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Abstract: As the prevalence of diabetes continues to increase globally, an efficient diabetes prediction model based on 
Electronic Medical Records (EMR) is critical to ensure the well-being of the patients and reduce the burden 
on the healthcare system. Prediction of diabetes in patients at an early stage and analysis of the risk factors 
can enable diabetes primary and secondary prevention. The objective of this study is to explore various 
classification models for identifying diabetes using EMR data. We extracted patient information, disease, 
health conditions, billing, and medication from EMR data. Six machine learning algorithms including three 
ensemble and three non-ensemble classifiers were used namely XGBoost, Random Forest, AdaBoost, 
Logistic Regression, Naive Bayes, and K-Nearest Neighbor (KNN). We experimented with both imbalanced 
data with the original class distribution and artificially balanced data for training the models. Our results 
indicate that the Random Forest model overall outperformed other models. When applied to the imbalanced 
data (112,837 instances), it results in the highest values in specificity (0.99) and F1-score (0.84), and when 
training with balanced data (35,858 instances) it achieves better values in sensitivity (1.00) and AUC (0.96). 
Analyzing feature importance, we identified a set of features that are more impactful in deciding the outcome 
including a number of comorbid conditions such as hypertension, dyslipidemia, osteoarthritis, CKD, and 
depression as well as a number of medication codes such as A10, D08, C10, and C09. 

1 INTRODUCTION 

Diabetes is a chronic, metabolic disease characterized 
by elevated levels of blood glucose (or blood sugar), 
which leads to serious damage to the heart, blood 
vessels, eyes, kidneys, and nerves over time (WHO, 
2021). Diabetes is a progressive disease with a wide 
range of presentations. Left unchecked, diabetes can 
eventually lead to life-threatening complications and 
diseases such as cardiovascular disease, kidney 
disease, and neuropathy, and the development of 
these complications is associated with a reduction in 
lifespan by five to fifteen years (Deshpande et al., 
2008).  

The global diabetes burden is expected to increase 
from 463 million people in 2019 to 578 million 
people by 2030 with developed countries seeing the 
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greatest increase in prevalence rates (Saeedi et al., 
2019). In Canada, diabetes prevalence is expected to 
increase from 11.2 million in 2020 to 13.6 million or 
32% of all Canadians by 2030. Moreover, the 
increase in diabetes prevalence presents a significant 
burden on the healthcare system. The direct cost to 
the Canadian healthcare system is expected to 
increase from 3.8 billion in 2020 to 4.9 billion by 
2030 (Diabetes Canada, 2021).  

Diabetes and its complications have brought 
heavy burdens to not only medical resources but also 
social economics. It is important to diagnose diabetes 
at an early stage and to make sure high-risk people are 
informed duly. This helps move the focus from 
treatment to prevention of diabetes. Studies also show 
that some lifestyles might increase the risk of 
diabetes, including high sugar consumption of daily 
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diet, sedentary behavior, heavy drinking, and heavy 
smoking (Sami et al., 2017). It is critical then to 
develop improved monitoring methods to track the 
overall health status of those living with diabetes to 
reduce the burden on the healthcare system and to 
ensure preventative actions before the development 
of life-threatening complications.  

Due to the complex and diverse pathophysiology 
of diabetes, the American Diabetes Association 
(ADA) recommends individualized treatment and 
medication plans (Riddle et al., 2019). As such, 
several studies have focused on personalizing 
treatment by scoring or stratifying the relative health 
of diabetic patients using clinical test values (Kaur 
and Kumari, 2020). These stratification methods 
allow for better resource allocation, help clinicians 
better monitor the relative health of their patients and 
improve overall diabetes outcomes (Lindström and 
Tuomilehto, 2003). 

Much of the research done in this field only 
focuses on a small number of structured data and 
limited features. Although these models mostly 
achieved high accuracy, they provide limited 
information that could not be implemented into real-
world primary care settings to prevent diabetes from 
an early stage (Birjais et al., 2019, Muhammad et al., 
2020, Sisodia, and Sisodia, 2018). 

