

Tiny Neural Network Pipeline for

Vocal Commands Recognition @Edge

Ivana Guarneri1, Alessandro Lauria2, Giovanni Maria Farinella2 and Corrado Santoro2
1STMicroelectronics, System Research and Applications, Stradale Primosole 50, Catania, Italy

2Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Catania, Italy

Keywords: Speech Recognition, Deep Learning, Edge-AI.

Abstract: Vocal analysis and speech recognition have been a challenge for the research community for a long time. The

widespread of deep learning approaches, the availability of big datasets and the increasing computational

capabilities of processors, have contributed to achieve disruptive results in this field. Most of the high

performing existing speech recognition systems are available as cloud services. Other systems are hybrid,

with some parts on the cloud and some modules running on the microcontroller. One of the challenges is to

realize high performing speech recognition systems running on the edge, where the edge is an integrated

platform, composed by a processing unit, a bank of memory and a power unit. In this paper is proposed an

end-to-end deep learning approach to recognize a set of vocal commands able to work on an edge IoT node.

Tests have been performed on a tiny platform and the study with different settings is reported.

1 INTRODUCTION

Speech recognition is nowadays one of the most

powerful and used application of artificial

intelligence. Speech recognition engines reach high

accuracy thanks to the exploitation of high

performing hardware platforms coupled with

complex deep neural architectures and the availability

of large datasets. In the context of vocal analysis

many improvements have been done thanks to the

spread of new sophisticated deep learning techniques

compared on the cloud. However, less attention has

been given to automatic speech recognition (ASR)

solutions to be employed on hardware platforms with

limited capacities in terms of power processing and

storage capacity. Deep neural network models need

both a big amount of flash memory to store

parameters and a high-power processing capability.

In this paper we focus on the recognition of a set

of vocal commands with the goal of developing a

deep learning solution to be executed directly on a

microcontroller, i.e., a platform with limited

resources in terms of memory and processing

capability.

Most of the available works on vocal commands

recognition with microcontrollers take inspiration

from latest performing deep learning approaches used

in the state of the art of ASR (Solovyev, 2018).

Being ASR on a microcontroller the main target,

the classical approaches are usually resized and

modified trying to develop tiny deep learning

architectures able to guarantee good performances.

Interesting works are available in the literature. In

(Zhang, 2018) the authors propose solutions for the

keyword spotting problem. They trained different

neural network architectures and compared the

obtained results together with the memory and

computing requirements. The study explains how to

optimize the neural network architectures for a good

fitting in the limited memory and how to obtain real

time execution on the microcontroller without

sacrificing the keyword spotting performances.

In (McGraw, 2016) the authors present a compact

speech recognition system with large vocabulary able

to run on mobile devices with low latency and good

performances. To reach this result they used a

Connectionist Temporal Classification (CTC) based

Long Short Term Memory (LSTM) compressed

model.

In (Sainath, 2015) the author explores a

Convolutional Neural Network (CNN) for a small-

footprint keyword spotting task. The effectiveness of

the approach is demonstrated on two different use

cases: in the first one the number of multiplications is

Guarneri, I., Lauria, A., Farinella, G. and Santoro, C.
Tiny Neural Network Pipeline for Vocal Commands Recognition @Edge.
DOI: 10.5220/0010908800003124
In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 2: HUCAPP, pages
249-254
ISBN: 978-989-758-555-5; ISSN: 2184-4321
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

249

limited, and, in the second one, the number of

parameters is limited. The result of the comparison

shows that CNN architectures give an improvement

in the range 27-44% relative to false reject rate

compared to other Deep Neural Networks (DNN).

This paper proposes a solution for the automatic

recognition of vocal commands to be executed on the

edge. The considered edge platform is equipped with

a processing unit, a bank of memory, a unit power,

some sensors and connectivity. The developed

solution runs directly on the microcontroller by

processing data coming from the sensors which are

also placed on the same board.

Hence, the edge computing processes data

directly on the board where they are generated. This

aspect is important also for a privacy point of view

and for ensuring a lower power consumption.

It is worth noticing that when an algorithm runs

on the cloud, data is usually transferred to and from a

server. During the stream of data, the system is

vulnerable, due to possible attacks. The typical data

flow starts from an application running on a platform

placed in the real world that captures data through its

sensors. These data are used to take a decision or, in

general, to generate a possible activation. Data is

hence uploaded from sensors to the server. The output

of the processing is sent back to the application. With

this pipe, a processing unit running on the cloud can

be attacked with possible private risks for the users.

