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Abstract: There is a technique using the CARS (Coherent Anti-Stokes Raman Scattering) microscope to identify iPS 
cells. CARS microscope can visualize the different molecular structures of iPS cells in each spectrum, so it is 
possible to identify iPS cells without destroying them. However, the information on molecules in the spectrum 
obtained by the CARS microscope is so diverse that it takes a great deal of time and effort to identify them. 
We propose a method to automatically identify the spectrum, which is effective for iPS cell identification, 
thereby reducing the time and effort required for identification using the CARS microscope. In this paper, we 
propose a network that handles multi-resolution information in parallel to learn both image classification and 
segmentation simultaneously. Moreover, the effective spectrum for classifying iPS cells are discovered by 
using the network gradients and the F-measure for cell segmentation. By the experiments on four kinds of iPS 
cells, we confirmed that the accuracy of the proposed method for classifying iPS cells achieved 99%. 
Furthermore, the effective spectrum for each iPS cell could be automatically identified. 

1 INTRODUCTION 

iPS cells (Takahashi et al., 2006) are capable of 
transforming into almost any types of cells, and 
regenerative medicine research (Hideyuki et al., 
2019) using their characteristics is actively 
conducted. To use iPS cells for regenerative medicine, 
it is necessary to transform them into other cell types 
(called “differentiation”). However, because of the 
variability in the efficiency and direction of 
differentiation of iPS cells into the other cells, when 
iPS cells are differentiated from iPS cells, cell types 
other than the intended ones or cells that have not 
been fully differentiated may be mixed in. 
Furthermore, when cells differentiated from iPS cells 
are transplanted into an organism, it is known that 
tumors can be formed if undifferentiated iPS cells are 
mixed in. 

There is a method using CARS (Coherent Anti-
Stokes Raman Scattering) microscope (Cheng et al., 
2004) to identify iPS cells and their differentiated 
cells. CARS (Begley et al., 1974) is a phenomenon in 

which two different spectra of light are irradiated on 
a material, and light with a spectrum different from 
both is generated. CARS microscope allows us to 
visualize the molecular structure of the cell in each 
spectrum. Therefore, CARS microscopy makes it 
possible to identify iPS cells without destroying 
(killing) cells. However, the information on 
molecules in the spectrum obtained by the CARS 
microscopy is so diverse that it takes a great deal of 
time and effort to identify them. Therefore, it reduces 
the time and effort required for identification using 
the CARS microscope by automatically identifying 
the spectra that are effective for iPS cell 
identification. We perform automatic classification 
using CNN from spectrum images obtained by the 
CARS microscope. Furthermore, from the results of 
the classification, we discover the effective spectrum 
for classifying each iPS cell.  

There is a method using Grad-CAM (Selvaraju et 
al., 2017)  to identify the spectrum that is effective for 
identification. By using Grad-CAM, it is possible to 
identify the effective spectrum as the one with a large 
importance value in the feature maps (Takeshi et al., 
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(a)                                                               (b)                                                             (c) 

Figure 1: Example of visualization results for the portion of each spectrum that was identified as effective for classification. 
(a) Visualization of the location of cells in the input image. (b) Example of a visualization result in which cells are captured 
by the portion that is considered effective for classification. (c) Example of a visualization result in which cells are not 
captured by the portion that is considered effective for identification. 

2019). However, as shown in Figure 1, this method 
judges an object to be effective even when the 
effective spectrum for classification does not capture 
the cells such as a culture medium.  

We proposed the automatic detection method of 
the effective spectrum shown in Figure 2 to solve the 
shortcomings of the Grad-CAM based effective 
spectrum identification. The multi-scale network 
learns by handling feature maps with multiple 
resolutions in parallel. The effective spectrum 
calculation module uses the gradients like Grad-CAM 
to calculate the important feature map and then 
multiplies it by the F-measure for cell segmentation 
obtained from the multi-scale network. By 
multiplying F-measures, we can reduce the 
importance of the spectrum that does not capture 
cells. 

In experiments, we classify four types of iPS cells 
using images captured by the CARS microscope. We 
also identify the effective spectrum from the 
classification results. As a result, we were able to 
successfully classify iPS cells with 99% accuracy and 
discover class-specific effective spectrum. 

This paper is organized as follows. Section 2 
describes the related works. The details of the 
proposed are presented in section 3. Section 4 shows 
experimental results. Finally, conclusion and future 
works are described in section 5. 

