
Extraction Process of the Logical Schema of a
Document-oriented NoSQL Database

Fatma Abdelhedi1 a, Hela Rajhi2 b and Gilles Zurfluh2 c
1CBI² - TRIMANE, Saint Germain-En-Laye, France

2IRIT, Toulouse Capitole University, Toulouse, France

Keywords: NoSQL DB, OrientDB DB, Schemaless, Logical Schema, Models Transformation, ATL, Metamodels.

Abstract: The "schemaless" property, common to most NoSQL systems, means the absence of a data schema when
creating a database (DB). This property brings an undeniable flexibility by allowing the schema to evolve
during the use of DB. However, the absence of a schema is a major obstacle for developers and decision
makers. Indeed, the expression of queries (of SQL type) requires a precise knowledge of this schema. In this
paper, we propose an automatic process to extract the logical schema of document-oriented NoSQL DBs. We
chose the OrientDB NoSQL system which appeared to be the most suitable for the application in our project,
because of its ability to express rich data structures and a diversity of links between data: association,
composition and inheritance links. Our solution, based on the MDA architecture, proposes to metamodel a
NoSQL DB and its schema. From these metamodels, transformation rules allow to extract the schema of the
DB. The implementation of this process on an OrientDB DB allows users to have all the necessary elements
(class names, properties, data types and links) for the elaboration of queries. An experimentation of the process
was carried out on three test-DBs as well as on two massive industrial DBs.

1 INTRODUCTION

For several decades, the volume of digital data has
increased dramatically due to the multiplicity of
computing devices present in all areas of our
professional, public and personal lives. Massive DBs
or "Big Data" contain several terabytes of data from
different sources and in various formats such as text,
tables, documents... Currently, relational DBMS
dominate the storage market; they require that data
respect a schema provided before that is fed (Elmasri
& Navathe, 2011). Big Data has favored the
emergence of NoSQL systems that provide great
flexibility in data management while offering good
access performance to large volumes of data. This
flexibility is notably allowed by the Schemaless
property which does not require schema specification
before data entry; thus, the rows of a table can contain
different attribute names and values of various types.
Thus, most NoSQL systems of document, column or

a https://orcid.org/0000-0003-2522-3596
b https://orcid.org/0000-0001-8538-6229
c https://orcid.org/0000-0003-3570-9792

graph-oriented types (MongoDB, CouchDB,
OrientDB, HBase, Neo4j) are schemaless.

In the absence of a schema, writing queries on a
NoSQL DB needs to be entrusted to a developer:
either who participated in the creation of the DB and
therefore who implicitly knows its schema, or who
will manually extract the schema by an often-random
consultation of the content. A more rational solution
is to use a process that automatically extracts the
schema from the NoSQL DB and, in recent years,
several mechanisms have been proposed to extract the
schema from a NoSQL DB (Frozza, Jacinto and al.,
2020), (Wang and al., 2015), (Cánovas Izquierdo and
Cabot, 2016) and (Frozza, Defreyn and al., 2020).

In this paper, we propose a new process for
extracting the logical schema of a document-oriented
NoSQL DB called ToOrientDBSchema; the
originality of our proposal lies mainly in the diversity
of the semantic links considered. The choice of a
document-oriented DB is related to the requirements
of our case study presented in section 2. Once

Abdelhedi, F., Rajhi, H. and Zurfluh, G.
Extraction Process of the Logical Schema of a Document-oriented NoSQL Database.
DOI: 10.5220/0010899000003119
In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2022), pages 61-71
ISBN: 978-989-758-550-0; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

61

extracted, the schema will allow users (developers or
decision makers) to easily formulate queries on the
DB. This paper is organized as follows: Section 2
presents the medical application that justifies the
interest of our work. Section 3 presents an overview
of our solution and Section 4 reviews the state of the
art. Section 5 presents our process by highlighting (i)
the source metamodel, (ii) the target metamodel and
(iii) the transformation rules. Section 6 describes the
experimentation of our process on 3 test-DBs based
on the medical application and on two massive
industrial DBs. Section 7 positions our process to
those proposed in related works. Finally, the
conclusion in Section 8 presents perspectives to our
work.

