and Rahman, 2019). The
authors propose a system to detect emergency vehi-

VEHITS 2022 - 8th International Conference on Vehicle Technology and Intelligent Transport Systems

166



Resnet-50

ViT-base

EfficientNet

 

Dataset M
odel G

eneration

Standard cars 
Fire trucks 

Ambulances 
Dangerous trucks 

Police cars 
Military police cars

Stanford Cars Dataset

Object Detection 

Object Detection

Flickr Dataset

D
at

as
et

 C
re

at
io

n YOLOv5

YOLOv5

M
odel Evaluation

Figure 1: Proposed approach for critical vehicle detection, consisting of the vehicle sample generation from CCTV cameras,
YouTube videos, concatenation with Flickr and Stanford Cars dataset, followed by model generation and evaluation with
ResNet-50, ViT-base and EfficientNet models.

cles in traffic congestion, which helps the control sys-
tem to handle traffic flow and prioritize emergency
vehicles. In this study, vehicles are first detected
from CCTV footage using a deep convolutional net-
work, and they are classified afterwards. YOLOv3
is selected for the vehicle detection task to catego-
rize truck, bus, and car classes, as provided in the
COCO dataset (Lin et al., 2014). These classes are
passed through the VGG-16 classifier to identify the
vehicle type to be emergency or not. Authors con-
duct their experiments on the Stanford University cars
dataset (Szegedy et al., 2015) for regular vehicles
and the images collected from the internet for emer-
gency vehicles. Another study by (Carvalho Bar-
bosa et al., 2020) concentrates on the detection and
classification of a few emergency vehicles, such as
ambulances, fire trucks, and police cars, not includ-
ing military police cars and dangerous trucks. The
authors propose a model named priority vehicle im-
age detection network (PVIDNet) based on YOLOv3
by applying a soft-root-sign (SRS) activation func-
tion to decrease the execution time of the proposed
model. A database of Brazilian vehicle images is de-
ployed (Carvalho Barbosa et al., 2020) for testing.

As can be derived, previous studies mainly focus
on the detection and classification of regular vehicles,
and only a few works focus on emergency vehicles. In
existing research on emergency vehicles, datasets are
limited, and multi-label classification is rarely stud-
ied. We aim to generate a large-scale critical vehicle
dataset to advance further in this problem domain. A
detailed explanation of our dataset is given in Sec-
tion 3.

3 APPROACH

Figure 1 illustrates the proposed critical vehicle de-
tection approach in two steps, namely the dataset cre-
ation and model generation.

3.1 Dataset Creation

For model development and testing, the gener-
ated large-scale dataset includes several open-source
datasets and images retrieved from CCTV recordings.

First, we adopt the YOLOv5 model instead of
YOLOv3 used in previous studies to enhance reliable
and robust object detection. Significant differences
between YOLOv5 and its prior releases are mosaic
data augmentation and auto-learning bounding-box
anchors. Likewise, YOLOv5 is nearly 90% lighter
than YOLOv4 (Bochkovskiy et al., 2020) in terms of
computational cost, while maintaining the detection
accuracy and still providing the competitive results.
Apart from that, YOLOv5 is one of the fastest deep
learning models according to EfficientDet (Tan et al.,
2020). Experiments on a GTX 1080 GPU show that
YOLOv5 achieves an inference time average of 106
frames/second.

Our dataset includes emergency vehicles and dan-
gerous trucks having a rounded cylindrical shape and
transporting dangerous goods, such as chemicals and
gasoline. A subset of the Flickr dataset makes a
significant contribution to all classes of the created
dataset. Moreover, we have searched among vari-
ous YouTube traffic videos for obtaining Dutch emer-
gency vehicle classes, such as ambulance, police, and
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Table 1: Sample volumes for each class in the dataset generated from the Flickr, Stanford cars, YouTube, and CCTV sources.

