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Abstract: Parsing is a principal step of processing languages. The nature of the language tends to determine the chal-
lenges that parsers must overcome. For example, parsing procedural or object-oriented languages often require
approaches that may be specific to the targeted paradigm. For this reason, the properties of the given language
may also affect the capabilities of the parser. The Dynamic Multi-Layer Algebra (DMLA) is a multi-layer
metamodeling approach that aims to improve upon the flexibility of traditional meta-modeling methods. In
addition, DMLA ensures rigorous validation of domain rules. In DMLA, domain models and validation logic
are described in D#, a domain specific language designed specifically for this purpose. Scripts written in D#
are parsed and an inner, 4-tuple representation is built. However, due to the multi-layer background and the
completely modeled language, parsing DMLA models raises non-conventional difficulties that must be over-
come. Reaching a satisfying balance between the expressive power and the concisity of the language is also
desirable. In this paper, we present the parsing process of DMLA, its peculiarities and the solutions we have
employed to deal with them.

1 INTRODUCTION

The original motivation behind multi-level modeling
was to create a modeling paradigm (i) to reduce acci-
dental complexity (Atkinson and Kühne, 2008), and
(ii) to improve the general comprehension of mod-
els. In this context, accidental complexity means that
model elements are created solely for the sake of ex-
pressing the multi-level nature of the target domain
tasks, rather than capturing some aspect of the do-
main. For this purpose, multi-level modeling has in-
troduced the concept of unlimited instantiation levels
and various other notions that are based on the unlim-
ited nature of levels. Approaches that acknowledge
the existence of explicit modeling levels are often re-
ferred to as level-adjuvant. Similar yet highly differ-
ent approaches have also emerged in the form of level-
blind approaches, which do not acknowledge explicit
instantiation levels, although they can still implicitly
implement the concept of levels.

Dynamic Multi-Layer Algebra (DMLA) is a level-
blind, multi-layer modeling approach based on the
Abstract State Machines (ASM) formalism (Börger
and Stärk, 2003). DMLA offers a highly flexible and
customizable modeling structure capable of dealing
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with design-time and run-time aspects of modeling.
(Mezei et al., 2018; Somogyi et al., 2019)

To describe domain models, DMLA uses a do-
main specific language (DSL) (Fowler, 2010) called
D#. A crucial step of constructing DMLA models is
to parse scripts written in D# and to create a repre-
sentation that conforms to the theoretical ASM for-
malisms of DMLA. However, due to the nature of
the ASM formalism and DMLA itself, parsing and
constructing models has some peculiarities and non-
conventional difficulties that must be dealt with. In
particular, without making the parser aware of spe-
cific cases in D# scripts, the language becomes highly
complex and uncomfortable for use in practice. This
paper reports on these difficulties and the solutions we
have employed to deal with them.

The paper is structured as follows. Section 2 high-
lights the basic concepts of multi-level modeling and
the way two well-known multi-level modeling tools
define models in practice. Section 3 introduces the
main concepts of DMLA and how models are de-
scribed. Section 4 presents how operations are used
to achieve dynamic behaviour in DMLA and the rela-
tions between static data and dynamic behaviour. Sec-
tion 5 presents the difficulties and different aspects of
constructing DMLA models. Section 6 concludes the
paper and highlights some future work.
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2 RELATED WORK

Multi-level modeling is a modeling approach that
aims to improve upon the shortcomings of traditional
modeling approaches, such as OMG’s Meta Object
Facility (MOF) (MOF, 2005). The key idea behind
multi-level modeling is deep instantiation (Atkinson
and Kühne, 2001). As opposed to classic approaches
with a fixed number of levels, in multi-level modeling,
instantiation may concern an arbitrary amount of lev-
els. Instantiation chains are formed, until a concrete
model element is created. Consequently, a model el-
ement may be the meta-type of another element on a
lower level and the instance of an element at a higher
level. For this reason, model elements may be con-
sidered as both classes and objects at the same time
and are often referred to as clabjects (Atkinson and
Kühne, 2000).

MELANEE (Lange and Atkinson, 2018) is a do-
main specific language workbench that supports vi-
sualizations of multi-level model editing. It achieves
multi-level modeling by extending the traditional 2-
level modeling approach of Eclipse Ecore. The visu-
alizations can also be context aware, e.g. the back-
ground color of an entity can be dynamically deter-
mined. MELANEE uses DeepOCL to query model
elements as well as impose and execute constraints
upon them. Moreover, it also introduces DeepATL,
a multi-level extension of the original ATL (Atlas
Transformation Language). This can be used to de-
clare and execute model transformations on existing
multi-level models.