2 MOTIVATION

Our work is part of a medical application developed
for an industrial project.

2.1 Medical Data

The application we are interested in concerns the
implementation of scientific programs dedicated to
the follow-up of rare pathologies on hospitalized
patients. Each program may involve up to 50
European institutions (hospitals, clinics and
specialized care centers). The main objective of a
program is to collect significant data on the evolution
of the disease over time, to study its interactions with
other relevant diseases and to evaluate the influence
of its treatments in the short and medium term. The
duration of a program is determined when it is
launched and can be between three and ten years.
Data collected by multiple institutions in a multi-year
program have generally the accepted characteristics
of Big Data (the 3 Vs) (Laney, 2001). Indeed, the
volume of medical data collected daily from patients
can reach, for all establishments and over three years,
several terabytes. On the other hand, the nature of the
data entered (constant measurements, radiography,
scintigraphy, etc.) is diverse and may be different
from one patient to another depending on his state of
health. Finally, some data are produced continuously
by sensors; it must be processed in real time
(measurements crossing a threshold that would
involve the urgent intervention of a practitioner, for
example). Patients follow-up requires the storage of
various data such as the record of consultations
carried out by practitioners, the results of analyses,
prescriptions for medicine and specific treatments.
We therefore stored all this data in the multi-model

OrientDB NoSQL system. Due to the nature of data
to be stored, we use the schemaless document-
oriented model of OrientDB (OrientDB, 2021 April).

One of the problems we are facing in this project
is related to the manipulation of data stored in NoSQL
schemaless systems. Indeed, the absence of a clearly
identified data schema constitutes a major difficulty
for writing queries. Thus, in order to formulate their
queries, developers (computer scientists) and
decision-makers (doctors, managers, etc) have to
search empirically for the schema that is integrated in
the stored data.

Our problem consists in developing a schema
extraction process from a massive DB managed by a
NoSQL schemaless system.

2.2 Application Development

Our application aims to develop a software
environment for medical staff to (1) collect patients
‘data and (2) query and analyze the history of this
data.

To store this large and complex data of varying
types and formats, the NoSQL OrientDB system
offers advanced functionalities that are well suited to
our application. However, the lack of data schema in
this system represents a major obstacle for writing
queries on the DB. Indeed, the expression of a query
requires knowing the names of the classes as well as
the names of the properties and their types. For
example, let's consider the query asked by a doctor
participating in a program: Obtain the reference of
medicines prescribed by doctors to patients suffering
from Creutzfeldt-Jacob disease. The translation of
this query with an SQL type language could be as
follows (extract):

Select tuple (x.name, m.ref)
From d in Diseases, x in Doctors,
p in Prescribe, m in Medicines
Where d.name = "Creutzfeldt-Jacob"
and …
Group By x.name;
We can see in this example of a query expressed

by a doctor (through an appropriate graphical
interface) the need to know the schema of the DB,
mainly the names of the classes and the names and
types of the properties. We therefore developed a
process to extract a logical data schema from an
existing DB.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

62

3 SOLUTION OVERVIEW

We have a DB managed by the NoSQL OrientDB
system. Our process consists of extracting the logical
schema from the DB and presenting it in a form that
can be read by users (developers and decision-
makers). We used the ModelToModel transformation
approach of MDA (OMG, 2021 April) to generate the
logical schema. We therefore present successively the
characteristics of the OrientDB system, the principles
of MDA and an overview of our process.
OrientDB is a multi-model NoSQL data storage and
manipulation system in the sense that it supports
several data organizations. Given the specificities of
our application, we chose the document-oriented
model whose records (i.e. objects) contain a set of
properties (Key, Value); the values of the properties
can belong to all types of data (atomic, structured and
multivalued). One of the particularities of OrientDB
system is the possibility of expressing association
links in the form of pointers (reference values)
according to the ODMG DB standard (ODMS, 2021
April). In addition, OrientDB is schemaless because,
for a given class, the schema of the records is not
provided when the class is created.