An edge processing unit no need to transfer data.

It ensures the privacy of data and the energy

consumption is contained due to lower power

consumption of an IoT node which is lower than the

one of the Cloud.

We performed a study by means of a set of

experiments that considered a deep learning

algorithm able to classify 10 different speech

commands. The solution has been tested on a very

low constrained resourced IoT node named

SensorTile (STMicroelectronics, 2019) produced by

STMicroelectronics. This platform is equipped with a

STM32L4 microcontroller running at 80MHz, 1MB

of flash memory, 128KB of RAM and a digital

microphone.

The paper is organized as follows. Section 2

describes the datasets used to train and test the

proposed neural network system and reports the

analysis done on the considered dataset. In Section 3,

the details on the proposed method for short

commands recognition are reported together with a

summary of the results obtained by running the

proposed algorithm on an STM32 microcontroller.

Conclusions are given in Section 4.

2 DATASETS

The dataset used in this work has been populated by

using data from two main repositories: Google

Speech Commands Dataset (Warden, 2018) and Hey

Snips Dataset (Coucke, 2019).

The Google dataset contains 30 different words

for a total of 65.000 audio files of one-second each.

Each word has about 2000 samples. The dataset is

released under Creative Commons BY 4.0 and it is

constantly updated by the community. Words are

pronounced by different speakers (both male and

female subjects), and using microphones placed at

various distances.

 The Snips dataset is a Natural Language

benchmark dataset, it contains a large variety of

English accents and recording environments. It is

composed of about 11K wake-word utterances and

86.5K (∼96 hours) negative examples.

The dataset used to train and test the proposed

solution has been firstly arranged in four classes as

reported in Table 1. The “Comms” class contains data

from Google dataset and it is relative to ten vocal

commands: go, stop, left, right, up, down, on, off,

Marvin and Sheila. These commands are single words

preceded and followed by silence. The other words

available in the Google dataset have been used to

represent the class “Words”.

Part of the 86.5K negative examples from Snips’

dataset has been used to populate the class “Talk”

with natural language phrases. The class

“Background” contains audio relative to not human

speaking, such as silence and environmental noise

taken from youtube. The set of “Comms” in Table1 is

aligned with the one used in other works presented in

literature as, for example, in (Zhang, 2018) or in

(Gouda, 2020); differently to these works we

substituted “yes” and “no” with “Marvin” and

“Sheila” because, in our future works, these names

will be used to wake up robots to be piloted with the

proposed vocal commands recognition system.

Table 1: Dataset organized in four audio classes.

Classes Description

Comms 10 vocal commands of Google dataset: go,

stop, left, right, up, down, on, off, Marvin,

Sheila

Words Words different from the 10 selected

commands of Google dataset

Talk Continuous speaking sampled by Snips’

dataset

Background Silence and noise environments sound

sampled from youtube

HUCAPP 2022 - 6th International Conference on Human Computer Interaction Theory and Applications

250

The first three classes shown in Table 1, have been

partitioned through a K-Means processing (Xu, 2020)

as proposed in Figure 1.

K-Means is a classic algorithm to perform

partition data from a semantic point of view. In this

case it is used to perform a partition of the audio

features for each class. We set K=2 to split in two

clusters each class. The Background class has not

been processed with K-Means because it includes

homogeneous files. Figure 1 shows the dataset’s

folders organization before and after the K-mean

processing.

Figure 1: Dataset before and after the K-mean processing.

3 PROPOSED SYSTEM

3.1 Tiny Networks Pipeline

The proposed vocal command recognition system is

configured as a cascade of two networks as shown in

Figure 2.

The “First Net” is trained and tested with 7 classes

reported in Figure 1: Background, Comms_0,

Comms_1, Talk_0, Talk_1, Words_0 and Word_1.

The “Second Net” is trained and tested with 11

classes: ten vocal commands plus a filler class

containing single words different from the ten

commands.

Figure 2: First and Second Network.

The selected 10 commands are: Marvin, Sheila,

go, stop, left, right, up, down, off.

The interaction between the two nets is handled

by a state machine. We consider two main states, 𝑆0

and 𝑆1. The execution of the First Net identifies the

state. If the inference output of the First Net is the

comms_0 or the comms_1 class, then the considered

state is 𝑆1. In all other cases the state 𝑆0 is considered.