XModeler (Clark and Frank, 2020) is a multi-
level modeling framework. Similarly to MELANEE,
it provides a graphical editor to create models in prac-
tice. However, XModeler also supplies FMMLX ,
which is a multi-level modelling and execution lan-
guage that extends Eclipse XCore. Thus, this lan-
guage can be used to define multi-level models tex-
tually.

When compared to these tools, DMLA supports
text-based creation of models only. In MELANEE,
models are defined by using various graphical for-
mats. In XModeler, a graphical editor and a textual
language can also be used to define models. Thus,
the language FMMLX also has to be parsed and mod-
els must be created based upon it. MELANEE and
XModeler use DeepOCL and XOCL, respectively,
that are textual, but are used only to declare and ex-
ecute constraints upon the model or query the model,
not to define the model itself. Similarly, although
MELANEE uses DeepATL, it is used only to dynam-
ically modify an existing model, not to define it. In
contrast, the scripting language of DMLA is com-

pletely modeled and dynamic. This way, more rigor-
ous and flexible validation of models may be achieved
when compared to other multi-level tools. The down-
side of it is that this leads to several challenges that
must be dealt with, which do not arise in other tools.

3 BACKGROUND

The Dynamic Multi-Layer Algebra (DMLA) is a
multi-layer modeling framework inspired by the core
ideas of multi-level modeling. DMLA consists of two
essential basic parts: the Core and the Bootstrap. The
Core defines the basic modeling structure describing
the model elements (nodes and edges), along with
low-level functions to access and modify them (Mezei
et al., 2019). In DMLA, the model elements are called
entities. The theoretical formalism of entities is de-
fined in the Core. Every entity is represented as 4-
tuples containing various information about the ele-
ment: (i) the ID of the entity, (ii) a reference to the
meta of the given entity, (iii) values assigned to the
element (reference to another entity, or a primitive
string, number or bool literal), and (iv) attributes as-
signed to the element. Entities may contain other en-
tities, in this case, the attributes hold the references to
the contained entities.

The Bootstrap (Mezei et al., 2019) is a set of enti-
ties defining basic modeling facilities. The Bootstrap
makes it possible to use DMLA to actually create do-
main models in practice. It defines not only the ba-
sic entities, but also the basics of validation and thus
the semantics of refinement itself. Consequently, it is
possible to create different Bootstraps following dif-
ferent modeling paradigms. It is also the Bootstrap
that defines basic modeling entities that are used to
create domain models.

In DMLA, entities are similar to object-oriented
classes. An entity has one explicit, direct correspond-
ing meta and may have several indirect metas (the
meta of its meta, etc). Marking an entity as its meta
means a refinement relationship between the entities
that has several peculiarities. For example, suppose
one would like to model bicycles. In DMLA, we
start at the highest abstraction level and gradually re-
fine the concepts until a concrete product is achieved.
Thus, at first, we would define an entity NCycle, that
contains a frame and any number of wheels represent-
ing all kinds of bicycle variants (e.g. unicycles, tan-
dem bikes, etc.). Next, a Bicycle would refine NCycle
by restricting the number of wheels to exactly two. Fi-
nally, a MyFavoriteBicycle would refine Bicycle and
assign a concrete frame (e.g. a mountain bike frame)
and two concrete wheels as its parts.
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Whenever a model entity claims another entity
as its meta, the framework automatically validates if
there is indeed a valid refinement between the two.
Both the main validation logic and the constraints
used by the validation are modeled in the Bootstrap,
not hard-coded in the framework. Since the mod-
eled validation logic defines DMLA’s inherent refine-
ment semantics, the refinement itself is Bootstrap-
dependent.

Entities may contain attributes referred to as
slots, similarly to classes having properties in object-
oriented programming. Slots are basic value holders,
with customizable life-cycles, e.g. they can be re-
fined, or omitted. Refining a slot means restricting
its validation rules (e.g. refining its type), assigning a
concrete value to the slot, or dividing it into multiple
slots.

