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Abstract: Dysphonia can be caused by multiple different conditions, which are often indistinguishable through 
perceptual evaluation, even when undertaken by experienced clinicians. Furthermore, definitive diagnoses are 
often not immediate and performed only in clinical settings through laryngoscopy, which is an invasive 
procedure. This study took into account Vocal Cord Paralysis (VCP) and Vocal Nodules (VN) given their 
perceptual similarity and, with the aid of euphonic control subjects, aimed to build a framework for the 
identification and differentiation of the diseases. A dataset of voice recordings comprised of 87 control 
subjects, 85 subjects affected by VN, and 120 subjects affected by VCP was carefully built within a controlled 
clinical setting. A Machine-Learning framework was built, based on a correlation-based feature selection 
bringing relevant biomarkers, followed by a ranker and a Gaussian Support Vector Machine (SVM) classifier. 
The results of the classifications were promising, with the comparisons versus healthy subjects bringing 
accuracies higher than 98%, while 89.21% was achieved for the differentiation. This suggests that it may be 
possible to automatically identify dysphonic voices, differentiating etiologies of dysphonia. The selected 
biomarkers further validate the analysis highlighting a trend of poor volume control in dysphonic subjects, 
while also refining the existing literature.  

1 INTRODUCTION 

1.1 A Background on Dysphonia 

Dysphonia can be defined as a qualitative and/or 
quantitative alteration of voice production, which can 
represent the result of several pathological conditions. 
Approxilmately 10% of the general population may 
experience dysphonia at least once in a lifetime 
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(Martins et al., 2016). Dysphonia can be associated to 
different clinical conditions with different levels of 
severity. For example, a breathy voice could be 
related either to vocal nodules (VN) or to vocal cord 
paralysis (VCP), two forms of dysphonia which are 
very common among the general population 
(Mozzanica et al., 2015). However, while VN 
generally represent the result of vocal abuse and 
misuse, VCP can be related to more threatening 
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conditions such as viral infections or even cancer 
(Wang et al., 2020; Todisco et al., 2021). To better 
assess the underlying etiologies of dysphonic 
patients, diagnostic workups are conducted in clinical 
environments following standardized guidelines  
including objective and subjective evaluations 
(Schindler et al., 2013; Mozzanica et al., 2017; 
Robotti et al., 2019; Schindler et al., 2010). However, 
such diagnostic procedures are usually carried out 
later than the actual development of dysphonia. 
Moreover, these exams are generally expensive (as 
they require qualified healthcare professionals) and 
potentially invasive like a laryngoscopy (Maher et al., 
2019). 

1.2 State-of-the-Art for Machine 
Learning-based Speech Analysis 

In recent years there has been a growing interest in 
the development of methods for automatic diagnosis 
and screening of dysphonia only using vocal 
recordings of patients. This type of diagnosis would 
not only allow the detection of the pathology at an 
early stage, but would also offer the chance of a 
significantly cheaper and safer medical procedure.  

A pre-diagnosis based on an automatic, AI-based 
analysis of the speech signal has already been proven 
to be feasible, predictably more reliably for 
pathologies that directly affect the phonatory system, 
but not strictly limited to that (Asci et al., 2021; Suppa 
et al., 2021). 

A review of papers on the topic published in 2019 
(Sarika et al., 2019) showed that the most widely used 
classification method appears to be that based on 
Support Vector Machine (SVM) (Cortes and Vapnik, 
1995), which is in line with the fact that it is a very 
effective classifier for small datasets like the ones 
encountered in the literature.  

In a 2016 study (Forero et al, 2016), classification 
using SVM provided better results than those based 
on ANN and HMM, reaching an accuracy rate of 
97.2%. However, the dataset used is rather small, and 
all people with dysphonia due to nodules are female.  

In a 2018 paper (Dankovičová et al., 2018), a 
dataset consisting of 94 samples of objects with 
dysphonia and 100 samples of healthy subjects was 
used. The samples contained the vowels /a/, /e/, and 
/u/, and an initial number of 1560 features (130 for 
each vowel pitch), but only the vowel /a/ with 
approximately 300 features, using an SVM classifier, 
brought the best accuracy levels, the highest one 
being 86.2% obtained with only male samples. Even 
in the recent years, SVM has still proven itself as a 
very accurate alternative to Deep Learning models for 

reduced datasets of dysphonic voices (Costantini et 
al., 2021). 