The Second Net is executed only when the output of

the First Net determines the state 𝑆1. In state

𝑆0 the MFCC matrix is updated by following the

FIFO order and maintaining the system in a low

power mode profile.

Figure 3 shows the general diagram of the entire

system.

Figure 3: Vocal command recognition system diagram.

The input to the whole system is the audio stream

captured by the microphone of the SensorTile. The

output is one of the ten vocal commands or the Filler

class.

The input of both nets are the Mel Filter Cepstral

Coefficients (MFCC) that are classic audio features

(Hasan, 2021) (Albadr, 2021). The MFCC

coefficients are organized in a matrix 13x28 that is

continuously updated with new columns that are

added to the queue according to a FIFO (First In First

Out) order.

Before the training step, the audio features are

normalized according to the equation (1) to have a

data distribution with zero mean and standard

deviation equal to one.

𝑥′ =
𝑥 − 𝜇

𝜎
 (1)

were x is the original feature vector, 𝜇 and 𝜎 are

the mean and the standard deviation of the training set

respectively. Normalization is useful to speeds-up the

convergence of the neural model during the training.

The computed (𝜇,𝜎) are used to normalize the

audio features processed in the inference step. The

proposed system includes two neural models trained

on different datasets, consequently two different sets

of parameters are used to normalize the input of the

Tiny Neural Network Pipeline for Vocal Commands Recognition @Edge

251

two networks. The 𝑁1 normalizes the MFCC in input

of the First Net by applying the (µ1, 𝜎1) values

obtained from the dataset used to train the First Net.

Similarly, the 𝑁2 normalizes the MFCC in input

to the Second Net by using (µ2, 𝜎2) obtained from the

dataset used to train the Second Net.

The audio signal has high energy when people are

speaking and it has low energy when there is silence,

to discriminate these two different cases a filter is

applied on audio features as pre-processing step.

This filter evaluates the temporal average value of

MFCC zero coefficients (Guarneri, 2019) and this

value is used as measure of the energy signal. The

higher the energy, the higher the probability that a

word has been pronounced.

When the output of the filter is high, the audio

frames are firstly normalized by the 𝑁1 and then are

processed by the First Net. The Second Net is hence

triggered and processes the audio after the

normalization step with 𝑁2 only if the output of the

First Net is classified as Comms_0 or Comms_1

(state 𝑆1).

The output obtained by the Second Net is the

output of the overall system.

3.2 Embedding on Microcontroller

The proposed voice command recognition based on a

cascade of networks has been selected after analysing

different networks configurations and by taking in

consideration the HW resources of the target edge

platform. More specifically, the recognition engine

has been designed to be executed on a SensorTile

board (Figure 4) which is a tiny, square-shaped IoT

module that packs processing capabilities, leveraging

an 80 MHz STM32L476JGY microcontroller and

Bluetooth low energy connectivity based on the

BlueNRG network processor as well as a wide

spectrum of motion and environmental MEMS

sensors. The board includes a digital microphone. The

SernsorTile memory capability is 1MB of FLASH

and 256 KB RAM. SensorTile can fit snugly in the

users IoT hub or sensor network node to become the

core computing platform of the developed solution.

Figure 4: SensorTile IoT node.

In edge computing it is fundamental to find the

right trade-off between the complexity of the solution

and its acceptable performance. In this scenario the

proposed system has been tuned through several tests

by considering the memory and power processing

limitations of the SensorTile module.

The two-nets final system, obtained after reducing

its size and complexity, is constituted by two

Recurrent Neural Networks (Cases, 2019) with a

Long Short-Term Memory architecture (Palangi,

2016) (Sak, 2014).

The two LSTMs have different sizes, the first net

includes two hidden layers each of 32 units, followed

by a Fully Connected layer with 7 neurons.

The second network is quite bigger than the first

one including two hidden layers each of 64 units,

followed by a Fully Connected layer with 11 neurons.

The input of both nets is a 13x28 matrix of audio

features.

The memory requirements and the complexity of

the proposed cascade architecture has been estimated

by using the X-CUBE-AI (STMicroelectronics, X-

Cube-AI) expansion package part of the

STM32Cube.MX ecosystem (STMicroelectronics,

STM32Cube.MX).

This tool automatically optimizes pre-trained

networks and integrates the generated optimized

library into the user's project. The X-CUBE-AI

Expansion Package also offers the possibility to

validate artificial intelligence algorithms both on

desktop PC and STM32 microcontrollers. It is also

possible to measure performance on STM32 devices

without user handmade ad-hoc C code. As reported in

Table 2, the required memory of the proposed system

is 0.08MB which fits in the SensorTile’ FLASH.