2 RELATED WORKS 

2.1 Identification of iPS Cells using 
CARS Microscope 

Researches on the application of iPS cells to 
regenerative medicine are actively conducted. A 

method for identifying high-quality iPS cells is to use 
the CARS microscope (Michiel et al., 2007). CARS 
microscope utilizes the phenomenon of CARS which 
is the generation of light with a spectrum different 
from that of either light when two lights with different 
spectra are incident on a material. CARS microscope 
allows us to visualize the molecular structure of iPS 
cells in a non-destructive, non-invasive, non-staining, 
and non-labelling manner. Thus, we can identify the 
cells in their living state. However, the spectrum 
obtained by the CARS microscope contains a variety 
of molecular information, and it is very costly to 
obtain all the molecular information. Therefore, we 
reduce the cost by discovering the effective spectrum 
for classifying cells. In this paper, we propose a 
classification method of iPS cells using the CNN 
which has a structure like the HR-net (Saad et al., 
2017), and an effective spectrum for classifying iPS 
cells is discovered automatically. 

2.2 Effective Spectrum Discovery using 
Grad-CAM 

There is a method for discovering the effective 
spectrum for classification by using Grad-CAM 
(Takeshi et al., 2019). This method identifies 
effective spectrum by comparing the average of the 
gradients of the convolutional layers computed in the 
same way as Grad-CAM for each feature map. 
However, in this method, the spectrum may be judged 
to be effective even when the result is shown in Figure 
1(c). In other words, when the gradient of a 
convolutional layer is computed for the input cell 
image and the gradient of non-cell pixels shows a 
large value, this spectrum is erroneously judged to be 
effective. 
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Figure 2: Overview of the proposed method. It consists of a multi-scale network and an effective spectrum calculation module, 
and it identifies the effective spectrum for classifying the input cell by the magnitude of the final output value. 

In this paper, we use segmentation (Long et al., 
2015) to solve this problem. Segmentation becomes 
more accurate as the per-pixel accuracy improves. 
Therefore, when the cell locations are recognized 
more accurately, the F-measure becomes large. When 
cell segmentation does not work well, the F-measure 
becomes small. By multiplying the F- measure for 
segmentation with the gradients of feature maps, it is 
possible to suppress the importance values when the 
gradients of non-cell pixels are large, and we discover 
effective spectrum correctly. Therefore, by using the 
result of cell segmentation, we can prevent the 
example as shown in Figure 1(c).  

3 PROPOSED METHOD 

The proposed effective spectrum identification 
network shown in Figure 2 consists of a multi-scale 
network shown in Figure 3 and an effective spectrum 
calculation module. Section 3.1 describes the multi-
scale network. Section 3.2 describes the effective 
spectrum calculation module. 

3.1 Multi-scale Network 

The purpose of the multiscale network is to learn the 
features while focusing on the location of cells. Multi-
scale networks have two characteristics. The first one 
is the network structure used to learn by handling the 
features of multiple resolutions in parallel. The 
second one is the skip connection to compensate for 
the information in the input spectrum.  

The structure of the multiscale network is shown 
in Figure 3. The reason for training multiple 
resolutions in parallel (Sun et al., 2019) is to 
efficiently learn the classification and segmentation at 
the same time. Segmentation is the task that class 
labels are assigned to each pixel in an image, and it is 
possible to learn cell location information by 

incorporating segmentation learning. Therefore, we 
expected that the network would learn to use much 
information of cells during classification because it 
would understand the location of the cells better than 
the case without segmentation learning. The 
multiscale network used convolution with a kernel 
size of 3 with stride 2 to reduce the resolution, and 
bilinear interpolation to increase the resolution. In the 
multiscale network, depth wise convolution was 
applied to only the first layer, and normal convolution 
was applied to the remaining layers. To perform 
image classification, all feature maps of the input 
image are aggregated into a feature map with a 
reduced resolution of 1∕4. To perform segmentation, 
all feature maps are aggregated into a feature map of 
the same size as the input image. We also introduce 
attention in the channel direction during training to 
make it easier to identify the spectrum that is effective 
for classification.  

Multi-scale networks used convolution to extract 
features. The convolution calculates the output of one 
channel by multiplying all the input channels by their 
weights. Since the information of all spectra is mixed, 
it is impossible to identify effective spectrum from 
the feature maps. To solve this problem, we used the 
skip connection like ResNet (He et al., 2016), and 
added the input features to the output feature maps of 
the multi-scale network. By using the skip 
connection, it is possible to compensate the original 
spectrum for the output features and identify which 
spectrum is effective. To match the size of the input 
image and the output feature maps from the multi-
scale network, we used average pooling with filter 
size 4 and stride 4. 