MDA is a branch of model-driven engineering
(MDE) proposed by the OMG (OMG, 2021 June). It
is a software development architecture that
distinguishes several levels of description making it
possible to disregard the technical characteristics
(PIM, CIM, PSM) of an application. Thus, the PSM
(Platform Specific Model) corresponds to
descriptions taking into account the technical
characteristics of an implementation platform. In
addition, MDA offers model transformation
principles and techniques for generating code or,
inversely, extracting the model from existing code.
This involves applying transformation rules on
metamodels describing the starting point (the source)
and the arrival (the target). The Eclipse Foundation
(Eclipse, 2021 April) has developed implementation
tools in accordance with MDA. The objective of our
work is to obtain the (unique) schema of an OrientDB
schemaless DB. MDA offers us extraction principles
consisting in metamodeling the source (DB) and the
target (schema) and then applying rules of passage
from the source to the target.

This solution has the advantage of being able to
be applied to different document-oriented NoSQL
DBs (managed by OrientDB or by other systems
accepting this model). However, it faces some
difficulties related mainly to the detection of data
types and links; we therefore made some initial
assumptions in section 5.1.

4 RELATED WORKS

Several NoSQL DB schema extraction softwares
have been proposed by software publishers such as
"Spark Dataframe" (Apache Spark, 2021 Oct),
"Schema-guru" (SnowPlow Analytics, 2021 Oct) and
"Mongodb-schema" (Peter Schmidt, 2021 Oct).
These softwares extract the class schema (designated
also by tables or collections) from a DB in JSON
format; but these softwares do not extract the
semantic relationships between objects.

In addition, research works proposed extracting
more complete schemas from NoSQL DB. In
(Baazizi and al., 2017), the authors propose a process
of schema extraction from a JSON dataset using the
Map-reduce system. This process can be summarized
in 2 phases: the first consists in applying the Map
transformation to each record of a class in order to
deduce the pairs (key, type) from the pairs (key,
value). The result of this step allows to obtain several
schemas specific to each record. The Reduce phase
consists of merging these schemas in order to provide
a global schema for each class. This process was
extended by the same authors by integrating the
parameterization in the 2nd phase Reduce (Baazizi
and al., 2019b); this allows the user to infer the
schemas produced in the Map phase at different levels
of abstraction.

Another process of schema extraction from an
extended JSON dataset has been proposed in (Frozza
and al., 2018). Extended JSON records support, in
addition to standard types, other data types like the
DBRef type allowing to express links between
objects, Date, Long, Timestamp, Binary… The
extraction process consists in realizing 3 successive
steps: i) creation of schemas for each record, ii)
grouping of raw schemas in order to obtain a unique
class of JSON objects, iii) unification of schemas and
iv) construction of the global schema for all records
of a class. The processes presented in (Frozza and al.,
2018), (Baazizi and al., 2019b) and (Baazizi and al.,
2017) provide some answers to our problem.
However, the DBs to which they apply to contain a
unique class of objects; they therefore do not deal
with the links between classes.

In (Aftab et al., 2020), an automatic process for
transforming document-oriented NoSQL DB
(MongoDB) into relational DB has been presented. It
is summarized in three steps: extracting the schema
from the source DB, analyzing and converting it into
SQL query according to the format of the target DB
and finally launching ETL processes. The latter
extract the data from the NoSQL DB, process it to
create the SQL queries and then load it into the target

Extraction Process of the Logical Schema of a Document-oriented NoSQL Database

63

DB. The presented process extracts the schemas of
the classes with the names and types of the properties
however it does not identify the semantic links
between the classes.