Both slots and entities may have additional con-
straints on them. A constraint is a restriction imposed
upon the element and thus it helps in restricting the
semantics of the given slot, or entity. Constraints are
checked automatically during model validation. The
most commonly used constraints are cardinality and
type constraints.

As mentioned before, in DMLA, the Bootstrap de-
fines the basic modeling elements that are used to cre-
ate domain models. The entity ComplexEntity is the
implicit base of all future entities and its slot Com-
plexEntity.Fields is the implicit base of all future slots.
We refer to domain models as the actual models that
one wishes to create using DMLA. For example, the
former example of bicycles is a domain model, where
the entity NCycle refines ComplexEntity.

4 DYNAMIC BEHAVIOUR

In DMLA, operations are used for describing dy-
namic behavior and for validation logic. Even the
semantics of validation and thus the constraints are
defined as operations. Operation logic is composed
from atomic programming constructs (e.g. condi-
tional branch, variable declaration) just like in tradi-
tional programming languages. However, in DMLA,
all of these constructs are modeled entities (e.g. we
have an entity ”IF”), and thus the abstract syntax tree
(AST) built from operation definitions can be repre-
sented as a tree of entities. When the operation is
executed, this tree built from entities is eventually in-
terpreted and executed by a virtual machine. From
this point of view, operations describing the dynamic
behavior and semantics can also be handled as mod-
eling structure. For example, operation definitions are
translated into tuple-representations similarly to other

entities. Thus, the border between static data and dy-
namic behavior is particularly thin.

Although, entities may have operations similarly
to the methods of object-oriented classes, the cou-
pling between operations and entities are not that
strong: operations are handled as global functions ref-
erenced from entities. When an operation is added
to an entity, a wrapper slot is created and the opera-
tion definition is contained by this slot. Wrapping op-
erations in slots separates its life-cycle management
from the actual operation definition. This is impor-
tant due to the shared usage of operations in entities.
The wrapper slot makes it possible to add constraints
on the operations and thus makes it possible to refine
operations during refinement without affecting other
entities using the operation definition. In some ways,
operation refinement is similar to overriding a method
in object-oriented languages. The fundamental dif-
ference is that in DMLA, the rules of the type sys-
tem are parts of the rules of valid refinement and thus
they are also defined in the Bootstrap. Essentially,
whenever an operation refinement is to be validated,
the virtual machine executes the appropriate valida-
tion operation defined in the Bootstrap. Therefore,
the semantics of valid operation refinement is defined
in the Bootstrap, not hard-coded in the framework.
Refinement may follow the same semantics as over-
riding does in object-oriented languages, or it may be
entirely different. For example, beyond refining the
types of the parameters, it is absolutely valid to create
a Bootstrap that allows the addition of parameters to
an operation and thus changing its signature from an
object-oriented point of view.

It should also be noted that, since operations are
wrapped in hidden slots by the parser, refining an
operation in fact means refining the wrapper slot as
well. This is the second reason why the operation
refinement of DMLA may be entirely different from
that of object-oriented languages. As the connec-
tion between the original and the refining operation
is not based on a naming convention, an operation
may override another operation despite having a dif-
ferent name. Moreover, an operation may even be
split into multiple operations. Taking all this into ac-
count implies that parsing D# has to deal with non-
conventional difficulties that do not arise in traditional
programming languages.

5 PARSING DMLA MODELS

Using the ASM formalism indirectly to create and
manipulate DMLA entities would be very trouble-
some in practice. The reason for this is that it is a
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low-level mathematical formalism that is not suitable
for practical use indirectly. Instead, DMLA uses a
high-level domain specific language called D# to de-
scribe models. It is essentially a high-level abstrac-
tion over the ASM formalism, but the virtual ma-
chine of DMLA relies on the tuple structure, thus the
scripts need to be transformed to the tuple format. The
parsing process of DMLA is illustrated in Figure 1.
In order to create DMLA models, scripts written in
the D# language are parsed and various artifacts are
created. Firstly, the 4-tuple representations are con-
structed. Secondly, various auxiliary data-structures
are created. Thirdly, special AST-s are built that are
later used as the base for interpreting the model on a
virtual machine. In terms of the concrete technology
stack, the parser and the virtual machine are imple-
mented in the Kotlin language and ecosystem and D#
itself is defined using ANTLR (Parr, 2013).

Figure 1: The parsing process of DMLA.

