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Abstract: With the emergence of depth sensors, real-time 3D human skeleton estimation have become easier to accom-
plish. Thus, methods for human activity recognition (HAR) based on 3D skeleton have become increasingly
accessible. In this paper, we introduce a new approach for human activity recognition using 3D skeletal data.
Our approach generates a set of spatio-temporal and view-invariant features from the skeleton joints. Then,
the extracted features are analyzed using a typical Transformer encoder in order to recognize the activity. In
fact, Transformers, which are based on self-attention mechanism, have been successful in many domains in the
last few years, which makes them suitable for HAR. The proposed approach shows promising performance on
different well-known datasets that provide 3D skeleton data, namely, KARD, Florence 3D, UTKinect Action
3D and MSR Action 3D.

1 INTRODUCTION

Many computer vision applications, such as intelli-
gent surveillance, human-computer interaction, and
robotics, rely on Human Action Recognition or HAR
for short. Despite tremendous improvements, pre-
cisely predicting what humans do in unseen videos
remains a difficult task due to a variety of difficulties,
such as viewpoint changes, intra-class variation, and
environment distractions. Currently, depth sensor-
based HAR is regarded as one of the most promis-
ing approaches for solving the aforementioned chal-
lenges. Depth sensors that are inexpensive can pro-
vide 3D structural information of the human body,
which is proven useful for the HAR task. Most of
these sensors, in particular, have real-time skeleton
estimation algorithms (Shotton et al., 2013) that are
resistant to distractions in the environment. As a
result, using skeletal data for HAR opens up possi-
bilities for overcoming RGB and depth modalities’
constraints. Therefore, there are two major concerns
that need to be addressed for skeleton-based action
recognition. The first problem is figuring out how to
turn raw skeletal sequences into a useful representa-
tion that can capture the spatio-temporal dynamics of
human motions. The second step is to use the mo-
tion representation acquired from skeletons to model
and recognize actions. HAR based on hand-crafted
features and HAR based on deep learning models

are the two primary groupings of previous works on
this topic. The first set of approaches extracts hand-
crafted local information from skeletal joints and em-
ploys probabilistic graphical models to represent and
categorize actions, such as the Hidden Markov Model
(HMM) (Lv and Nevatia, 2006), Conditional Random
Field (CRF) (Han et al., 2010), and Fourier Temporal
Pyramid (FTP) (Vemulapalli et al., 2014). Many ap-
proaches for skeleton-based action recognition (Xia
et al., 2012)(Vemulapalli et al., 2014)(Wang et al.,
2014)(Wu and Shao, 2014)(Wang et al., 2016) have
been presented since the first study on 3D HAR us-
ing depth data (Li et al., 2010). These approaches
all have one thing in common: they extract geometric
features from the 3D coordinates of the skeletal joints
and use a generative model to describe their temporal
information. Despite the promising results of these
approaches, most of them can be easily affected by
the change of Kinect’s viewpoint. In order to meet
with the view variance problem, we propose in this
paper a view-invariant approach based on the extrac-
tion of spatio-temporal geometric features from 3D
skeleton data after changing the reference point from
the Kinect center to one of the skeleton’s keypoints.

The second group treats skeleton-based action
recognition as a time-series problem and recommends
that the temporal evolutions of skeletons be analyzed
using Recurrent Neural Networks with Long Short-
Term Memory units (RNN-LSTMs). For that mat-
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ter, many works used RNN-LSTMs to model the
activity and have obtained good results (Du et al.,
2015)(Zhu et al., 2016)(Liu et al., 2016)(Liu et al.,
2017)(Peng et al., 2021). Despite the good perfor-
mance of RNN-LSTMs, recent studies tend to change
them with Transformer (Vaswani et al., 2017), which
has been one of the most important deep learning
introductions for natural language processing (NLP)
in recent years. In addition to NLP, self-attention
mechanism has been shown to be effective for a va-
riety of tasks, including image classification (Doso-
vitskiy et al., 2020), generative adversarial networks
(Lin et al., 2018), and speech recognition (Berg et al.,
2021), which proves that this architecture is equally
appropriate for HAR. In this paper, we use a pure
Transformer encoder architecture to analyze the view-
invariant spatio-temporal features extracted from 3D
skeletal data.