Our work aims to provide a process for extracting
the schema from a document-oriented NoSQL DB;
this process is able not only to extract the descriptions
of the objects but also to identify the links between
these objects. In the OrientDB system, a DB consists
of classes containing records describing objects. Each
record consists of a set of properties (key, value). A
property can represent either an attribute
characterizing an object or a link to another record.

In section 5 we present our process and we detail
the steps for extracting the schema.

5 EXTRACTION OF LOGICAL
SCHEMA

In this section, we present our process
ToOrientDBSchema which aims to extract the
schema from an OrientDB DB. This schema
describes the structure of the stored data, including
the name of each class, the names of its properties and
their types. The development of our process is based
on the MDA architecture (Model Driven
Architecture) (Bézivin and Gerbé, 2001) defined
previously in section 3. The advantage of using this
architecture lies in the generalization of our process.
Indeed, the formalization of the input and the output
by metamodels (sections 5.1 and 5.2) ensures that our
process is applicable to any NoSQL DB of document
type.

Figure 1 describes the inputs/outputs of our
process. Based on the source and target metamodels
and by applying transformation rules to an OrientDB
DB, the process produces a schema that conforms to
the target metamodel describing the structure of the
data stored in this DB.

Figure 1: The ToOrientDBSchema process of schema
extraction.

5.1 Source Metamodel

We have an existing document-oriented NoSQL DB.
Many works studied design “drifts” in such DBs, for
example the existence of a single unique class
grouping together different types of entities or the
presence of synonymous property names in records of
the same class (Ruiz and al., 2015), (Klettke and al.,
2015) and (Baazizi and al., 2019a). These issues have
been addressed elsewhere; we made the following
starting assumptions to focus on other issues.

H1: a class of the DB represents entities
semantically homogeneous having a unique
identifier; for example, employees and cars are stored
in distinct classes and have their own identifiers.
However, entities can also be embedded in a class in
the form of a property; it is a choice of conceptual
representation of reality. For example, cars can be
seen as properties characterizing objects used; in this
case, only "Employees" appears as a class.

H2: Records within the same class can contain a
variable number of properties. The extraction of a
unique schema for a class involves grouping together
properties with the same name and type. For example,
the two properties phone and telephone of type String
will not be grouped together; they will generate two
distinct properties.

H3: In the records of a class, properties of the
same name and of different types have been
previously processed by a specific process applied to
the source DBs. This processing detects
inconsistencies in the format of values and then
harmonizes properties of the same name, either
automatically or with the intervention of an
administrator. Thus, in two records of the same class,
we cannot find a client# property of type Number and
a client# property of type String.

These three assumptions allow to obtain schemas
excluding certain modelling anomalies of reality;
indeed, these could compromise the validity of the
extracted schemas. However, it should be noted that
these three reducing assumptions do not alter the
interest of our proposals since, on the one hand,
processing solutions exist elsewhere and, on the other
hand, our process and our models are not impacted.
However, the non-respect of these assumptions would
lead to the production of a schema that does not
conform to reality and could cast doubt on the validity
of our process.

To describe the source metamodel presented in
Figure 2, we used the Ecore language (Eclipse, 2021
Oct); it is a formalism close to UML with which we
implemented our solution (section 6:
Experimentation).

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

64

Figure 2: Metamodel describing the source of our process.

Figure 3: Metamodel describing the resulting schema of our process.

Figure 4.a: Extract from the ATL translation of R3.

Extraction Process of the Logical Schema of a Document-oriented NoSQL Database

65

According to Ecore, a rectangle represents an
object class and an arc corresponds to an association,
composition or inheritance relationship. Thus, in
Figure 2, an OrientDB DB (Source) is identified by a
name and contains a set of classes. Each class is
referred by a name and groups together a set of records.
Each record contains a set of properties (key, value).
Note that two records belonging to the same class can
contain different properties. The value of a property
can be primitive or complex (structured or
multivalued). A primitive value of reference ensures a
link between two classes; this value contains the rid
("record identifier") of a record of the referenced class.