Data sources Generated data

Class name Flickr Stanford Cars YouTube CCTV Total Train Test

Standard cars 1,343 5,000 - 102 6,445 5,156 1,289
Fire trucks 1,087 - - - 1,087 870 217
Ambulances 200 - 166 70 431 345 86
Police cars 621 - 85 30 736 589 147
Military police cars 363 - 117 - 480 384 96
Dangerous trucks 1,245 - - - 1,245 996 249

Standard cars Fire trucks Ambulances Dangerous trucks Police cars Military police cars

Figure 2: Samples of different vehicle classes in the generated dataset from left to right: standard cars, fire trucks, ambulances,
dangerous trucks, police cars, and military police cars.

military police. We apply the YOLOv5 model on
the selected videos to increase the number of sam-
ples for the specified emergency classes in our gener-
ated dataset. To extend the scale of the standard car
class, we have combined the publicly available Stan-
ford University cars dataset with our dataset. Besides,
we have carefully examined open-source CCTV cam-
eras at different locations of the Netherlands to re-
trieve as many critical vehicle images as possible.
The above-mentioned CCTV video recordings pro-
vide further samples of standard cars, ambulances,
and police cars through applying the YOLOv5 model
for extraction and selection of car instances. The
dataset is completed by applying vehicle filtering and
annotation processes on the generated image samples
for all classes.

Finally, the generated dataset includes 10,424 im-
ages classified into 6 categories: standard cars, fire
trucks, ambulances, police cars, military police cars,
and dangerous trucks. The sample volumes of each
class are detailed and listed in Table 1. Additionally,
various samples of different vehicle classes are illus-

trated in Figure 2. We have split the generated dataset
into 80% for training and 20% for testing purposes.
Furthermore, standard data augmentation techniques
are applied to enlarge the available dataset and im-
prove our model.

3.2 Model Generation

Having the large-scale dataset of critical vehicles
available, we experiment with three architectures
(ViT, EfficientNet, and ResNet) to design an ac-
curate multi-class critical vehicle detection model.
The transformer architecture has become the de-
facto standard for natural language processing ap-
plications. It outperforms other architectures, such
as LSTMs (Greff et al., 2016) and gated recurrent
units (GRUs) (Dey and Salem, 2017). As opposed to
CNNs, a transformer can be applied to the sequence
of image patches in the image classification tasks. In
the ViT model, images are split into patches like to-
kens in an NLP application, and sequences of lin-
ear embeddings provide the input to the transformer
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Table 2: Comparison of image classification performance metrics recall, accuracy, F1 score for six vehicle classes on the
EfficientNet, ViT-base, and ResNet-50 models and the metric averages.

EfficientNet ViT-base ResNet-50

Class name Recall Accuracy F1 Score Recall Accuracy F1 Score Recall Accuracy F1 Score

Standard cars 100.00 99.92 99.96 99.92 99.84 99.88 99.76 99.92 99.84
Fire trucks 100.00 99.54 99.77 100.00 100.00 100.00 100.00 99.54 99.77
Ambulances 98.83 100.00 99.41 100.00 100.00 100.00 98.83 96.59 97.70
Police cars 95.91 97.24 96.57 98.63 98.63 98.63 98.63 96.66 97.64
Military police cars 94.79 94.79 94.79 97.91 97.91 97.91 94.79 97.84 96.29
Dangerous trucks 99.59 99.20 99.39 99.59 100.00 99.79 99.59 100.00 99.79

Average 98.18 98.44 98.31 99.34 99.39 99.35 98.60 98.27 98.36

EfficientNet ViT-base ResNet-50

Figure 3: Confusion matrices combining the ground truth and predicted labels for each class using the EfficientNet, ViT-base
and ResNet-50 models.

encoder. Positional information is also retained by
adding the position embeddings, which are learned
without hard-coded vector positions. Lastly, the se-
quences of the patch and positional embedding vec-
tors are supplied to the input stage of the transformer
encoder. There is also a special token at the start of
the ViT model, similar to bidirectional encoder rep-
resentations from transformers (BERT) (Devlin et al.,
2018). We practice the VITbase-21k model trained on
Imagenet-21k. Furthermore, we experiment with the
EfficientNet and ResNet-50 models, which are two
state-of-the-art CNN models commonly used for the
classification.