This work’s primary contributions can be summa-
rized as follows:

• Transformation of the coordinate system ori-
gin from the kinect center to the head and
spine: we propose a view-invariant approach
for HAR by changing the reference point of the
Kinect camera to the spine and head of the human
skeleton and thus the coordinates of the remaining
keypoints will be relative to the spine and the head
of the skeleton and not the camera and therefore
will not be affected by the change of the kinect’s
view.

• Generation of spatio-temporal features: we ex-
tract spatio-temporal features from the 3D skeletal
data. The spatial features are the 3D coordinates
of the joints relative to both the head and the spine
and the distances between the keypoints and the
head and spine. However, the temporal features
are the movement angles as well as the movement
type of each joint between each two frames.

• Analyzing the extracted features with Trans-
former encoder: we introduce a new HAR sys-
tem based on the transformer encoder and we
demonstrate that fully self-attention architectures
outperform other models in the HAR task.

The remainder of this paper will be as follows:
Section 2 is dedicated to review the works of the lit-
erature. We explain in section 3 the different aspects
of the proposed approach. Section 4 is reserved to
present and discuss the experimental results. Finally,
we conclude and propose future works in section 5.

2 RELATED WORKS

In recent decades, researchers have looked into sev-
eral compact representations of human activity. Jo-
hansson’s experiment from 1975 shown that individ-
uals can perceive activity with very little observers
(Johansson, 1975). A sequence of a person walking
in a dark room with lights mounted to the individ-
ual’s major joints was used by Johansson to explain
his point. Despite the fact that just light specks were
seen, the 3D motion in these clips was clearly dis-
cernible. Therefore, various works in the literature
widely used skeletal data to recognize human activ-
ities. These methodologies are known as skeleton-
based HAR. The input to these systems is made up of
a series of points that represent body joints. Skele-
tons can be represented in the 2D space (Jlidi et al.,
2020)(Snoun et al., 2021) of the image view or 3D
space, such as those generated with Kinetic sensors.
In this work, we focus on 3D pose information since
it gives a better representation of the human pose and
motion.

Devanne et al. (Devanne et al., 2013) suggested
spatio-temporal motion trajectories to model human
actions. The distance between two curves is then rep-
resented using an elastic metric, which is a metric
that is invariant to the speed and time of the action
within a Riemannian form space. Finally, using a k-
Nearest-Neighbor (k-NN) classifier, the action recog-
nition task was viewed as a classification in Rieman-
nian space. In (Gan and Chen, 2013), the relative lo-
cations and local spherical angles of the APJ3D repre-
sentation are computed using a selection of 15 skele-
tal joints. Following the key postures selection, they
used an updated Fourier Temporal Pyramid (Wang
et al., 2012) and random forests to classify the ac-
tion. Another technique for modeling joints is HOJ3D
(Xia et al., 2012), which divides the 3D space into
n bins and uses a Gaussian weight function to con-
nect the joints with each bin. Then, using a clustering
approach, a discrete Hidden Markov Model (HMM)
is used to model the postures’ evolution in time. A
human activity can also be described by a mixture
of static skeleton features, which reflect the current
frame, successive motion features, which are com-
puted using the current and prior frames, and overall
dynamics features, which take into account the cur-
rent and previous frames (Yang and Tian, 2014). In
(Kim and Kim, 2015), a view-invariant method for
HAR was proposed, it is based on pose estimation
using 3D body pose stream. To model the activi-
ties, the authors extracted motion, structure and hand
positions from joints coordinates. To make their ap-
proach view-invariant, the generated 2D spherical co-
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ordinates based on polar angle and azimuthal angle,
and they calculated relative positions of left and right
hand by head and torso. The extracted features were
analyzed with a Hidden-state Conditional Random
Field (HCRF) to recognize the activity. The joint’s
spherical coordinates were used also by Taha et al.
(Taha et al., 2015) to describe the skeleton. Then, a
multiclass SVM and a discrete HMM were used to
distinguish activities made up of several actions. Oth-
ers used also a combined machine learning algorithm
to classify actions, such as Gaglio et al. (Gaglio et al.,
2015), who used a multiclass SVM to model postures
and a discrete HMM to describe an action as a suc-
cession of poses. Human activities are also viewed
as a temporal flow of body poses (Theodorakopoulos
et al., 2013), and skeletal data is processed to create
invariant pose representations, which are represented
by eight pairs of angles.