Other studies report satisfactory results, but rarely 
focus on the distinction between diseases in 
classifying sick subjects. Our aim is to improve the 
classification accuracy for the identification of 
dysphonic conditions, starting from the collection of 
a clean and homogeneous dataset, which will then be 
processed with a problem-specific, fine-tuned 
machine learning pipeline. Moreover, we also focus 
on the distinction between VCP and VN as different 
causes of dysphonia, and on a preliminary study on 
pre- and post-treatment VCP and its effects on the 
voice.  

2 MATERIALS AND METHODS 

2.1 Study Population 

A total of 292 subjects, all over the age of 18, took 
part in the study. Specifically, 120 subjects affected 
by Vocal Cord Paralysis (VCP) and 85 subjects 
affected by Vocal Nodules (VN) have been recruited 
thanks to the collaboration with the Hospital of San 
Matteo, Pavia. Of the VCP subjects, all recorded 
before any treatment, 65 were female and 55 were 
male, while the VN subjects counted 63 females and 
20 males. 87 healthy control subjects of normal 
weight, with no audible or diagnosed vocal 
impairment were recruited from previous studies in 
the University of Rome, Tor Vergata. They are 
composed of 64 female and 23 male subjects, which 
is approximately homogeneous to the distribution of 
the sick subjects, especially for VN.  

Healthy subjects will be referred to as “H”, pre-
treatment VCP will be “P1”, and VN will be “N”.  

2.2 Voice Recording 

Voice recordings have been performed in controlled 
environment by trained personnel. Specifically, 
hospital rooms that were as noise-free as possible 
have been chosen, with each subject being alone in 
the room with the recording personnel. Each subject 
was asked to sit comfortably and vocalize the vowel 
/a/ for at least 3 seconds without straining. The choice 
of the specific vocal task was due to a compromise 
between classification effectiveness (Suppa et al., 
2020), ease of recording for the subjects, and 
neutrality of the larynx (Fant, 1960).  

The recording hardware consisted in a Sennheiser 
e835 dynamic microphone, with a cardioid polar 
pattern, connected to a Zoom H4n hi-definition 
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digital recorder. Output files were mono .wav, with 
16 bits of depth and a sampling frequency of 44100 
Hz.  

Each recording was checked on-site by the 
personnel to make sure that no unexpected noises 
occurred, with a particular attention to other voices. 
Each sample was listened by ear by trained audio 
engineers and voice experts.   

2.3 Data Pre-processing 

Three different binary classifications, also referred to 
as comparisons, will be built from the collected 
datasets. Two comparisons are focused on the 
identification of a certain pathology, namely pre-
treatment VCP versus healthy subjects (referred to as 
“P1 vs H”) and VN versus healthy subjects (“N vs 
H”). A comparison between the two diseases is also 
tackled (“P1 vs N”).  

2.3.1 Audio Processing 

All the audio files, which ultimately consisted of one 
sample per subject in each class, were imported into 
the Digital Audio Workstation REAPER (by Cockos) 
for pre-processing. There, they endured a manual 
segmentation to remove portions of non-spoken 
signal at the beginning and at the end of the file. 
Afterwards, they were normalized to 0dB peak 
volume. Subsequently, a noise reduction algorithm 
was applied using the “Spectral Denoise” plugin, 
which is part of the iZotope® RX7 audio repair suite 
(https://www.izotope.com/en/products/rx/features/sp
ectral-de-noise.html). The noise profile has been 
“learnt” by the algorithm by evaluating silence-only 
sections, and each file was listened to after the 
processing, and verified as more intelligible than 
before and without audible artifacts.  

After noise reduction, each file was normalized 
again and rendered in the same format as the original.  

2.3.2 Feature Extraction 

The normalized, noise-free audio files were then 
transformed into data matrices by a feature extraction 
process using OpenSMILE® by AudEERING 
(Eyben et al., 2010).  

It is a tool that allows for the automatic extraction 
of an incredibly high amount of acoustic features, 
depending on a “configuration” feature set. The one 
chosen for this study is the INTERSPEECH 
Computational Paralinguistic Challenge (ComParE) 
2016 (Schuller et al., 2016). It extracts many 
functionals of features spanning in the Energy and 
Frequency domains as well as prosodic features), 

Mel-frequency Cepstral Coefficients, or MFCC 
(Bogert et al., 1963) and RASTA-PLP coefficients 
(Hermansky and Morgan, 1994).  

A total of 6373 features were extracted from each 
file, and a data matrix (in .arff format) was created for 
each comparison. As an example, the .arff file 
necessary for the P1 vs H comparison had 
120+87=207 rows, one for each subject, and 6374 
columns, the last of which being the “class” label. 