This metamodel allows to describe any DB that
conforms to a document-oriented NoSQL model, i.e.,
supported by a system such as MongoDB, OrientDB
or CouchDB. The ToOrientDBSchema process will
analyze the DB by applying to it the metamodel of
figure 2 and will extract a schema that conforms to
the target metamodel presented in the next section.

5.2 Target Metamodel

The target metamodel formalized with the Ecore
language is illustrated in Figure 3. It represents the
structural characteristics of an OrientDB DB: the
existing classes and their properties, the data types as
well as the links (monovalued and multivalued)
between the classes.

The root element "Target" corresponds to the
schema of an OrientDB DB grouping together a set of
class descriptions. Each class contains properties;
each of them is associated with a couple (Name,
Type). The type of a property can be primitive,
structured (i.e. made up of other properties), or
multivalued (made up of several values). In the
OrientDB system, the links between classes are
expressed by object identifiers (references); the value
of a link-property points to a record in a class.

5.3 Schema Extraction by
Transforming the DB

After formalizing the source and target metamodels,
we describe how the extraction of logical schema is
performed through the use of transformation rules.
The rules are first expressed in natural language and
then in ATL language (Eclipse, 2021 July). They are
considered as a function which, applied to a DB,
produces the DB schema: ATL-Rules (DB) = DB-
Schema.

R1: An OrientDB DB from the source is
transformed into a schema with the same name in the
target.

R2: Each input class is transformed into a class
type with the same name.

R3: For all the records of a class, each property of
the form (Name, Value) is transformed into a couple
(Name, Type). For an atomic value (other than a link),
we associate the "Primitive" constructor with the type
of the value. For example, if the value of a property is
a string surrounded by the characters "", then the
generated type is "Primitive EString". Our process
applies R3 on all the records of the same class and
generates a unique model for this class.

In figure 4.a, we expressed the rule R3 using the
ATL language and we present an example in figure
4.b. Note that R3 is made up of a number of ATL sub-
rules equal to the number of primitive types.

R4: A value corresponding to a link of the form
"#xx:xx" (prefixed by the xmi tag "Reference") is
transformed into type "ERef". Figure 5.b shows an
example of the application of R4 to a record
containing a link to the Doctors class.

R5: A structured value is transformed into a
structured type; thus the “Structured” constructor is
associated with all the sub-properties and their
respective types. The previous rules are applied
recursively on each sub-property. Figure 6.a and 6.b
shows the ATL expression of R5 and an example of
application.

Figure 4.b: Example of application of R3.

Figure 5.a: The rule R4 formalized in ATL language.

Figure 5.b: Example of application of R4.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

66

Figure 6.a: The rule R5 formalized in ATL language.

R6: The value of a multivalued property is
transformed by associating the "Multivalued"
constructor with the type of the component values.
The determination of the type results from the
application of one of the previous rules. We present
an example of application of this rule in figure 7.

We presented in this section the 6 rules of our
transformation process expressed in ATL language.
In the next section, we will show how this process has
been experimented.

Figure 6.b: Example of application of R5.

Figure 7.a: The rule R6 formalized in ATL language.

Figure 7.b: Example of application of R6.

6 EXPERIMENTATION

We present the experimentation of our process on
three test-DBs based on the medical application
described in section 2.1 and on two massive industrial
BDs. First, we implemented our process on a dataset
with twelve classes taken from the DB of scientific
programs and representing a little less than a
gigabyte. The purpose of this test is to verify the
proper functioning of our process without taking into
account the performance of extracting a schema from
big data. Then, we applied our process on three test-
DBs created from their previously known schemas.
The goal is to ensure that for each test-DB, the
schema generated by our process correctly describes
the data stored in the DB. Finally, to confirm the Big
Data aspect of our work, we experimented our
process on two massive industrial DBs.