The objective of this study is to take advantage of 
a huge dataset extracted from the EMR data to build 
supervised machine learning models to identify 
diabetes cases.  

Training data is one of the significant elements of 
supervised machine learning as it may influence the 
prediction positively or negatively based on how it is 
prepared for the learning algorithm (De Silva et al., 
2020). The key contributions of our research are as 
follows. To investigate the impact of artificially 
balancing training datasets on the performance of 
classification algorithms, we trained the classification 
models with both balanced and imbalanced training 
datasets and compared their performance. The dataset 
was extracted from primary care providers 
participating in the Manitoba Primary Care Research 
Network (MaPCReN). We present an in-depth 
literature review and demonstrate the architecture and 
performance of six machine learning models to 
predict patients who may have diabetes. The results 
show that while all ensemble methods performed 
well, overall the random forest model outperforms the 
other models and achieves an F1-score of 0.83 on the 
balanced dataset and an F1-score of 0.84 on the 
imbalanced dataset. 

The rest of the paper is structured as follows. In 
Chapter 2, we present the literature review. Chapter 3 

presents the implementation details while Chapter 4 
demonstrates the experimental results. A critical 
discussion is presented in Chapter 5, and Chapter 6 
concludes the paper. 

2 RELATED WORK 

Muhammad et al. (2020) used the data collected from 
the Murtala Mohammed Specialist Hospital, which 
contained 383 instances. The data used in this study 
had nine attributes, including age, family history, 
glucose, cholesterol (CHOL), blood pressure (BP), 
HDL (high-density lipoprotein), triglyceride, BMI 
(body mass index), and the diagnosis result. Logistic 
regression, support vector machine, k-nearest 
neighbor, random forest, naïve Bayes, and gradient 
boosting algorithms were implemented with random 
forest obtaining the overall best performance and an 
accuracy of 88.76%. They also analyzed the data 
features and reported that glucose, cholesterol, family 
history, triglyceride, BMI, and age were correlated 
with the outcome. 

Sisodia and Sisodia (2018) explored the Pima 
Indians Diabetes Dataset using classification 
algorithms, namely decision tree, SVM, and naïve 
Bayes. Among all these algorithms, naïve Bayes had 
the highest accuracy of 76.30%. The dataset they used 
contained 768 samples and 8 attributes.  

Birjais et al. (2019) applied several techniques 
including Gradient Boosting, Logistic Regression, 
and Naive Bayes on Pima Indian diabetes data set to 
diagnose diabetes. Their dataset included 768 
instances and 8 attributes and the machine learning 
models attained an accuracy of 86% for the Gradient 
Boosting, 79% for Logistic Regression, and 77% for 
Naive Bayes. 

Nai-arun and Moungmai (2015) compared the 
performance of four machine learning models on 
predicting diabetes, namely decision tree, Artificial 
Neural Networks (ANN), logistic regression, and 
naïve Bayes to predict diabetes. The data was 
collected from 26 Primary Care Units (PCU) in 
Sawanpracharak Regional Hospital. According to 
their experiments, random forest attained the best 
performance with an accuracy of 85.56%. 

Bi et al. (2012) assessed the risk factors that might 
cause type 2 diabetes. They classified risk factors into 
lifestyle risk factors, internal environment factors, 
external environmental factors, and genetic risk 
factors. For lifestyle risk factors, they point out that a 
high sugar diet, sedentary behavior, smoking, and 
alcohol consumption will increase diabetes risk. In 
internal environmental factors, inflammatory factors, 
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adipocytokines, and hepatocyte factors were 
analyzed. According to this study low-grade 
inflammation, white blood cell (WBC), C-reactive 
protein (CRP) positively affect diabetes risk factors. 

De Silva et al. (2020) combined feature selection 
and machine learning algorithms to identify 
predictors of prediabetes. The data were collected 
from a nationally representative sample of the US 
population, containing 64,346 samples. They applied 
four machine learning models, namely logistic 
regression (linear), artificial neural network (ANN) 
(non-linear), random forests (RF) (ensemble), and 
gradient boosting (GB) (ensemble). Features included 
in their study are age, income-property ratio, waist 
circumference, BMI, and Hepatitis B. 