5.1 Defining Domain Models

Listing 1 illustrates domain models using the pre-
viously mentioned bicycle example. NCycle refines
ComplexEntity, the base for all domain specific enti-
ties. NCycle has a slot for its wheels and a slot for its
frame. Both have a type constraint and a cardinality
constraint defined on them stating that every NCycle
must have at least one wheel of type Wheel and ex-
actly one frame of type Frame. UniCycle further re-
fines NCycle by tightening the cardinality constraint
of the wheels slot to having exactly 1 wheel. Simi-
larly Bicycle refines NCycle to have exactly 2 wheels.
It also defines an operation CheckFrame which takes
a Frame as parameter and does something with it.
Finally, RoadBicycle refines Bicycle by dividing the
parameter of the CheckFrame operation into two in-
stances of Frame.

As seen in this example, adding every necessary
information to the script leads to an overly compli-
cated code that is highly uncomfortable both to write
and read. However, this could be alleviated by adding

1 entity ComplexEntity: Base
2 {
3 @Type: Base
4 @Cardinality: 0..*
5 slot Fields;
6 }
7 entity NCycle: ComplexEntity {
8 @Type: Wheel
9 @Cardinality: 1..*

10 slot Wheels:
11 ComplexEntity.Fields;
12
13 @Type: Frame
14 @Cardinality: 1..1
15 slot Frame:
16 ComplexEntity.Fields;
17 }
18 entity UniCycle: NCycle {
19 @Type: Wheel
20 @Cardinality: 1..1
21 slot Wheels: NCycle.Wheels;
22
23 @Type: Frame
24 @Cardinality: 1..1
25 slot Frame:
26 ComplexEntity.Fields;
27 }
28 entity Bicycle: NCycle {
29 @Type: Wheel
30 @Cardinality: 2..2
31 slot Wheels: NCycle.Wheels;
32
33 @Type: Frame
34 @Cardinality: 1..1
35 slot Frame:
36 ComplexEntity.Fields;
37
38 @Type: OperationDefinition
39 @Cardinality: 1..1
40 slot CheckFrameWrapperSlot
41 : Base.Operations =
42 operation void CheckFrame
43 (Frame frame) {...};
44 }
45 entity RoadBicycle: Bicycle {
46 @Type: Wheel
47 @Cardinality: 2..2
48 slot Wheels: NCycle.Wheels;
49
50 @Type: Frame
51 @Cardinality: 1..1
52 slot Frame:
53 ComplexEntity.Fields;
54
55 @Type: OperationDefinition
56 @Cardinality: 1..1
57 slot CheckFrameWrapperSlot
58 : Bicycle.CheckFrameWrapperSlot =
59 operation void CheckFrame
60 (CarbonFrame lowerHalf ,
61 GoldFrame upperHalf) {...}
62 }

Listing 1: An example domain model defined in D#.

extra functionality into the parser. By handling spe-
cific parts of the code specially, the concisity of the
language could be improved at the cost of its ex-
pressive power. The loss of expressive power has
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to be compensated by making the parser collect vari-
ous information about the model automatically, which
makes parsing slightly slower as well. Thus, a trade-
off has to be made between an easy-to-use language
and a simple, efficient parser.

5.2 Slots

When an entity refines another, for each slot in the
meta, it must declare whether the slot is cloned (re-
used without any modification), or refined. Every
other slot not explicitly declared is considered omit-
ted. Notice that much of the complexity seen in
the previous example stems from requiring to declare
cloned slots in all entities. Let us reverse this thought
process: every slot is considered cloned unless they
are marked explicitly as omitted and a slot should
only be declared if they are actually refined in some
way. This way, duplicating the declaration of the slots
is entirely avoidable. In the example, lines 23-26, 33-
36 and 50-53 could be removed. Therefore, in D#,
collecting all slots in the meta entities and cloning
them in the instance is the responsibility of the parser.
Moreover, when refining a slot, declaring its meta is
also redundant. This information can be found auto-
matically by the parser based on a naming conven-
tion. For example, in lines 21 and 31 declaring NCy-
cle.Wheels as the meta slot is no longer necessary.
Naturally, meta-slots are to be declared if the name
of the slot is changed during the refinement.