Deep learning and specifically RNN and LSTM
were widely used in the literature in the aim of HAR.
For example, an end-to-end RNN with handmade sub-
nets was proposed by Du et al. (Du et al., 2015). The
raw locations of body joints are separated into five
pieces and fed into five bidirectional RNNs accord-
ing to human structure. The network hierarchically
merged the representations derived by the subnets to
a higher-level representation as the layers number in-
creased. Zhu et al. (Zhu et al., 2013) used LSTM
to analyze the skeletal sequence. The LSTM input
consists of the 3D concatenated locations of skele-
tal joints in a frame for each step. They used a set
of encoded feature vectors to model a feature mani-
fold. Finally, the manifold was used to help and reg-
ularize LSTM supervised learning for action recogni-
tion using RGB video. A 2D Spatio-Temporal LSTM
framework was developed in (Liu et al., 2018) to in-
vestigate the hidden sources of activity-related con-
text information in both the temporal and geographi-
cal domains. They also suggested a trust gate method
that would deal with the depth sensors’ imprecise 3D
joint coordinates. More recently, Noori et al. (Noori
et al., 2019) proposed a HAR approach based on mo-
tion features extracted from skeletal data. Therefore,
they extracted the magnitude and angle of each joint
in the human body. To classify the extracted features,
they used an RNN-LSTM based network.

Unlike earlier techniques, we introduce, in this
paper, an architecture for HAR that is based purely
on the Transformer encoder (Vaswani et al., 2017),
with no convolutional or recurrent layers. To train
the transformer, we used spatio-temporal features
extracted from 3D joints coordinates of the human
skeleton. To deal with the view variance problem, we
generated new joints coordinates relative to the head

and spine of the human body instead of the camera
position. Hence, the activity recognition process will
not be affected by the change of the camera view.

3 METHODOLOGY

The human body is an articulated system of rigid
segments connected by joints, and human action is
thought to be a continuous evolution of the spatial
and temporal configuration of these segments (skele-
tons). Therefore, we design a system based on spatio-
temporal features extracted from the body joints to
recognize human activity. To emphasize, as illus-
trated in Figure 1, the designed system starts with 3D
skeletons as input. Then, we extract spatio-temporal
geometric features from the skeletal data to better
model the spatial and temporal flow of the human
body that represents the activity. The extracted fea-
tures are analyzed later with a Transformer encoder
in order to output the activity label.

3.1 Spatio-temporal Features
Generation

This step consists in generating a vector of view-
invariant spatio-temporal geometric features from
each skeleton of the input sequence. Therefore, Mi-
crosoft’s Kinect API directly provides a set of 3D
joint locations, which may be calculated from depth
images acquired from the Kinect sensor. The 3D po-
sition (x, y, z) of each joint provided by the Kinect
API, on the other hand, is represented using the Carte-
sian coordinate system, with the origin (0, 0, 0) in
the Kinect sensor’s center. As a result, if either the
Kinect sensor or the target object moves, the 3D posi-
tion data of a joint can be simply altered. This means
that the 3D joint coordinates obtained straight from
the Kinect API are extremely sensitive to Kinect’s
view variation, and hence are ineffective characteris-
tics for reliably identifying daily human activities in
a variety of environments. The problem of view vari-
ance is depicted in Figure 2. If the position of Kinect
is changed, the corresponding position value of the
same joint collected by the Kinect sensor will not be
the same (P1 = (x1,y1,z1) 6= P2 = (x2,y2,z2)).

To prevent the view variance problem, we change
the origin of the coordinate system form the center of
the Kinect sensor to the spine and head of the skele-
ton, as shown in Figure 3. Therefore, the positions
of the different joints will be relative to the spine and
head and no longer to the Kinect sensor. Thus, the
change of this latter’s position will not affect anymore
the reliability of the skeletons coordinates. Here, we
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Figure 1: Overview of the HAR architecture based on spatio-temporal geometric features and Transformer Encoder (left) and
Transformer encoder layer architecture (right).

Figure 2: Illustration of the view variance problem.

chose the head and spine as the new centers of the co-
ordinate system because they have less motion com-
pared to the hands and legs and by consequence, they
are less involved in the human motion. To translate
the coordinate system origin to the head and spine,
we multiplied each joint position (x j, y j, z j) by the
translation matrix as represented in equations 1 and 2.

x̂ j
ŷ j
ẑ j
1

=

1 0 0 −xhead
0 1 0 −yhead
0 0 1 −zhead
0 0 0 1

∗
x j

y j
z j
1

 (1)

x̂ j
ŷ j
ẑ j
1

=

1 0 0 −xspine
0 1 0 −yspine
0 0 1 −zspine
0 0 0 1

∗
x j

y j
z j
1

 (2)

Once we obtain the set of joints coordinates rela-
tive to head and spine, we compute a set of spatial and
temporal features.