Zou et al. (2018) applied decision trees, random 
forest, and neural networks to a hospital dataset to 
predict diabetes mellitus. The dataset they used was 
the hospital physical examination data in Luzhou, 
China that contained 14 attributes. They evaluated 
their models with five-fold cross-validation where 
prediction with random forest reached the highest 
accuracy (0.81) when all the attributes were used. 

Wei et al. (2018) performed a comprehensive 
exploration of the most popular techniques including 
deep neural network (DNN), SVM, logistic 
regression, decision tree, and naïve Bayes to identify 
diabetes based on the Pima Indian diabetes dataset. 
They compared the accuracy of each classifier over 
several data pre-processors. The best technique they 
found was the DNN model that attained 77.86% 
accuracy. They also analyzed the relevance between 
each feature with the classification result. The three 
most important features in this data set were: plasma 
glucose concentration, pregnancy count, and age. 

3 MATERIALS AND METHODS 

3.1 Data 

This study uses Electronic Medical Record (EMR) 
data from primary care providers participating in the 
Manitoba Primary Care Research Network 
(MaPCReN), which is a subset of The Canadian 
Primary Care Sentinel Surveillance Network 
(CPCSSN). Data is extracted on all patients in a 
practice, including children. It contains electronic 
records from primary care providers across the 
country between 1995 and 2019. Out of the total 
number of patients included in this study, 17,929 have 
diabetes (15.88%). The information of patients was 
de-identified prior to analyses to protect the identity 
of the patients in the dataset.  

We extracted data from the following tables: 
patient demographics (patients' sex, age), disease case 
(diagnosed chronic diseases), medication, health 
condition, and billing codes. 

The sex of the patient is demonstrated with binary 
variables, as 1 representing male and 0 representing 
female. The age was calculated based on the birthday 
of that patient in 2019. The diagnosed chronic 
diseases were limited to those with validated case 
definitions: osteoarthritis, COPD, Parkinson's 
disease, dyslipidemia, herpes zoster, pediatric 
asthma, CKD, diabetes mellitus, osteoarthritis, 
dementia, hypertension, depression, and epilepsy. It 
is represented by binary variables for each disease. 
The medications, billing codes, and health condition 
diagnostic codes were included as categorical 
features in our data set with 1,522, 7,102, and 7,695 
different values,  respectively. This large number of 
unique values presented challenges in using one-hot 
encoding. Therefore, prescribed medications were 
identified using the ATC codes of the medications 
(Chen et al., 2012).  

We used the first three letters of the ATC code to 
represent medication in our model. This reduced the 
number of different medication codes from 1,522 to 
88 values, which led to less complexity of the model 
and grouped medication according to their 
therapeutic or pharmaceutical subgroup. A similar 
method was applied to the ICD9 diagnosis codes 
found in the billing and health condition tables which 
reduced the number of codes from over 7,000 in both 
cases to 138 and 152, respectively.  

We dropped patient id, Billing_250, and HC_250 
columns as they either do not contribute to our 
prediction or directly represent the outcome variable 
that we are going to predict.  

We combine each patient’s EMRs from multiple 
visits into one row based on the strategy illustrated in 
Table 1. After encoding the variables, the dataset 
contained 112,837 rows of patient information and 
included 392 different features (Table 1).  

3.2 Predictive Modeling 

In this study, we developed six machine learning 
models namely XGBoost, AdaBoost, random forest, 
K-Nearest Neighbors, Naïve Bayes, and Logistic 
Regression to predict patients having diabetes using 
our preprocessed dataset. These machine learning 
models were chosen based on their proven reliability 
and performance in classification tasks including in 
the medical domain. 
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Table 1: Summary of features used in this study. 