Table 2: Memory requirements of the system and of the

target edge platform.

Memory requirements of the
cascade system

0,08 MB

SensorTile FLASH 1 MB

3.3 Tests on Microcontroller

To evaluate the performances in terms of accuracy,

the proposed cascade system is compared with a

baseline composed by a single network (Single Net).

The single network is built trying to obtain a size

comparable to the cascade network. In this way the

two different systems, requiring the same amount of

memory, can be properly compared in terms of

accuracy and power saving capability. The Single Net

is constituted by a LSTM architecture with 4 layers

followed by a Fully Connected layer of 11 neurons.

The first two layers are 16-units LSTM, while the

other two are 32-units LSTM.

HUCAPP 2022 - 6th International Conference on Human Computer Interaction Theory and Applications

252

Details regarding memory requirements and

complexity expressed in terms of multiply-

accumulate (MAC) operations, are reported in Table

3 for the compared systems.

Data related to the proposed cascade approach are

obtained by summing the relative MAC and FLASH

values of the First and Second nets composing the

system.

The proposed approach and the compared

baseline based on a single net are very similar in

terms of complexity and memory requirements.

Table 3: Complexity and memory requirements of the

proposed cascade approach and of the Single Net.

APPROACH MAC FLASH

Cascade approach 515649 80,55 KB

Single Net 525795 79,68 KB

The two networks have been both trained on 11 vocal

commands. The accuracy for each class is reported in

Table 4

Table 4: Accuracy related to the 11 vocal commands.

 Cascade Net Single Net

Marvin 85 % 64%

Sheila 93 % 81 %

Left 83 % 61%

Right 86 % 65 %

Up 71 % 50 %

Down 75 % 59 %

Go 80 % 48 %

On 78 % 63 %

Off 73 % 74 %

Stop 81% 67 %

Filler 78 % 76%

Avg 80,3 % 70,1 %

Results illustrate how the cascade-based system is

more accurate than the Single Net.

The advantage of the proposed solution is not only

relative to a higher accuracy but also to its

contribution to the power saving aspect.

A first contribution comes from the front-end

processing of the Cascade Net system. The neural

network inferences are performed only if the filter on

MFCC zero coefficients estimates a high energy in

the audio signal; the filter switches its output from

low to high level when a change from a noiseless

environment to a noisy one is detected. This means

that in a quiet environment the inferences are not

executed, and the system stays in a low power

consumption mode.

The second contribution comes from the handling

of the two states 𝑆0 and 𝑆1 described in previous

sections.

The state machine changes the system's status

from 𝑆0 to 𝑆1 only if the output of the First Net of the

cascade system is classified as a command, otherwise

it remains in 𝑆0 till the filter output is high.

Considering that the audio stream content is mostly

noise environment, continuous speaking or isolated

words different from the few 10 selected commands,

the system is for most of the time in the state 𝑆0; in

this state only the First Net (which is smaller than the

Second Net) is executed and the MCU overall system

workload is reduced.

The proposed cascade mechanism not only

reaches a higher accuracy with respect to a Single Net

architecture, but it is also a lower power solution.

Future tests will be oriented to increase the

robustness of the system to false positives. To reach

this goal a retraining can be done by including data

taken from the heterogeneous Multilingual Spoken

Words Corpus (MSWC) dataset. The MSWC is a

speech dataset of over 340,000 spoken words in 50

languages, with over 23 million audio examples

(Mazumder, 2021). The objective of the retraining is

to obtain a model with higher capability to generalize

and to handle differences in accents or dialects.

4 CONCLUSIONS

In this paper a tiny neural network pipeline able to

classify vocal commands is proposed. The approach

is based on a cascade pipeline which results in a

power saving solution suitable to be executed on a

tiny edge platform with low memory and power

processing resources.

The solution has been mapped on the STM32L4

microcontroller and a comparison with a baseline

architecture composed by a single network has been

done. Results show that the proposed method obtains

a higher accuracy.

Also, the cascade network allows to reach high

accuracies by ensuring a lower MCU workload.