2.4 Machine Learning 

All the learning algorithms have been applied to the 
numeric data matrices extracted by OpenSMILE, 
using the environment of Weka®, by the University 
of Waikato (Eibe et al., 2016). As previously stated, 
an automatic feature selection followed by a ranking 
and manual selection of the top features precede the 
SVM-based classification.  

2.4.1 Feature Selection and Ranking 

Data matrices first endured an automatic feature 
selection procedure, in order to greatly reduce the 
number of attributes in accordance with the principles 
of the Curse of Dimensionality (Köppen, 2009). A 
feature space of a much higher dimensionality than 
the amount of labeled data will render such data as 
sparse, which will drastically hinder the performances 
of any statistical model. Although many “rules of 
thumb” have been established, it is a currently 
accepted principle to at least have less features than 
the amount of data. Moreover, as stated by Zollanvari 
et al. (Zollanvari et al., 2020), it is also important to 
check for redundancy among the additional features 
involved.  

Thus, we opted to use an automatic method called 
CFS – Correlation-based Feature Selection (Hall, 
1999), which is based on a heuristic merit factor 
which takes into account both the correlation between 
a feature set and the class, and the redundancy among 
features.  𝑀ௌ = 𝑘 ∗ 𝑟௙௖ തതതതඥ𝑘 + 𝑘(𝑘 − 1) ∗ 𝑟௙௙തതതത 

(1)

Where: 
k I the number of features in the subset S 𝑟௙௖ തതതത  is the average correlation between each 

feature in the subset and the class. 𝑟௙௙തതതത  is the average cross-correlation between all 
the features one with each other. 

The optimal subset is selected with the aid of a 
search method, which in our case was a Forward 
Greedy Stepwise, which represented a good 
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compromise between performance and computational 
complexity. 

Throughout all of our comparisons, the CFS 
retained a number of features which was not 
predictable, although always smaller than 3% of the 
original number. Thus, a manual selection followed 
in order to furtherly reduce the features to a number 
that was always consistent. The algorithm of choice 
was a wrapped Linear SVM Classifier, trained on a 
single feature at a time. This way, the features were 
ranked and then the top 50 were manually retained.  

2.4.2 Classification 

Reduced data matrices were used to train a Gaussian 
SVM classifier. Support Vector Machines are 
statistical classifiers which aim to find the optimal 
hyperplane for linear separation of the data. As 
already stated, SVM classifiers are often chosen for 
audio classification tasks with complex relationships 
due to them being well-generalized even with small 
datasets (Srivastava and Bhambhu, 2010; Costantini 
et al., 2010). They are based on the non-linear 
separation obtained by the “kernel trick”, based on 
Mercer’s theorem. The corresponding kernel function 
for a Gaussian SVM is: 𝐾(𝑥, 𝑦) = 𝑒ିఊ‖𝒙𝟏ି𝒙𝟐‖మ (2)

For each pair of data points x1 and x2.  
The parameter γ represents the inverse weight of 

the distance between two points: the higher it is, the 
lower the importance of a single training example. 

The SVM optimization is solved with the 
Lagrangian Dual problem, which can also include a 
regularization procedure that leads to a parameter C 
(“Complexity”) penalizing classification errors, 
according to the formula:  

𝐶ห|𝑤|หଶ + 1𝑛 ෍ max (0,1 − 𝑦௜𝐻)௡
௜ୀଵ  (3)

Where 𝐻 = 𝑤்𝑥 − 𝑏  represents the common 
maximum margin hyperplane function, and with n 
being the number of samples, x being the data vector, 𝑦௜   representing one of the two thresholds of the 
binary classification (-1 and 1), w being the normal 
vector to the hyperplane and b determining the offset. 
A lower C value will result in less strict margins over 
the separation plane: the parameter can be tuned to 
prevent overfit. 

For our specific study, the Gaussian SVM models 
for each comparison have been tuned with different 
values of γ and C. The classifier were calibrated, 
according to Platt’s scaling method (Platt, 1999), 

using a multinomial Logistic regressor. Thus, 
formerly binary output predictions could be 
transformed in a probability distribution over classes, 
which also aided in the evaluation of the ROC curve 
(Fawcett, 2006).  

A 10-fold cross-validation has been employed to 
evaluate the accuracy of the classifiers, by averaging 
the test performances over each of the ten subsets. 
Performance on each training example is evaluated 
when the example is placed in the test subset. Figure 
1 shows the steps of the whole pipeline.  

 
Figure 1: Flowchart for the machine learning-based voice 
analysis: from audio files to classification models. 

3 RESULTS 

The confusion matrices for each comparison are 
presented in the following Table.  

Table 1: Confusion matrices. 