Feature Category Description Features after Encoding Variable Type 

Patient Information 
General information about the 
patient 

Sex, age 
Sex binary,  
age continuous 

Disease 
Diagnosis of 12 diseases with 
a validated case definition  

Osteoarthritis, COPD, Parkinson's Disease, 
Dyslipidemia, Herpes Zoster, Pediatric 
Asthma, CKD, Osteoarthritis, Dementia, 
Hypertension, Depression, Epilepsy (12 
features) 

Binary variable, 1 if the 
patient has the listed 
diseases, otherwise 0 

Medication 

All medications prescribed to 
a patient (study period). The 
medications were generalized 
to therapeutic/pharmaceutical 
sub-group 

Features obtained by counting the number 
of medications each patient was on based 
on the first 3 letters of its ATC code (88 
features) 

Discrete variables 
representing the 
frequency of taking 
each medication type 
by each patient 

Health Condition 
Diagnosis Code 

All diagnostic codes recorded 
in the patient’s EMR during 
the study period. The codes 
were generalized to their 
three-level ICD-9 code 

Features obtained by counting the number 
of health conditions for each patient based 
on the first 3 letters of the health condition 
diagnosis code (138 features) 

Discrete variables 
representing the 
frequency of each code 
type in the EMR for 
each patient 

Billing Code 

All billing codes given to a 
patient during the study 
period. The codes were 
generalized to their ICD-9 
code general category 

Features obtained by counting the number 
of billing codes for each patient based on 
the first 3 letters of the billing diagnosis 
code (152 features) 

Discrete variables 
representing the 
frequency of each code 
was entered into the 
EMR for each patient 

 
We performed a comparative study to investigate 

the performance of these models in medical 
diagnosis. In addition to comparing the models in 
terms of prediction performance, we studied their 
ability to deal with imbalanced data which is 
commonplace in the medical domain.   

For evaluating the influence of the balanced and 
imbalanced training data on the disease identification 
task, two different training datasets were created, a 
balanced and an imbalanced training set. The 
imbalanced dataset has the same distribution of 
positive and negative instances as the original data. 
The balanced dataset, however, contains an equal 
number of positive and negative cases. To balance the 
skewed distribution of the training partitions of the 
dataset, we performed a random under-sampling on 
the majority class. Random under-sampling tries to 
balance the class distribution through the random 
elimination of majority class examples. The major 
drawback of random under-sampling is that this 
method can discard examples that could be important 
to the model in the training process. 

We performed stratified 10-fold cross-validation 
on the preprocessed dataset which divides each fold 
into the training and testing dataset in a 9:1 ratio. We 
implemented a stochastic hill-climbing algorithm for 
tuning the hyperparameters for each classifier. 
Stochastic hill-climbing chooses its next value at 

random from the available search space (Stubbs et al., 
2019). This step aims to optimize the parameters for 
each classifier. We then applied the models to the 
holdout test dataset. 

The classifiers were all implemented using Scikit-
learn libraries (Pedregosa et al., 2011). Python 3.6 
was used for the data processing and programming 
tasks. 

4 EXPERIMENTAL RESULTS 

4.1 Validation 

We evaluated our models with several metrics 
including Positive Predictive Value (PPV), Negative 
Predictive Value (NPV), specificity (SP), sensitivity 
(SE), accuracy (ACC). 

The equations used for calculation are shown 
above, where TP is True Positive, FP is False 
Positive, TN is True Negative, and FN is False 
Negative. In addition to these threshold metrics, we 
used the rank metrics of and the Area Under the curve 
(AUC) of a Receiver Operating Characteristic (ROC) 
curve.  

PPV ሺprecisionሻ ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
           (1)
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NPV ൌ
𝑇𝑁

𝑇𝑁 ൅ 𝐹𝑁
 (2)

Sensitivity ሺrecallሻ ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 (3)

Specificity ൌ
𝑇𝑁

𝑇𝑁 ൅ 𝐹𝑃
 (4)

Accuracy ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝐹𝑁 ൅ 𝑇𝑁
 (5)

F1 െ score ൌ 2 ൈ
Precision ൈ Recall
Precision ൅ Recall

 (6)

4.2 Results 

Tables 2 and 3 report the results for the development 
and the holdout parts of the balanced datasets, 
respectively. The lowest and highest average values 
are identified by italic and bold fonts respectively in 
each column of the tables. 

Table 2: Summary of model results for the development set 
of the balanced dataset. 