REFERENCES

Solovyev, A., R., Vakhrushev, m., Radionov, A., Aliev,

V., Shvets, A., A. (2018). Deep Learning Approaches

for Understanding Simple Speech Commands. In

arXiv 2018

Tiny Neural Network Pipeline for Vocal Commands Recognition @Edge

253

Zhang, Y., Naveen, S., Lai, L., Chandra, V. (2018). Hello

Edge: Keyword Spotting on Microcontrollers. In

arXiv 14 Feb 2018.

Gouda, S., K., Kanetkar, S., Harrison, V., Warmuth, M., K.

(2020). Speech Recognition: Key Word Spotting

through Image Recognition. In arXiv 24 Nov 2020.

McGraw, R., Prabhavalkar, R., Alvarez, R., Arenas, M. G.,

Rao, K., Rybach, D., Alsharif, O., Sak, H., Gruenstein,

A., Beaufays, F., Parada, C. (2016). Personalized

Speech Recognition on Mobile Device. In arXiv 11 Mar

2016.

Sainath, T. N., Parada, C. (2015). Convolutional Neural

Networks for Small-footprint Keyword Spotting. In

Sixteenth Annual Conference of the International

Speech Communication Association, 2015.

STMicroelectronics (2019). STEVAL-STLKT01V1 Data

brief -SensorTile development kit

Warden, P. (2018) Speech commands: A dataset for

limited-vocabulary speech recognition. In arXiv

preprint arXiv:1804.03209, 2018

Coucke, A., Chlieh, M., Gisselbrecht, T., Leroy, D.,

Poumeyrol, M., Lavril, Thibaut. (2019) Efficient

Keyword Spotting Using Dilated Convolutions and

Gating. In arXiv, 18 Feb 2019.

Muda, L., Begam, M., Elamvazuthi, I. (2010). Voice

Recognition Algorithms using Mel Frequency Cepstral

Coefficient (MFCC) and Dynamic Time Warping

(DTW) Techniques. In Journal of Computing, volume

2, issue 3, March 2010, ISSN 2151-9617

Xu, H., Yao, S., Li, Q., Ye, Z.. P. (2020). K-Means

Clustering and Related Algorithms. In IEEE 5th

International Symposium on Smart and Wireless

Systems within the Conferences on Intelligent Data

Acquisition and Advanced Computing Systems

(IDAACS-SWS)

Hasan, R., Hasan, M., Hossain, Z. (2021). How many Mel-

frequency cepstral coefficients to be utilized inspeech

recognition? A study with the Bengali language. In The

Journal of Engineering, 4 September 2021

Albadr, M.A.A., Tiun, S., Ayob, M. et al. (2021) Mel-

Frequency Cepstral Coefficient Features Based on

Standard Deviation and Principal Component Analysis

for Language Identification. (2021). In
Systems. Cognitive Computation 13, 1136–1153 16

July 2021

Mazumder, M., Chitlangia, S., Banbury, C., Kang, Y., Ciro,

J., Achorn, K., Galvez, D., Sabini, M., Mattson, P.,

Kanter, D., Diamos, G., Warden, P., Meyer, J., Reddi,

V., J. (2021). Multilingual Spoken Words Corpus. In
35th Conference on NeurIPS Track on Datasets and

Benchmarks, 2021

Cases, I., Rosenbaum, C., Riemer, M., Geiger, A., Klinger,

T., Tamkin, A., Li, O., Agarwal,S., Greene, J. D.,

Jurafsky, D., Potts, C., Karttunen, L. (2019). Recursive

Routing Networks: Learning to Compose Modules for

Language Understanding. In North American Chapter

of the Association for Computational Linguistics:

Human Language Technologies, 2019

Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J.,

Song, X., Ward, R. (2016). Deep sentence embedding

using long short-term memory networks: analysis and

application to information retrieval. In IEEE/ACM

Transactions on Audio, Speech and Language

ProcessingVolume 24Issue 4April 2016

Sak, H., Senior, A., Beaufay, F. (2014). Long Short-Term

Memory Recurrent Neural Network Architectures for

Large Scale Acoustic Modeling. In Interspeech.2014-

80

Guarneri, N. I. (2019). Trigger to Keyword Spotting

System. United States Patent Application

20210065689.

STMicroelectronics, X-Cube-AI. In X-CUBE-AI - AI

expansion pack for STM32CubeMX -

STMicroelectronics

STMicroelectronics, STM32Cube.MX. In STM32CubeMX

- STM32Cube initialization code generator -

STMicroelectronics.

HUCAPP 2022 - 6th International Conference on Human Computer Interaction Theory and Applications

254

