
BRL: A Toolkit for Learning How an Agent Performs Belief Revision

Aaron Hunter and Konstantin Boyarinov
Department of Computing, BC Institute of Technology, Burnaby, Canada

Keywords: Belief Revision, Knowledge Representation, Learning.

Abstract: Belief revision occurs when an agent receives new information that may conflict with their current beliefs.
This process can be modelled by a formal belief revision operator. However, in a practical scenario, simply
defining abstract revision operators is not sufficient. A truly intelligent agent must be able to observe how
others have revised their beliefs in the past, and use this information to predict how they will revise their
beliefs in the future. In other words, an agent must be able to learn the mental model that is used by other
agents. This process involves combining two traditionally distinct areas of Artificial Intelligence to produce a
general reasoning system. In this paper, we discuss challenges faced in using various learning approaches to
learn belief revision operators. We then present the BRL toolkit: software can learn the revision operator an
agent is using based on past revisions. This is a tool that bridges formal reasoning and machine learning to
address a common problem in practical reasoning. Accuracy and efficiency of the approach are discussed.

1 INTRODUCTION

Belief revision is the process in which an agent in-
corporates new information together with some pre-
existing set of beliefs. This is important in any rea-
soning context where it is useful for an agent to de-
velop a model of how other agents are likely to be-
have. There are many situations where we would like
to predict the behaviour of an agent, based on past
data. As an illustrative example, consider an agent
that is controlling a motorized vehicle. We know the
agent is rational, but we do not know exactly how the
agent makes decisions about actions such as stopping
and turning. We would like to be able to predict how
this agent will respond to new information. For ex-
ample, we may be interested in determining what it
will do if a small animal appears in front of it. By
looking at past revisions, we can try to learn if the
presence of small animals triggers a change in belief.
Note that we are not simply making predictions based
on past actions; we are trying to learn the underlying
revision operator so that we can accurately model the
reasoning process. This will provide a more robust
predictive model.

We are concerned with learning how an agent re-
vises their beliefs, based on past information. Of
course, there are many different approaches does not
involve machine learning at all. We will discuss this
approach, and provide a tool for automating the pro-

cess. We then to consider the application of machine
learning towards this task, considering some different
basic models. We then introduce the Belief Revision
Learner (BRL) toolkit; this is a software tool that uses
past revision data to predict how an agent will revise
their beliefs in the future.

2 PRELIMINARIES

2.1 Belief Revision

We introduce belief revision operators. These are for-
mal operators defined in the setting of propositional
logic. We therefore assume an underlying vocabu-
lary V is a finite set of propositional variables. A
formula is a propositional combination of symbols in
V , formed using the usual connectives. A state is a
propositional interpretation of V ; in other words, a
state assigns true-false values to every variable. A
belief state is a set of states, informally representing
the set of states that an agent considers possible. An
AGM belief revision operator is a function ∗ that maps
a belief state K and a formula φ to a new belief state
K ∗ φ, while satisfying a particular set of postulates
(Alchourrón et al., 1985).

Intuitively, the belief state K ∗ φ incorporates the
new information φ while keeping as much of K as
consistently possible. Hence, if φ is consistent with

Hunter, A. and Boyarinov, K.
BRL: A Toolkit for Learning How an Agent Performs Belief Revision.
DOI: 10.5220/0010899100003116
In Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022) - Volume 3, pages 753-756
ISBN: 978-989-758-547-0; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

753



K, then K ∗φ is just the intersection of K and φ. This
is called belief expansion. But when φ is not consis-
tent with K, then the set of states believed following
revision will be the states where φ is true that are ‘as
close as possible’ to states in K. There is a well known
semantics based on orderings over possible states; we
refer the reader to (Katsuno and Mendelzon, 1992) for
a complete discussion.

For our purposes, the important thing to note is
that AGM revision operators are only appropriate for
single-shot belief revision. The problem is that the
revision process requires an ordering over states, but
the output is just a set of states. Hence, we do not
any ordering to use for subsequent revisions. To ad-
dres iterated belief revision, we could move to the
well-known Darwiche-Pearl approach (Darwiche and
Pearl, 1997). However, this introduces many compli-
cations.