True Class 
Classified as: P1 H 

P1 119 1
H 1 86

N H
N 83 1
H 2 85

P1 N
P1 108 12
N 10 74

Classification accuracy percentages (abbreviated 
as ACC) are displayed in Table 2 along with other 
useful performance indicators. Specifically, 
Sensitivity (Sens) and Specificity (Spec) are reported 
along with the False Positive Rate (FPR). Sens and 
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Spec represent the True Positive Rate and the True 
Negative Rate respectively, and can be calculated as 
such: 𝑆𝑒𝑛𝑠 = 𝑇𝑃𝑃𝑜𝑠 

 

(4)

𝑆𝑝𝑒𝑐 = 𝑇𝑁𝑁𝑒𝑔  (5)

𝐹𝑃𝑅 = 𝐹𝑃𝑁𝑒𝑔 = 1 − 𝑆𝑝𝑒𝑐  (6)

Where TP are the True Positives, TN the True 
Negatives, FP the False Positives (negative subjects 
classified as positive), Pos represents all the positive 
subjects (TP+False negatives) and Neg all the 
negatives (TN+FP). For each of our comparisons, the 
first class in the order they appear in Table 1 is 
considered as positive. Control subjects are always 
negative, and, for the P1 vs N comparison, N are 
considered as negative. 

ROC curves have also been evaluated for each 
classifier and are displayed in Figures 2, 3 and 4. The 
area under the curve, or AUC, is reported in Table 2, 
as well as the Cut-off point (CO) of each ROC curve. 
Note that the AUC is generally considered as a more 
general and reliable indicator for the performances of 
a classifier, since it is an aggregate measure of 
performance across all possible classification 
thresholds. “Comp.” in the first column refers to 
which comparison is being considered. 

Table 2: Classification Performances. 

Comp. ACC 
% 

Sens Spec FPR AUC CO 

P1 vs H 
99.03 0.99 0.99 0.01 0.99 1.00 

N vs H 
98.24 0.99 0.98 0.02 0.98 0.99 

P1 vs N 
89.21 0.9 0.88 0.12 0.95 0.91 

3.1 Acoustic Features  

The top ranked features, in the number of 50, are the 
data on which the classifiers have been trained. Since 
the very features can be fairly complex in terms of 
descriptors. Considering that the most important 
information is represented by the main trends in the 
domains, a summary of the more prevalent acoustic 
domains for each comparison is presented in Table 3.  

 
Figure 2: ROC curve for the P1 vs H comparison. 

 
Figure 3: ROC curve for the N vs H comparison. 

 
Figure 4: ROC curve for the P1 vs N comparison. 

Additionally, the top 5 features are presented, from 
first to last, in the far-right column. 

The abbreviation “std. dev” means Standard 
Deviation, and “min” means Minimum. Loudness 
refers to the Spectral Loudness Summation as a 
weighted sum of the auditory spectrum (Anweiler and 
Verhey, 2006). MFCC refers to Mel-Frequency 
Cepstral Coefficients, which result from a discrete 
cosine transform of the logarithmic mel-spectrum, 
and identify a “frequency of frequency” useful to 
describe pitch. A similar role is held by RASTA, 
which refers to a RASTA-style bandpass filtering 
applied to the log spectrum domain, and then applied 
to a PLP (Perceptual Linear Predictive) processing 
which involve the calculation of an all-pole model in  
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Table 3: Trends in top ranked features.  

Comp. Main 
Domains 

Top 5 Features 

P1 vs H Energy, 
Loudness, 
MFCC 

RMS Energy (delta), 
position of the mean
Loudness (delta), inter-
quartile range 1-2
RMS Energy (delta), 1-
percentile 
Loudness (delta), inter-
quartile range 1-3
RMS Energy (delta), 
range 

N vs H Energy, 
Spectral 
Variance, 
Loudness 

RMS Energy (delta), Root 
quadratic mean 
Spectral Slope (delta), 
position of the mean
RMS Energy (delta), 1-
percentile 
Spectral Slope (delta), 99-
percentile 
RMS Energy, range 

P1 vs N MFCC, 
RASTA, 
Energy 

2nd MFCC, mean of 
rising slope 
RASTA Window 1, 1-
percentile 
RASTA Window 0, 1-
percentile 
RMS Energy (delta), 
Relative min range
RASTA-style Loudness, 
1-percentile 

the transformed domain, followed by the calculation 
of MFCC. So, a RASTA-style Loudness as it appears 
in the 5th place for the P1 vs N comparison, is based 
on a summation over a RASTA-filtered spectrum. 
The Spectral Variance is used as an “umbrella term” 
for features generally related to variations in the 
spectrum. Includes Slope, Kurtosis, Skewness, Flux, 
Harmonicity.  