Figure 3: Transformation of the coordinate system origin
from the kinect sensor to the head and spine.

3.1.1 Spatial Features

The best way to model the spatial structure of the
skeleton is to calculate the distance between each
joint of the skeleton and the head in a first time and
the spine in a second time as illustrated in Figure
4. Therefore, we calculate the Euclidean distance
between each joint j of each frame t and the head

Figure 4: Spatial features generation. (left) Distances be-
tween each joint and the head. (right) distances between
each joint and the spine.
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(D jt head) and the distance between each joint j of
each frame t and the spine (D jt spine) using respec-
tively equations 3 and 4:

D jt head =
√
(x jt − xhead)2 +(y jt − yhead)2 +(z jt − zhead)2

(3)

D jt spine =
√
(x jt − xspine)2 +(y jt − yspine)2 +(z jt − zspine)2

(4)

3.1.2 Temporal Features

The temporal features of a joint j in a frame t are ob-
tained by computing the movement angles and move-
ment direction compared to the same joint in the pre-
vious frame t−1, as shown in Figure 5.

Figure 5: Temporal features generation.

Let jt(x jt ,y jt ,z jt) be the position of joint j in
frame t and jt−1(x jt−1,y jt−1,z jt−1) be the position of
joint j in frame t−1. The movement angle of a joint
j in a frame t (θ jt ) is calculated using the following
equation:

θ jt = cos−1(

→
O jt .

→
O jt−1

‖O jt‖ .‖O jt−1‖
) (5)

Where O = (0,0,0) is the origin of the coordinate

system (head or spine), ‖O jt‖ =
√

x2
jt + y2

jt + z2
jt and

‖O jt−1‖=
√

x2
jt−1 + y2

jt−1 + z2
jt−1

The movement direction is a combination of
three possible directions (Right/left, up/down and for-
ward/backward), for example, a joint j in a frame t
can move right/down/forward. To find the movement
direction of a joint j in a frame t, we compare the co-
ordinates (x jt , y jt , z jt ) of joint j in a frame t with the
coordinates (x jt−1, y jt−1, z jt−1) of the joint j in the
frame t−1. If x jt > x jt−1 then the movement is right,
else if x jt < x jt−1 then the movement is left, other-
wise there is no movement. The same is applied for

y to determine if the movement is up or down and z
for forward and backward. Finally, we encoded the
movement direction as follows: Right (1), left (2),
up (1), down (2), forward (1), backward (2) and no
movement (0). For instance, if the movement direc-
tion is right/down/forward, the code will be 121.

Once we compute the spatial and temporal fea-
tures, the input vector to the Transformer encoder will
be composed of the transformed 3D coordinates of the
joints relative to the head and spine, the distances be-
tween each joint and the head as well as the spine,
the movements angles between each two frames of
each joint and the movement direction of each joint
between each two frames.

3.2 Transformer Encoder Architecture

In (Vaswani et al., 2017), Transformer networks were
first used for machine translation. The encoder and
decoder are the two main elements of the transformer
network. An input sequence (source) is received by
the encoder, which is processed by a stack of identi-
cal layers, including a multi-head self-attention layer
and a fully-connected feed-forward network. The en-
coder’s representation is then used by a decoder to
construct an output sequence (target). For classifi-
cation purpose, it is recommended to use only the
Transformer encoder. Therefore, to classify our in-
put sequence, we use a typical encoder architecture.
As illustrated in the right of Figure 1, the transformer
encoder layer E is composed of multi-head self-
attention and feed-forward blocks. After each block,
Dropout, LayerNorm, and residual connections are
applied. Each feed-forward block is a two-layer per-
ceptron ( f f ) with GeLu (Hendrycks and Gimpel,
2016) as non-linearity. In the proposed implemen-
tation, the first layer uses non-linearity and expands
the dimension from Dmodel to Dml p = 2∗Dmodel . The
second layer, on the other hand, reduces the dimen-
sion from Dml p to Dmodel (Dmodel is the length of the
input features vector).