2.2 Machine Learning

In this paper, we are concerned with two kinds of Ma-
chine Learning. At the outset, we will consider Rein-
forcement Learning. Basically reinforcement learn-
ing is based on the idea that an agent is rewarded for
achieving a goal. Agents learn to maximize their ex-
pected reward by choosing actions that are likely to
get them closer to their goal. The well-known Q-
Learning approach is a representative example of re-
inforcement learning; the simple, classic version of
the algorithm is described in (Mitchell, 1997)

We also consider learning approaches based on
classification. A classification learning problem in-
volves predicting how different data points will be
classified. The standard example is the play tennis
problem, where we have information about whether
an agent played tennis under different weather con-
ditions. Using a classification learning algorithm, we
can predict whether they will play tennis or not based
on the past data. We assume that the reader is familiar
with classification learning, as described in (Raschka
and Mirjalili, 2019).

3 EXACT MATCHING

3.1 Modelling

The BRL software to be introduced in this paper is
actually a collection of tools for reverse engineering
a belief revision operator. In the simplest case, we
assume that we have a history that consists of a set
of triples (K,φ,K′) where K′ was the result when K
was revised by φ in the past. Informally, each triple

is understood to mean that there was a past situation
where the agent initially believed K, then received the
information φ and then believed K′.

We remark that this situation is not particularly
reasonable in practice. The problem is that we are
unlikely to know the complete belief state of an agent
before and after an observation. However, if we do
have this kind of data, there is a natural approach. We
can simply check every available revision operator to
see if it is consistent with the data. This is obviously
a very computationally expensive approach.

3.2 Implementation

The first application of BRL we consider is the exact
matching problem. In this case, we are looking for the
set of revision operators ∗ that satisfy K ∗ φ = K′ for
every historical example. This is addressed through a
command line application written in C++ that essen-
tially performs an exhaustive search.

In the exact matching module of BRL, the input is
a comma separated text file, where each row contains
an initial belief state K, a formula φ that was given
for revision, and the new belief state that resulted. We
represent states by expressions of the form {p : 1 q :
0}, indicating that p is true and q is false. Belief states
are just sets of states. For example, a single line in the
history might read as follows:
{p:1 q:1}{p:0 q:0}, (p|q)&-(p&q), {p:1 q:0}

This line indicates that, when the belief state
{{p,q}, /0} was revised by (p∨q)∧¬(p∧q), then the
new belief state was {{p}}.

Given a set of instances in this format, BRL iter-
ates over all possible revision operators and returns
those that are consistent with the past revisions. For
our purposes, the set of possible revision operators is
the set of parametrised difference(PD) operators de-
fined in (Peppas and Williams, 2018). We focus on
PD operators because they are simple to specify, but
they can capture a large class of revision operators.
The output returns a set of ranks over propositional
variables, which eah define a PD operator. A sample
run of the program is shown in Figure 1.

The output gives a compact representation of all
PD operators consistent with the input. These oper-
ators are found relatively quickly, because BRL in-
cludes an efficient revision solver and it uses OpenMP
to test many operators in parallel. As a result, the run
times are acceptable for small examples. For larger
examples, the speed could be improved by using an
ALLSAT solver for the computationally hard parts of
the revision (Hunter and Agapeyev, 2020). We leave
this optimization for future work.

We summarise the average run times for up to 9
variables:

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

754



Figure 1: Exact Matching Interface.

Variables Runtime Variables Run time
2 2 ms 6 730 ms
3 34 ms 7 10000 ms
4 46 ms 8 182000 ms
5 105 ms 9 30min

4 LEARNING

4.1 Modelling

Now suppose that we do not have an exact history.
Instead, we have a fixed formula φ for revision and
a fixed goal formula G. The history is a list of past
initial belief states K, along with a 0-1 value that indi-
cates if G was believed in the past when K was revised
by φ. We refer to these as classification histories. Our
goal in this case is to use machine learning to deter-
mine, for any possible intitial beliefs, if we should
expect the agent to believe G after revision by φ.

We briefly argue why we feel that classification
learning provides a better model for learning in this
case than reinforcement learning. The fundamen-
tal idea underlying machine learning is to maximize
the expected discounted reward. This means that we
are assuming an agent makes choices that iteratively
work towards a goal. Consider, for example, an agent
that solves a maze. If we use reinforcement learning
to solve this problem, the agent will learn an action
policy. However, the action policy will generally be
monotonic, in the sense that choosing a “good” move
will take the agent closer to the reward.

By contrast, when we are modelling belief change
with AGM revision operators, there is no such con-
straint. After each revision, we have no information
about the ordering to use for the next revision. This
means data about agent behaviour need not be mono-
tonic, and in fact we will not have any meaningful
notion of a sequence of revisions. For this reason, we
focus on the use of classification learning algorithms
for our toolkit.