6.1 Technical Environment

For our test, we used a metamodeling and model
transformation platform conforming to the MDA
architecture. The Eclipse Modeling Framework
platform (EMF) (Eclipse, 2021 June) includes a set of
tools among which we implemented:

- Ecore: a metamodeling language (Eclipse, 2021
Oct) that allowed to define the source and target
metamodels (figure 2 and 3).

- XMI: a format used to present instances of
metamodels (OMG, 2021 July).

- ATL: a model transformation language that
provides a high level of abstraction and
expressiveness by describing the transformation of
elements from the source model to the target model
(Allilaire and al., 2006). This language, inspired by
the QVT formalism, has a level of execution
performance suitable for large volumes of data (Van
Amstel and al., 2011).

6.2 Test Case

To test our process on the medical DB and generate
its schema, we implemented the following steps.

Step1: Conversion of the OrientDB DB into the
XMI format required by the Eclipse platform. We
developed a software in Java language to convert the
Json code of a DB by introducing the specific XMI
tags of the OrientDB syntax such as <classes>,
<records> and <properties>. Figure 8 shows an
example of the input/output of our software. This
software scans the entire source DB and creates a new
DB in XMI format that will serve as the source for
our ToOrientDBSchema process. The execution time

Extraction Process of the Logical Schema of a Document-oriented NoSQL Database

67

of the conversion is important and proportional to the
volume of the DB. At the present stage of our work,
the conversion software must be executed each time
a new schema extraction is requested (due to data
update). But we are currently studying the possibility
to reflect each update of the source DB in the XMI
DB; in this case, only one conversion of the DB into
XMI will be necessary.

Step 2: Application of the transformation rules
defined in section 5.3 on the instance of the source
metamodel created in step 1 (BD/XMI). Figure 9
shows an extract of the transformation rules
expressed with ATL. This operation automatically
generates the DB schema according to the concepts
of the target metamodel. In figure 10, we present an
extract of the generated schema. It describes the
structure of each class ("Patients" for example): the
properties it contains and their types. The schema
shows monovalued and multivalued links. Figure 10
contains the two properties "practioner" and
"antecedents" which are of type "ERef" and represent
respectively a monovalued link to the class "Doctors"
and a multivalued link to the class "Pathologies".

Now, it is necessary to verify that the schema
generated by our process corresponds to the
description of the data contained in the DB. To do
this, we manually created three separate test-DBs on
which we applied our extraction process.
Specifically, the approach of verification used for
each DB was as follows.

1. Manual elaboration of an (initial) DB schema
inspired by the application of medical programs (cf.
section 2). Each schema had between 8 and 10 classes
and between 4 and 7 inter-class links.

2. Creation of a DB under the OrientDB system
following the previous schema. This was done using
suitable software for entering attribute values and
storing them under OrientDB.

3. Implementation of our automatic schema
extraction process on the DB.

4. Visual comparison of the extracted schema and
the initial schema.

The experimentation carried out on the three test-
DBs made it possible to verify the correct functioning
of the ToOrientDBSchema process. Thus, Each DB
has been developed to take into account (and test) the
full diversity of types of data and links that a DB may
contain. Figures 11 and 12 show an extract from a
test-DB and its generated schema by our process.

We completed this experiment by applying the
ToOrientDBSchema process on two massive
industrial DBs (with the help of the company
Trimane), one used in a legal application and the
other containing financial data. Each of these
OrientDB DBs has a volume between one and two
terabytes. The extracted schemas have been visually
validated by developers with in-depth knowledge of
these DBs.

Figure 8: Conversion of OrientDB data to XMI.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

68

Figure 9: Extract from the transformation rules expressed with ATL.

Table 1: Comparison with the processes presented in Related works section.