 PPV NPV SN SP ACC F1 AUC
XGB 0.68 0.99 0.94 0.91 0.92 0.79 0.93 
RF 0.71 1.00 1.00 0.92 0.94 0.83 0.96 
AB 0.73 0.98 0.88 0.94 0.93 0.80 0.91 
LR 0.72 0.98 0.90 0.93 0.93 0.80 0.91 

KNN 0.51 0.96 0.83 0.85 0.85 0.63 0.84 
NB 0.50 0.94 0.70 0.87 0.84 0.59 0.78 

Table 3: Summary of model results for the test set of the 
balanced dataset. 

 PPV NPV SN SP ACC F1 AUC
XGB 0.66 0.99 0.94 0.91 0.91 0.78 0.92
RF 0.71 1.00 1.00 0.92 0.93 0.83 0.96 
AB 0.72 0.98 0.89 0.93 0.93 0.79 0.91
LR 0.71 0.98 0.89 0.93 0.92 0.79 0.91

KNN 0.51 0.96 0.82 0.85 0.84 0.63 0.84
NB 0.49 0.94 0.70 0.86 0.84 0.58 0.78

As presented in the first three rows in Tables 2 and 
3, the ensemble models outperform the other 
individual models in almost all scores, with random 
forest obtaining the best results and naïve Bayes 
attaining mostly the lowest values.  

Tables 4 and 5 report the results of the imbalanced 
datasets for the development and the holdout parts 
respectively. 

 
 
 
 
 
 
 

Table 4: Summary of model results for the development set 
of the imbalanced dataset. 

PPV NPV SN SP ACC F1 AUC
XGB 0.95 0.95 0.73 0.99 0.95 0.83 0.86 
RF 0.92 0.96 0.77 0.99 0.95 0.84 0.88 
AB 0.88 0.95 0.76 0.98 0.95 0.82 0.87 
LR 0.88 0.95 0.73 0.98 0.94 0.80 0.86 

KNN 0.89 0.91 0.48 0.99 0.91 0.62 0.73 
NB 0.48 0.94 0.71 0.85 0.83 0.57 0.78 

Table 5: Summary of model results for the test set of the 
imbalanced dataset. 

PPV NPV SN SP ACC F1 AUC
XGB 0.96 0.95 0.72 0.99 0.95 0.83 0.86 
RF 0.94 0.95 0.76 0.99 0.95 0.84 0.87 
AB 0.88 0.95 0.75 0.98 0.94 0.81 0.86 
LR 0.89 0.95 0.72 0.98 0.94 0.79 0.85 

KNN 0.89 0.91 0.49 0.99 0.91 0.64 0.74 
NB 0.49 0.94 0.71 0.86 0.83 0.58 0.78 

Again for the imbalanced data, we witness a 
similar pattern as what we saw for the balanced 
dataset. The ensemble models generally performed 
better than the other individual models. While the 
random forest along with the XGB models obtained 
the best results, naïve Bayes and KNN achieved the 
lowest values. Comparing Tables 2 and 3 with  Tables 
4 and 5, we observe that each of the balanced and 
imbalanced training datasets is advantageous for a 
subset of metrics. While the balanced dataset 
obtained better results in NPV, SN, and AUC, the 
imbalanced training dataset resulted in improved 
values in PPV, SP, and F1-score.  

4.3 Feature Importance Analysis 

To study the contribution of each predictor in the RF 
model applied to both balanced and imbalanced 
datasets, we performed a feature importance ranking. 
Feature importance was assessed for the features 
having importance greater than 0.005 in the RF 
model. This is calculated based on Gini impurity 
score or Mean Decrease Impurity (MDI). For 
impurity reduction, classification trees commonly use 
Gini coefficient index or information gain of 
variables. The equation for calculating the importance 
of variable 𝑥𝑗 is shown in Eq. 7  (Hur et al., 2017). For 
each variable or influencing feature in the model, the 
sum of the impurity reductions in all the trees is 
calculated as the importance of the feature. 

𝐼𝑚𝑝൫𝑥௝൯ ൌ
1

𝑛௧௥௘௘
቎1 െ ෍ 𝐺𝑖𝑛𝑖ሺ𝑗ሻ௞

௡೟ೝ೐೐

௞ୀଵ

቏ (7)
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Table 6: Features with a correlation  0.05 with the outcome. 