4.2 Implementation

The classification learning module of BRL uses the
Flask framework to implement a variety of classifica-
tion algorithms. Figure 2 provides an image of the
interface.

In the classification module, the available history
is concerned with a single goal formula G. The input
for BRL in this case is a classification history. Each
instance in such a history consists of an initial belief
state K, a formula φ, and a 0-1 value for G. A 1 value
means that G was believed in the past when K was
revised by φ. A 0 value means it was not believed.
Hence, each instance has the following form:

{p:0 q:0 r:1}{p:1 q:1 r:0}, p|(q&r), 0

Given a set of instances of this form, BRL uses clas-
sification learning algorithms to predict if K ∗ φ |= G
for new initial belief states.

For testing the system, we specify a revision op-
erator and then generate a large set of instances based
on this operator. We then use the software to deter-
mine if we should predict K ∗φ |= G for any new be-
lief state K. Table 1 shows the experimental results
obtained when the software was tested for 5 differ-
ent algorithms on a randomly generated set of roughly
28,000 instances. The different metrics for accuracy
are defined in (Raschka and Mirjalili, 2019), and they
each have a maximum value of 1.

We can see that all of the ML algorithms tested
actually provide reasonably accurate predictions. The
accuracy of the predictions means that BRL is able to
effectively determine whether or not an agent will be-
lieve the target formula, given arbitrary initial belief
states. Hence, our results suggest that ML algorithms
provide an effective method for learning how an un-
known belief revision operator will respond to a new
observation.

BRL: A Toolkit for Learning How an Agent Performs Belief Revision

755



Figure 2: Classification Learning Interface.

Table 1: System Performance of Classification Learning.

ML Algorithm Precision Recall F1 Running Time

BaggingClassifier (SGD) 0.91469 0.965 0.93917 214.52
RandomForestClassifier 0.96689 0.73 0.83191 4.4737

SGDClassifier 0.85027 0.795 0.82171 0.35567
BaggingClassifier (DecisionTree) 0.96970 0.96 0.96482 110.54

DecisionTreeClassifier 0.96059 0.975 0.96774 0.48756

5 CONCLUSION

The problem of deriving plausibility information for
revision from examples has been addressed in theoret-
ical work (Liberatore, 2015). However, there has been
little research on the development of practical tools
for learning revision operators from data. This idea
is discussed in (Hunter, 2018), but that work focuses
only on the feasibility of ID3 learning without any
experimentation or software development. As such,
BRL is really the first fully implemented sofware tool
for learning revision operators from data.

Our results demonstrate that exact matching is
only feasible for small examples. However, the ML
approach provides a viable method to learn something
about the revision operator an agent is using. In many
practical situations, this is sufficient. More impor-
tantly, we argue that our approach here is a useful for
Artificial General Intelligence in that it demonstrates
how machine learning can be used together with for-
mal methods to develop a practical reasoning tool.

REFERENCES

Alchourrón, C., Gärdenfors, P., and Makinson, D. (1985).
On the logic of theory change: Partial meet func-

tions for contraction and revision. Journal of Symbolic
Logic, 50(2):510–530.

Darwiche, A. and Pearl, J. (1997). On the logic of iterated
belief revision. Artificial Intelligence, 89(1-2):1–29.

Hunter, A. (2018). Learning belief revision operators. In
Proceedings of the Canadian Conference on Artificial
Intelligence, pages 239–245.

Hunter, A. and Agapeyev, J. (2020). GenC: A fast tool for
applications involving belief revision. In Proceedings
of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, pages 5219–5221.

Katsuno, H. and Mendelzon, A. (1992). Propositional
knowledge base revision and minimal change. Arti-
ficial Intelligence, 52(2):263–294.

Liberatore, P. (2015). Revision by history. Journal of Arti-
ficial Intelligence Research, 52:287– 329.

Mitchell, T. M. (1997). Machine learning, International
Edition. McGraw-Hill Series in Computer Science.
McGraw-Hill.

Peppas, P. and Williams, M. (2018). Parametrised differ-
ence revision. In Proceedings of the International
Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), pages 277–286.

Raschka, S. and Mirjalili, V. (2019). Python Machine
Learning: Machine Learning and Deep Learning with
Python, Scikit-Learn, and TensorFlow 2, 3rd Edition.
Expert insight. Packt Publishing, Limited.

ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence

756