5.2.1 Operations

As mentioned before, entities may define operations,
which are wrapped in slots. Operations must always
be of type OperationDefinition, which is a special en-
tity in the Bootstrap reserved specifically for opera-
tions. The cardinality of an operation is always 1..1
and the meta of an operation wrapper slot should be
Base.Operations, unless it overrides an existing op-
eration. Base.Operations is the base of all operation
wrapper slots. Finally, the operation definition is set
as the value of its wrapper slot. For every opera-
tion defining all this information manually is not ef-
ficient: all this information can be automatically gen-
erated when an operation definition is encountered.
The parser can automatically handle this, thus wrap-
per slots are not needed to be handled manually. In
the example, lines 38-41 and 55-58 can be avoided.

5.2.2 Overriding Operations

When an operation is refined, the meta of the re-
fining operation’s wrapper slot becomes the wrap-
per slot of the operation that was refined. In

the previous example, at line 64, the meta
of RoadBicycle.CheckFrameWrapperSlot is Bicy-
cle.CheckFrameWrapperSlot. However, as it is not
needed to manually declare the operation wrapper
slots, it is no longer possible to express in the code
exactly which operation one would like to refine. For
this reason, we have introduced the keyword over-
ride. Similarly to slots, having to explicitly declare
the name of the overriden operation would be redun-
dant (if it follows the default naming convention).
Thus, it is the parser that automatically finds the orig-
inal operation to be overriden.

5.2.3 Summary

The steps presented in this section can significantly
reduce redundancy in the language. Listing 2 illus-
trates the code we obtain after applying every step.
Note that the lines of code needed to define the same
model have decreased from 62 to 35, which is roughly
a 40% reduction. According to our preliminary test,
in terms of larger and more complicated models, this
reduction would be even more spectacular.
1 entity ComplexEntity: Base
2 {
3 @Type: Base
4 @Cardinality: 0..*
5 slot Fields;
6 }
7 entity NCycle: ComplexEntity {
8 @Type: Wheel
9 @Cardinality: 1..*

10 slot Wheels:
11 ComplexEntity.Fields;
12
13 @Type: Frame
14 @Cardinality: 1..1
15 slot Frame:ComplexEntity.Fields;
16 }
17 entity UniCycle: NCycle {
18 @Cardinality: 1..1
19 slot Wheels;
20 }
21 entity Bicycle: NCycle {
22 @Cardinality: 2..2
23 slot Wheels;
24
25 operation void CheckFrame
26 (Frame frame) {...}
27 }
28 entity RoadBicycle: Bicycle {
29 override operation
30 void CheckFrame
31 (CarbonFrame lowerHalf ,
32 GoldFrame upperHalf) {...}
33 }

Listing 2: The reduced example model defined in D#.
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6 CONCLUSION

Dynamic Multi-Layer Algebra (DMLA) is a multi-
layer modeling approach aiming at providing an ef-
ficient and flexible solution for multi-level modeling.
In this paper, we have briefly introduced D#, a domain
specific language that we use for defining DMLA do-
main models. We have also presented the peculiari-
ties and the non-conventional difficulties of the pars-
ing process of DMLA. One of the main challenges
was making a trade-off between the concisity and ex-
pressive power of the scripting language. By omitting
redundant information, the language becomes much
easier and more comfortable to use. In turn, this raises
the need for the parser to be able to handle numer-
ous problematic cases automatically. When parsing
slots, slots defined in the meta entities must be auto-
matically cloned by the parser. In some cases, auto-
matically finding a slot’s appropriate meta slot is also
required. In the case of operations, a container slot
should automatically be generated by the parser and
the operation should be wrapped in it. Overriding an
operation in DMLA means further refining a meta op-
eration. When an operation refines another, it should
be marked with the override keyword, which signals
the parser to automatically find the operation that it
refines. This refinement may be semantically similar
to object-oriented languages, or completely different
depending on the Bootstrap. The steps efficiently re-
duced the redundancy in D# scripts, but sometimes at
the cost of making the parser more complicated and
slightly less efficient.

In terms of future work, there exist many promis-
ing aspects that could be explored upon. Analyzing
the efficiency of the parser and measuring the loss of
performance introduced with the reduction of the lan-
guage remains our top priority. Extending the parser
to support incremental parsing (Ghezzi and Mandri-
oli, 1979) would also be desirable. This means that
instead of fully parsing scripts every time, only the
difference should be processed when compared to the
previous state. Dynamically changing the structure of
models using operations should also be supported.
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