By passing the input via a LayerNorm (LN) be-
fore each module and putting it back with residual
connections, each layer E in the Transformer Encoder
performs the following computation:

Ê(S) = LN(S+Dropout(MHA(S))) (6)

E(S) = LN(Ê(S)+Dropout( f f (Ê(S)))) (7)

Where f f (X)=Linear(Dropout(GeLu(Linear(X))))
denotes the feed-forward block explained above,
MHA is the Multi-head self-attention block and S
in the input sequence. In our case, S is a set of
spatio-temporal features vectors extracted from the
skeleton joint as explained in the previous section,
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summed with a positional embedding matrix that
represents the positionality information.

The transformer network’s self-attention mecha-
nism is a critical component. The architecture of the
self-attention mechanism block is shown in Figure 6.
Therefore, a function that expresses a weighted sum
of the values V is called attention A. The weights are
determined by comparing a query Q to a collection
of keys K. The scaling dot-product is the most used
form of the matching function. Attention with the
scaled dot-product matching function (A), which is il-
lustrated in the right of Figure 6, is written in formal
terms as:

A(Q,V,K) = Softmax(
QKT
√

d
)V (8)

Where d denotes the dimension of both queries and
keys.

The Multi-head attention MHA is an extension of
attention that uses independent linear projections hi of
(Q,K,V ) to create numerous parallel attention func-
tions:

MHA(Q,V,K) = Concat(h1, ...,hm)W (9)

hi = A(QW Q
i ,KW K

i ,VWV
i ) (10)

Finally, the output of the transformer encoder E(S)
is fed into a linear classification head (MLPhead) af-
ter applying a residual connection in order to allow
the gradients to flow through the network directly and
enhance the performance. The computation of the
MLPhead is as follows:

ŷ = MLPhead(S+E(S)) (11)

Where ŷ are the output logits, which are passed later
to a Softmax activation function in order to find the
final activity.

4 EXPERIMENTAL RESULTS

4.1 Used Datasets

The KARD dataset (Gaglio et al., 2015) contains 18
activities divided into 10 gestures and eight actions.
This dataset was collected in an office environment
with a Kinect camera placed 2-3 meters away from
the person. The activities were carried out by 10 peo-
ple (nine males and one female). Each person re-
peated each activity three times, resulting in 540 se-
quences. The dataset provides 15 skeleton joints in
world and screen coordinates.

The Florence3D dataset (Seidenari et al., 2013)
includes 9 different activities: waving, drinking from

a bottle, answering the phone, clapping, tightening
lace, sitting, standing up, reading a watch, and bow-
ing. These activities were carried out by 10 different
subjects twice or three times, for a total of 215 se-
quences. The activities were captured in a variety of
settings, and only RGB videos and 15 skeleton joints
are available.

The UTKinect dataset (Xia et al., 2012) con-
sists of ten different subjects (nine males and one fe-
male) performing ten different activities twice. The
dataset includes the following activities: walking, sit-
ting down, standing up, picking up, carrying, throw-
ing, pushing, pulling, waving, and clapping hands.
Since there is one unlabeled sequence, a total of 199
sequences are available, with sample actions ranging
in length from 5 to 120 frames. The dataset con-
tains 20 skeleton joints captured with the Kinect sen-
sor with a rate of 15 fps.

Finally, one of the most commonly used datasets
for HAR is the MSR Action 3D (Li et al., 2010).
It consists of 20 activities performed twice or three
times by 10 subjects. There are 567 skeleton frame
sequences in total; each skeleton is composed of 20
joints. High arm waving, horizontal arm waving,
hammering, hand catching, forward punching, high
throwing, drawing X, drawing tick, drawing circle,
hand clapping, two hand waving, side boxing, bend-
ing, forward kicking, side kicking, jogging, tennis
swinging, tennis serving, golf swinging, and pick-
ing up and throwing are all activities included in the
dataset. The data was collected at 15 fps with a
structured-light depth camera.

4.2 Obtained Results

To validate our approach, we followed the evalua-
tion protocol used by previous works for each of the
above-mentioned datasets.

4.2.1 KARD Dataset

Three different experiments on five different activities
groups of the dataset were proposed by the collectors
of the KARD dataset (Gaglio et al., 2015). The ex-
periments are as follows:

• Experiment A: Train/Test split: 30/70%
• Experiment B: Train/Test split: 70/30%
• Experiment C: Train/Test split: 50/50%

The dataset’s activities are divided into the following
categories:

• Gestures: horizontal arm waving, high arm wav-
ing, two hand waving, high throwing, drawing x,
drawing tick, forward kicking, side kicking, bend-
ing, hand clapping
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Figure 6: Multi-head self-attention block (left) and Scaled dot-product attention block (right).