We train the models by hyperparameter tuning,
where throughout our experiments, we have used an
initial learning rate of 0.0002, reduced by one-tenth
at every 3 epochs. All models have been trained
for a total of 12 epochs using the stochastic gradi-
ent descent (SGD) algorithm and the PyTorch frame-
work (Paszke et al., 2019).

4 RESULTS AND EVALUATION

To evaluate the performance of the three models, we
deploy the following common metrics: recall, accu-
racy, and F1 score. The F1 score is an appropriate
metric for a class-imbalanced dataset similar to ours,
since it is the harmonic mean of the recall and preci-
sion. It presents the balance between how many ex-
amples of actual vehicles are classified correctly and
how likely the classification is correct. A commonly
used strategy for performing experimental tests is to
combine pre-training with fine-tuning to better lever-
age from the limited amount of vehicle images and
improve the classification performance.

The results are summarized in Table 2. In this
table, we present six rows for each of the vehicle
classes. Three primary columns (EfficientNet, ViT-
base, and ResNet-50) show the performance of each
corresponding classification model, indicating recall,
accuracy, and F1 score metrics. From the experimen-
tal results shown in Table 2, the average accuracy of
the ViT model can reach 99.39%, while EfficientNet
and ResNet-50 reach 98.44% and 98.27%, respec-
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tively. Although the CNN models have better results
in a few class types, the ViT model achieves the best
experimental results for all metrics on average. Ex-
perimental results on the ambulance and fire truck
classes are outstanding, since their color and stripes
are salient and distinguishable. Likewise, the met-
rics on the standard car class are high, since regular
cars do not have specific striping or coloring patterns.
However, these results are slightly lower for military
police and police cars. In terms of the F1 score metric,
military police cars achieve the lowest total score with
94.79% in EfficientNet and 96.29% in ResNet-50.
The class of police cars reveals the second-lowest ac-
curacy score with 97.24% in EfficientNet and 96.66%
in ResNet-50. This is mainly because the shapes and
colors of both classes are almost identical from the
front view. The only difference in appearance is in
the back view of the car, where military police cars
have the grey or blue color and police cars have a
white color. The dominant performance of the ViT-
base model can be observed for all classes, especially
improving the classification performance for the mil-
itary police and police cars.

Moreover, the confusion matrices for each classi-
fication model are presented in Figure 3. The vertical
axis shows the actual labels of corresponding vehicles
classes, while the horizontal axis shows the correctly
predicted number of vehicles for each class. The con-
fusion matrices shown in Figure 3 indicate the source
of the problem with police and military police cars.
The ViT model accomplishes this difficult task in con-
trast to other models.

Furthermore, we have compared the latency
for each classification model. The latency is a
processing-time measurement to determine the per-
formance of various models for a specific applica-
tion, where the latency is defined as the time re-
quired for processing one image. The ViT model
takes 0.017 seconds to classify one image, while Effi-
cientNet and ResNet-50 consume 0.015 seconds and
0.013 seconds, respectively. While the ViT model
performs better than other models for the critical ve-
hicle classification task, it reaches a slightly higher
latency, which is acceptable.

5 CONCLUSION

This work studies the critical vehicle detection prob-
lem in traffic for safety reasons, which is rarely ad-
dressed in the literature. First, we have carefully gath-
ered all vehicle classes from traffic surveillance data
and various datasets, to generate a large-scale crit-
ical vehicle database. The created dataset includes

10,424 images classified into 6 categories: standard
cars, fire trucks, ambulances, police cars, military po-
lice cars, and dangerous trucks. Second, we have
employed the ViT and the EfficientNet and ResNet-
50 CNN models to experiment and identify the most
suitable model for the task. We have chosen the ViT
model because it achieves excellent accuracy for each
critical vehicle class. Detailed experimental results
show that the ViT-based solution reaches an average
accuracy higher than 0.99. Furthermore, experimental
latency measurements indicate that all three models
have similar values. All the trained models used for
the proposed approach are publicly available (Wight-
man, 2019), (Glenn Jocher, 2021).
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