Process

Criteria

(Baazizi and
al., 2017)

(Baazizi
and al.,
2019b)

(Frozza and al.,
2018)

(Aftab and al.,
2020)

Our process
ToOrientDBSchema

Dataset format JSON datasets JSON
datasets

Extended JSON
(MongoDB)

JSON
(MongoDB)

Extended JSON
(OrientDB)

Schema format JSON JSON JSON JSON XMI

Number of
classes

1 1 1 n n

Links No No No No Yes

7 DISCUSSION

In this section, we compare the ToOrientDBSchema
process that we proposed to the processes of schema
extraction cited in the related works (section 4). This
comparison is summarized in Table 1. We focus on
the following criteria: i) the format of the data stored
in the dataset, ii) the format of the schema generated
by the proposed process, iii) the number of classes in
the dataset and iv) the existence of association links
in the dataset. Table 1 shows that the major
contribution of our process is the processing of
association links (monovalued and multivalued) in
the form of references as they occur in standard object
systems (ODMS, 2021 June).

8 CONCLUSION

This article proposes the ToOrientDBSchema process
for extracting the schema from an OrientDB
conforming to the document-oriented model. This
process based on the MDA architecture comprises 3
steps: the modeling of the source and the target
through metamodels and the formalization of the
transformation rules. The source metamodel
describes the content of any DB to which our process
is applied and the target metamodel models the result
of the process, i.e. the schema of the DB. This one
describes the classes, properties and their types as
well as the semantic links contained in the DB. The
transformation rules allow to make a transition from
a DB to its schema in accordance with MDA
principles. This process has been tested on three test-
DBs based on the medical application as well as on

Extraction Process of the Logical Schema of a Document-oriented NoSQL Database

69

two massive industrial BDs. It should be noted that
the proposed solution applies to a massive DB; the
execution time of the process, even optimized, can
last several minutes. However, as it is the case in our
application, the stored data can evolve quickly and
make the extracted schema obsolete. We have
therefore developed another process to update the
schema as the DB evolves; this process is not tackled
in this article.

We are currently working to complete the
ToOrientDBSchema process. Indeed, the OrientDB
system makes it possible to express inheritance links
between classes. Consequently, the source and target
metamodels could be extended to take into account
this type of link (Chillón and al., 2021). On the other
hand, our process generates a unique schema for each
class, however it does not check whether there are
properties of different names with the same semantics
(assumption 2 in section 5.1). For example, the
"address" and "adr" properties. All of these
characteristics could be integrated into our process to
generate a more complete schema.

Figure 10: Extract from the medical DB schema generated
by our process.

Figure 11: Extract from a test-DB.

Figure 12: Extract from the logical schema obtained.

REFERENCES

Elmasri, R., & Navathe, S. (2011). Fundamentals of
database systems (6th ed). Addison-Wesley.

Frozza, A. A., dos Santos Mello, R., & da Costa, F. de S.
(2018). An approach for schema extraction of JSON
and extended JSON document collections. 2018 IEEE
International Conference on Information Reuse and
Integration (IRI), 356‑363.

Baazizi, M.-A., Colazzo, D., Ghelli, G., & Sartiani, C.
(2019b). Parametric schema inference for massive
JSON datasets. The VLDB Journal, 28(4), 497‑521.

Baazizi, M.-A., Lahmar, H. B., Colazzo, D., Ghelli, G., &
Sartiani, C. (2017, mars 21). Schema Inference for
Massive JSON Datasets. Extending Database
Technology (EDBT).

Frozza, A. A., Jacinto, S. R., & Mello, R. dos S. (2020). An
Approach for Schema Extraction of NoSQL Graph
Databases. 2020 IEEE 21st International Conference on
Information Reuse and Integration for Data Science
(IRI), 271‑278.

Bézivin, J., & Gerbé, O. (2001). Towards a precise
definition of the OMG/MDA framework. Proceedings
16th Annual International Conference on Automated
Software Engineering (ASE 2001), 273‑280.