As an additional tool for visualizing the relative 
value and the discrimination power of the selected 
features, a sample radar plot for the first 20 features 
is displayed in Figure 5. The reduced number of 
features is due to visualization needs. The plots are 
made by averaging each feature over all the instances 
(subjects) and normalizing it with respect to the 
“negative” class, which is always the second 
according to the order found in Table 1. Each point in 
the plot represents one feature, and two curves are 
thus realized, the negative class always resulting in a 
unit circle since it’s normalized by itself. Note that the 
classifier performances are based on more 
information than just the mean of the first 20 features. 

 

 
Figure 5: Radar plot for the P1 vs H comparison. The darker 
unit circle refers to the normalized H class. 

4 DISCUSSION  

Accuracies higher than 98% have been obtained for 
the comparisons of dysphonic subjects versus 
healthy-voiced subjects. This is quite promising 
because it shows that an automatic distinction can 
indeed be performed with the aid of the right features 
and machine learning pipeline. On the other hand, the 
lower accuracy for the P1 vs N comparison also 
appears reasonable, as distinguishing between a 
healthy and dysphonic voice is an easier task even in 
phoniatric examinations. Specific attention has been 
used in the recording environment and audio 
segmentation, and specific feature selection 
algorithms which we already tested extensively have 
been employed in place of standardized subsets which 
can be found in the literature (Saggio and Costantini, 
2020). Although bias due to heterogeneity in the 
subjects’ demographics is indeed possible, the 
features were confronted with those typical of other 
effects affecting the voice, like ageing or gender (Asci 
et al., 2020).  

The chosen classifier, namely a Gaussian SVM 
with a logistic calibrator, has been selected basing on 
the state-of-the-art, on previous experiments and on 
the principle that it’s a very effective classifier for 
reduced datasets. High AUC values show that the 
models are indeed effective on the training set for 
many threshold values.  

From the observation of the features distribution 
between classes, a general trend appears for sick 
subjects with respect to non-dysphonic subjects. Both 
P1 and N classes show a significantly higher variance 
in RMS Energy, which could be consistent with a 
“stale” quality of the voice and, especially, with a 
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certain lack of volume control that sick subjects may 
experience. Thus, there is indeed a similarity in the 
features that distinguish between VCP and healthy 
subjects, and VN and healthy subjects. The latter 
comparison appears to rely more on spectral 
characteristics.  

In fact, the differentiation of the two diseases does 
not rely on the Energy domain, but it’s shown as 
feasible basing mainly on RASTA-PLP filtering. This 
is in line with some of our studies which show how 
RASTA is a powerful tool for the identification of 
complex characteristics in the voice (Cesarini et al., 
2021).  

5 CONCLUSIONS 

After building a polished dataset, a traditional 
pipeline-based machine learning framework has been 
established for the detection of VCP and VN versus 
healthy control subjects, and the differentiation 
between the two diseases. A feature selection helped 
identify acoustic features as specific biomarkers for 
each comparison, which were then used for the 
training of SVM models. The classification results 
show a very high accuracy in distinguishing patients 
from healthy subjects, in fact the highest among 
similar studies. A lower but still significant accuracy 
was obtained for the differentiation between diseases. 
This is in line with the complexity of the problem 
when faced on a phoniatric point of view, and also 
proves that a distinction can be made even when the 
effects on the voice aren’t evident by ear. Energy-
level characteristics are used for the distinction of a 
dysphonic voice from a healthy one, suggesting a lack 
of voice volume control in dysphonic subjects, while 
RASTA and Cepstral domains are relevant for the 
differentiation of the diseases.  

The whole framework would benefit from the 
collection of more data, which is foreseeable since the 
environment and collaborations are ongoing.  

This kind of vocal analysis can be of great help in 
the diagnostics of dysphonic diseases, especially 
since currently used methods are often slow and 
invasive. The automatic voice analysis as well as the 
observation of acoustic features can also aid 
phoniatric examinations, replacing or supporting 
evaluations made by-ear. In this perspective, a more 
thorough study of the selected features, possibly 
refined by a bigger dataset, will help identifying the 
best possible subsets, specific to each disease or 
comparison. Moreover, automatic tools can be built 
for on-site classification, helping in preliminarily 
identifying different dysphonic conditions. Although 

automatic voice analysis per se cannot substitute a 
medical diagnosis, the possibilities offered by this 
technology appear to be very wide and promising.  
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