Rank Variable Importance Category 

1 A10 0.1994 Medication (Drugs used in diabetes) 
2 Hypertension 0.1051 Disease 
3 Dyslipidemia 0.0985 Disease 
4 D08 0.0597 Medication (Antiseptics and disinfectants) 
5 age 0.0373 Demographic 
6 C10 0.0230 Medication (Lipid modifying agents) 
7 Osteoarthritis 0.0220 Disease 
8 A03 0.0212 Medication (Drugs for functional gastrointestinal disorders) 
9 C09 0.0185 Medication (Agents acting on the renin–angiotensin system) 

10 HC_401 0.0158 Health condition (Essential hypertension) 
11 CKD 0.0135 Disease 
12 Depression 0.0114 Disease 
13 A11 0.0111 Medication (Vitamins) 
14 B01 0.0092 Medication (Antithrombotic agents) 
15 N02 0.0092 Medication (Medication (analgesics) 
16 J01 0.0089 Medication (Antibacterials for systemic use 
17 Blg_401 0.0089 Billing (Essential hypertension) 
18 N06 0.0080 Medication (Psychoanaleptics) 
19 A02 0.0079 Medication (Drugs for acid related disorders) 
20 R03 0.0073 Medication (Drugs for obstructive airway diseases) 
21 N05 0.0066 Medication (Psycholeptics) 
22 M01 0.0065 Medication (Anti-inflammatory and antirheumatic products) 
23 C03 0.0063 Medication (Diuretics) 
24 R01 0.0059 Medication (Nasal preparations) 
25 C08 0.0057 Medication (Calcium channel blockers) 
26 HC_272 0.0057 Health condition (Hyperlipidemia, disorders of lipoid metabolism) 
27 G03 0.0056 Medication (Sex hormones and modulators of the genital system) 
28 G04 0.0051 Medication (Urologicals) 
29 Sex 0.0050 Demographic 
30 A12 0.0050 Medication (Mineral supplements) 

 
Table 6 shows the features with the importance ≥ 

0.005 which comprise 30 features out of the whole 
392 feature set. 

5 DISCUSSION 

In this study, we applied six machine learning models 
including three ensemble and three non-ensemble 
models to the structured fields of EMR data to 
diagnose diabetes.  

Based on our results, the ensemble models 
outperformed the non-ensemble models by a high 
margin. This suggests that the random forest model 
along with the other ensemble models are reliable 
machine learning algorithms in the clinical domain. 

Many recent research studies in the domain of 
predicting diabetes have reported the performance of 
their model in terms of accuracy (Muhammad et al., 
2020, Sisodia and Sisodia, 2018, Birjais et al., 2019, 

Nai-arun and Moungmai, 2015, Zou et al., 2018). 
However, the different distribution of positive and 
negative cases in the medical domain usually leads to 
a skewed dataset. Not only this fact should be 
considered in the model design and training, but in the 
model validation and performance metrics, we have 
to use proper settings to get a valid evaluation.  

We experimented with both the original 
imbalanced data and a preprocessed balanced dataset 
obtained by subsampling the original dataset. Our 
experiments revealed that the balanced dataset led to 
higher type I error, i.e., the incorrect predictions are 
mostly false positives while the imbalanced dataset 
led to higher type II error, i.e., the incorrect 
predictions are mostly false-negative. These are 
reflected in the higher values in NPV and sensitivity 
in the balanced dataset and higher values of PPV and 
specificity in the imbalanced dataset. However, the 
total number of errors was lower in the models trained 
on the imbalanced dataset which resulted in an 
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improvement in F1-score in these models. 
Considering that the F-measure is a popular metric for 
imbalanced classification (Brownlee, 2020), overall 
we can conclude that the imbalanced dataset is more 
suitable for our problem. However, the decision on 
whether to balance classes in the training dataset or 
not depends on what we want to achieve from the 
classification. In diagnosing disease, for example, 
detecting positive cases is vital. Comparing the 
results in Tables 2 and 3 with the results presented in 
Tables 4 and 5 we realize that utilizing an imbalanced 
dataset leads to higher values for PPV in almost all 
classifiers used in this study. Sensitivity refers to the 
true positive rate and summarizes how well the 
positive class was predicted. Specificity is the 
complement to sensitivity, or the true negative rate, 
and summarises how well the negative class was 
predicted. For imbalanced classification, the 
sensitivity might be more interesting than the 
specificity. 