3.2 Effective Spectrum Calculation 
Module 

The effective spectrum calculation module identifies 
the effective spectrum for classification from the  
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Figure 3: Overview of multi-scale networks. 

feature maps in the multi-scale network. This module 
can identify the effective spectrum while suppressing 
the spectrum that does not capture cells as shown in 
Figure 1(c). The module consists of the preparation of 
keymaps and identification of the effective spectrum. 
The keymaps indicate the importance of each 
spectrum. The preparation of a keymap is performed 
in the following three steps. First, we obtain the final 
convolutional layer with the lowest resolution in the 
multi-scale network. Second, we calculate the 
gradient of the convolutional layer for the correct 
class. Third, by multiplying the calculated gradient 
value by the feature map, a keymap is created that 
identifies the important areas for identification. By 
multiplying the feature map by the gradient value, the 
keymap has larger values for important pixels for 
classification. 

Identification of the effective spectrum is 
performed in the following three steps. First, we 
obtain the feature maps with the highest resolution in 
the multi-scale network and evaluate whether the cell 
locations are segmented well by using the F-measure 
or not. Second, the keymaps for each spectrum are 
multiplied by the F-measure for each spectrum. The 
effective spectrum is identified by the magnitude of 
the multiplied values. By multiplying the F-measure, 
the spectrum that does not capture cells is suppressed, 
and the shortcomings of the existing methods are 
improved. 

The creation of the segmentation labels required 
to learn segmentation in section 3.1 and to obtain the 

F- measure in section 3.2 is described in section 4.2. 

4 EXPERIMENTS 

In this section, we show the experimental results. 
Section 4.1 describes the dataset and augmentation 
used in this study. Section 4.2 gives the overview of 
experiments. Section 4.3 presents the results of 
evaluation experiments. 

4.1 Dataset and Experimental Setup 

The experiments were conducted using multi-
spectrum images of iPS cells captured by the CARS 
microscope. The classes in the dataset consist of four 
classes; ectoderm (ECT), mesoderm (MES), 
endoderm (END), and undifferentiated (UND). The 
total number of data for each class is 100; 25 for ECT, 
25 for END, 25 for MES, and 25 for UND. These data 
were originally from the same cell line and were 
imaged after 1 week of incubation under different 
culture conditions. The number of spectra visualized 
per sample was 609, and the size of each image was 
70x110 pixels. Due to the small number of images, 
we use 5-hold cross-validation. We use 80 images for 
training and 20 images for validation. 

Data augmentation is proven to be an efficient 
technique to improve the overall model performance. 
In our experiments, data augmentation was used to 
improve the performance of the multiscale network.  
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Table 1: The overview of experiments. 

 Processes 
Ⅰ Create a simplified segmentation label 
Ⅱ Learning Multiscale Networks 
Ⅲ Back propagation of the final convolutional 

layer using a trained multiscale network 
Ⅳ Multiply the gradient by the convolutional layer 

of the final layer 
Ⅴ Calculating F-measure from high-resolution 

feature maps of multiscale networks 
Ⅵ Multiply the results of IV and V 
Ⅶ Sum up the results for each class 

In training, we performed random horizontal and 
vertical flipping after random cropping of the image 
to a size of 64 x 64 pixels. In validation, the image 
size was changed to 72 x 112 by zero padding to make 
the calculation easier. 

We used the Pytorch library and trained the 
network with Adam for 100 epochs. The base 
learning rate (lr_base) was set to 0.01, and when there 
were 50 epochs, the learning rate was set to 0.001 and 
the network was trained. We use a batch size of 40 
and a momentum of 0.9. The loss function is a 
combination of Cross entropy loss during training for 
discrimination and Dice loss during training for 
segmentation. 

4.2 Overview of Experiments  

In this section, we describe the flow of experiments. 
The overview is given in Table 1. A simplified label 
for segmentation is created by summing all 609 
spectra and then binarizing Otsu’s method (Otsu, 
1979) because it is only necessary to distinguish cells 
from the background. The network is trained in Table 
1, II to create a model to identify iPS cells. All 
operations below III in Table 1 are performed using 
the trained model. Table 1 VII sums up the results of 
the 5-fold cross-validation up to Table 1 VI. Cells that 
are misclassified by the multiscale network is 
excluded from the calculation.  