Wang, L., Zhang, S., Shi, J., Jiao, L., Hassanzadeh, O., Zou,
J., & Wangz, C. (2015). Schema management for
document stores. Proceedings of the VLDB
Endowment, 8(9), 922‑933.

Laney, D. (2001). 3D data management: Controlling data
volume, velocity and variety. META group research
note, 6(70), 1.

Ruiz, D. S., Morales, S. F., & Molina, J. G. (2015). Inferring
versioned schemas from NoSQL databases and its
applications. International Conference on Conceptual
Modeling, 467‑480.

Klettke, M., Störl, U., & Scherzinger, S. (2015). Schema
extraction and structural outlier detection for JSON-

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

70

based NoSQL data stores. Datenbanksysteme für
Business, Technologie und Web (BTW 2015).

Baazizi, M.-A., Colazzo, D., Ghelli, G., & Sartiani, C.
(2019a). A type system for interactive JSON schema
inference. 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019).

Cánovas Izquierdo, J. L., & Cabot, J. (2016).
JSONDiscoverer: Visualizing the schema lurking
behind JSON documents. Knowledge-Based Systems,
103, 52‑55.

Frozza, A. A., Defreyn, E. D., & dos Santos Mello, R.
(2020). A Process for Inference of Columnar NoSQL
Database Schemas. Anais do XXXV Simpósio
Brasileiro de Bancos de Dados, 175‑180.

Van Amstel, M., Bosems, S., Kurtev, I., & Pires, L. F.
(2011). Performance in model transformations:
Experiments with ATL and QVT. International
Conference on Theory and Practice of Model
Transformations, 198‑212.

Chillón, A. H., Hoyos, J. R., García-Molina, J., & Ruiz, D.
S. (2021). Discovering entity inheritance relationships
in document stores. Knowledge-Based Systems, 230,
107394.

Allilaire, F., Bézivin, J., Jouault, F., & Kurtev, I. (2006).
ATL-eclipse support for model transformation.
Proceedings of the Eclipse Technology eXchange
workshop (eTX) at the ECOOP 2006 Conference,
Nantes, France, 66.

Aftab, Z., Iqbal, W., Almustafa, K. M., Bukhari, F., &
Abdullah, M. (2020). Automatic NoSQL to Relational
Database Transformation with Dynamic Schema
Mapping. Scientific Programming, 2020, 8813350.

ODMS. Object Databases. http://www.odbms.org/free-
downloads-and-links/object-databases/, consulted in
(2021, June)

Apache Spark. Spark SQL Guide.
https://spark.apache.org/docs/latest/sql-programming-
guide.html, consulted in (2021, Oct).

SnowPlow Analytics. Schema-Guru.
https://github.com/snowplow/schema-
guru/releases/tag/0.5.0, consulted in (2021, Oct)

Peter Schmidt. mongodb-schema. https://github.com/
mongodb-js/mongodb-schema, consulted in (2021,
Oct).

Eclipse. EMF. https://www.eclipse.org/modeling/emf/,
consulted in (2021, June).

Eclipse. Ecore Tools. https://www.eclipse.org/
ecoretools/doc/index.html, consulted in (2021, Oct).

OMG. XMI. https://www.omg.org/spec/XMI/, consulted in
(2021, July).

Eclipse. ATL. (2021, July). https://www.eclipse.org/atl/,
consulted in (July, 2021).
OrientDB. https://orientdb.org/, consulted in (2021, April).
OMG. MDA. https://www.omg.org/mda, consulted in

(2021, April).
Eclipse. https://www.eclipse.org, consulted in (2021,

April).
ODMS. ODMG standard. http://www.odbms.org/odmg-

standard/, consulted in (2021, April).
OMG. https://www.omg.org/, consulted in (2021 June).

Extraction Process of the Logical Schema of a Document-oriented NoSQL Database

71