Regarding class separability, the result indicates 
that the AUC values of the classifiers trained on the 
imbalanced dataset are on average 5 percent lower. 
This means that an imbalanced dataset leads to 
classifiers with inferior separability power. 

Our results highlighted that ensemble models in 
general, and random forest in particular, are proven to 
be very robust, consistent, and effective classifiers as 
these can perform very well under both balanced and 
imbalanced data situations. In the ensemble method, 
the predictive potentials of various individual 
classifiers are fused together. Thus ensemble methods 
increase their performance by combining the 
efficiency of individual classifiers and the chances of 
misclassification are reduced significantly leading to 
greater accuracy of the classification process.  

The feature importance analysis identified a 
number of comorbid conditions that happen with 
diabetes including hypertension, dyslipidemia, 
osteoarthritis, CKD, and depression. Hypertension 
and depression are diabetes-related complications as 
mentioned by Deshpande et al. (2008). According to 
other studies, dyslipidemia and diabetes are closely 
related. Diabetic dyslipidemia is characterized by 
elevated fasting and postprandial triglycerides, low 
HDL-cholesterol, elevated LDL-cholesterol. These 
lipid changes represent the major link between 
diabetes and the increased cardiovascular risk of 
diabetic patients (Chahil and Ginsberg, 2006). 
Osteoarthritis and type 2 diabetes mellitus often co-
exist in older adults (Piva et al., 2015). People who 
have type 2 diabetes have an increased risk of 
osteoarthritis, likely due to obesity which is also a risk 
factor for type 2 diabetes. Dyslipidemia is one of the 

major risk factors for cardiovascular disease in 
diabetes mellitus (Mooradian, 2009). 

The coincidence of hypertension and diabetes was 
identified by other studies before (Sowers et al., 
2001), and was reported to be twice as more 
compared to non-diabetic patients. However, in our 
experimental dataset, the incidence of hypertension in 
diabetic patients was found to be about four times 
more as compared to patients without diabetes.  

6 CONCLUSIONS 

We conducted a study with MaPCReN patient EMR 
data intending to develop machine learning models to 
identify patients with diabetes and describe important 
feature sets that assisted with the identification of 
diabetes. Using a dataset containing 112,837 patient 
records that include 17,929 diabetes-positive cases, 
our study showed that machine learning models can 
identify diabetes patients with good accuracy. We 
implemented six machine learning models including 
three ensemble and three non-ensemble methods to 
investigate which methods are advantageous in the 
clinical domain. According to our results, the 
ensemble techniques obtained better results with the 
F1-score values of 0.83, 0.84, and 0.82 for XGBoost, 
RF, and AdaBoost, than the non-ensemble models 
that acquired the F1-score values of 0.80, 0.62, and 
0.57 for logistic regression, KNN, and naïve Bayes, 
respectively, on the skewed holdout test dataset. This 
suggests that associating the predictive performance 
of multiple AI-based algorithms is superior in 
comparison to all other individual counterparts. We 
also experimented with both balanced and 
imbalanced datasets to investigate the pros and cons 
of subsampling. Our results suggest that both 
balanced and imbalanced datasets have their 
advantages and disadvantages, therefore, depending 
on the desired metrics both types of datasets can be 
applied to inform case detection models. Diagnostic 
tools like this can assist primary care physicians by 
providing likely predictions of patients’ health status 
at each visit. 

For future work, we will include the text chart 
notes, which contain elaborate encounter notes 
logged by the physicians during patients’ visits, in 
developing or improving the models. It is also 
important to provide good reasoning for the 
prediction and highlight supporting information from 
EMR. Therefore, explainable model development is 
another future work direction. 
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