4.3 Experimental Results 

We conducted experiments on the dataset obtained by 
the CARS microscope, and the classification results 
of the four kinds of iPS cells are shown in Table 2. 
We compared the accuracy of the network with and 
without multiple resolutions. The network without 
multiple resolutions is a standard CNN that classifies 
the cells with only feature maps of low-resolution. 
Table 2 demonstrated the effectiveness of usage of a 
multi-scale  network  structure.  This  result  suggests  

Table 2: Comparison results. “Single” shows the result 
without using multiple resolutions, and “Multi” shows the 
result with multiple resolutions. 

Acc(%) ECT END MES UND Mean
Single 92 100 96 96 96
Multi 96 100 100 100 99

Table 3: Confusion matrix of the multiscale network. 

 Label 
ECT END MES UND

ECT 24 0 0 0
END 1 25 0 0
MES 0 0 25 0
UND 0 0 0 25

that it is more effective to learn the feature maps while 
retaining location information. 

We compared the results of identifying effective 
spectrum by the proposed method and 
the conventional method using Grad-CAM. Figure 4 
shows the importance of each class of iPS cells for the 
proposed method and Figure 5 shows the importance 
of each spectrum for the conventional method. Figure 
4 demonstrated that the spectrum around 850𝑐𝑚ିଵ, 
1200 𝑐𝑚ିଵ , and 1750 𝑐𝑚ିଵ  for ectoderm (ECT), 
1800𝑐𝑚ିଵ and later for mesoderm (MES), 1300𝑐𝑚ିଵ 
and 1500𝑐𝑚ିଵ for endoderm (END), and the first half 
of the spectrum around 750𝑐𝑚ିଵ for undifferentiated 
(UND) are effective for classification. When we 
compare Figure 4 with Figure 5, the proposed method 
makes it easier to identify the differences in the 
effective spectrum of each cell. 

Figure 6 showed the feature maps that correspond 
to top five effective spectra discovered by the 
proposed method and the conventional method 
(Takeshi et al., 2019). As the result of the 
conventional method, the feature maps that non-cells 
have high value were ranked high. On the other hand, 
in the case of the proposed method, only the feature 
maps that captured cells were ranked high. This result 
demonstrated the effectiveness of our method using 
both the F-measure for segmentation and the 
gradients of feature maps. However, the results in 
Figure 4 showed that the ECT and END classes have 
similar values when the importance of the spectrum 
is not high. This may show that the features of ECT 
and END classes are more similar than those of the 
other two classes, and the ECT class is misclassified 
as END class in Table 3.  
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(b) 

 
(c) 

 
(d) 

Figure 4: The importance of each class of iPS cells by the proposed method. The result is the sum of all values from samples 
in each class. The vertical axis of the figure shows the total importance value, and the horizontal axis shows the spectrum 
(𝑐𝑚ିଵ). (a) Results from of cells in the ectoderm (b) Results of cells in the mesoderm (c) Results of cells in the endoderm (d) 
Results of undifferentiated cells. 

5 CONCLUSION 

In this paper, we propose the multi-scale network for 
classifying iPS cells from the CARS microscopy 
images. Effective spectrum is identified by 
multiplying the F-measure based on cell 
segmentation and the importance based on gradients 
of feature maps. By using the proposed method, we 
were able to identify the effective spectrum for the 
classification of four kinds of iPS cells. This result 
means that it is possible to suggest the molecular 
information that characterizes each cell type from the 
imaging data of the CARS microscope without any 
prior information or prejudice. In the future, we 
would like to make it possible to obtain similar results 
when there are multiple iPS cells in an image. 
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Figure 5: The importance of each class of iPS cells by the conventional method. The result is the sum of all values from 
samples in each class. The vertical axis of the figure shows the total importance value, and the horizontal axis shows the 
spectrum (𝑐𝑚ିଵ). (a) Results from of cells in the ectoderm (b) Results of cells in the mesoderm (c) Results of cells in the 
endoderm (d) Results of undifferentiated cells. 

 
Figure 6: Visualization results of the top five important spectrum. The left column shows the input image, the top row shows 
the results by conventional method, and the bottom row shows the results by the proposed method. From left to right images 
shows the feature maps with the first to the fifth important spectrum. 
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