• Actions: catching cap, tossing paper, taking um-
brella, walking, phone calling, drinking, sitting
down, standing up

• Activity Set 1: horizontal arm waving, two hand
waving, bending, phone calling, standing up, for-
ward kicking, drawing x, walking

• Activity Set 2: high arm waving, side kicking,
catching cap, drawing tick, hand clapping, for-
ward kicking, bending, sitting down

• Activity Set 3: drawing tick, drinking, sitting
down, phone calling, taking umbrella, tossing pa-
per, high throwing, horizontal arm waving

Each group was tested three times following the
three evaluation strategies mentioned earlier. The re-
sults of Gestures and Actions categories are reported
in Table 1. According to the results, we notice that
for Gestures, the evaluation protocol B, where the 2/3
of the data is used to train the model and the rest to
test it, outperforms the two other protocols. In fact,
Experiment B outperforms the two other experiments
in all of the groups (see Table 1 and Table 2), which
means giving more data for training helps to improve
the recognition performance. We notice also that the
Actions set seems to be easier to analyze since the
results of the three experiments outperform the three
experiments in the Gestures group. This can be ex-
plained by the fact that in the Actions set most of the
body joints are engaged in the activity, unlike the Ges-
tures where only few joints are engaged.

Table 2 summarizes the results of the Activity Set
tests. It is shown that Activity Set 1 and 2, which seem
to be the simplest ones, have good recognition results
compared to Activity Set 3. The reported results show
also that the proposed approach outperforms the orig-
inal work proposed in (Gaglio et al., 2015), which

is based on the use of a discrete HMM to describe
an activity as a succession of poses and a multiclass
SVM to classify poses. It outperforms also the work
in (Cippitelli et al., 2016), which is based on the ex-
traction of key poses to create a feature vector and
classification using a multiclass SVM.

Finally, the “new-person” evaluation protocol is
also performed. This scenario consists in using nine
of the ten persons of the dataset to train the model and
using the remaining person to test. Therefore, since
there is no recommendation on how split the dataset,
we used the 18 activities to perform the “new-person”
scenario. The obtained results are reported in Table
3. We notice that our model outperforms the works
in (Gaglio et al., 2015) and (Cippitelli et al., 2016)
by respectively 11% and 1% in terms of precision and
recall.

4.2.2 Florence 3D Dataset

The leave-one-actor-out setting, which is equivalent
to the previously described ”new-person” setting, is
used to evaluate this dataset. The obtained results us-
ing the proposed transformer approach as well as a
comparison with the works of the state-of-the-art are
drawn in Table 4. The proposed approach achieved an
accuracy equals to 91%. We notice that our accuracy
is less than the accuracy (96.2%) reported in (Taha
et al., 2015). However, the proposed approach out-
performs the other mentioned literature works, such
as the work in (Seidenari et al., 2013), which uses a
bag-of-poses to model the skeleton data, and the work
in (Vemulapalli et al., 2014) which uses Lie Group to
model the human action as a curve.

In fact, the Florence 3D dataset is challenging due
to the high interclass similarity, which means the exis-
tence of similar activities like drink from a bottle and
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Table 1: Accuracy (%) of the proposed approach on the KARD dataset with the dataset split in Gestures and Actions using
different experiments.

Gestures Actions
A B C A B C

(Gaglio et al., 2015) 86.5 93.0 86.7 92.5 95.0 90.1
(Cippitelli et al., 2016) 89.9 95.9 93.7 99.1 99.9 99.4

Transformer (ours) 96.7 100 97.3 98.8 100 100

Table 2: Accuracy (%) of the proposed approach on the KARD dataset with different Activity Sets using different experiments.

Activity Set 1 Activity Set 2 Activity Set 3
A B C A B C A B C

(Gaglio et al., 2015) 95.1 99.1 93.0 89.0 94.9 90.1 84.2 89.5 81.7
(Cippitelli et al., 2016) 98.2 99.0 98.1 99.8 100 99.7 91.6 95.8 93.3

Transformer (ours) 98.8 100 99.17 100 100 100 94.5 98.6 95.0

Table 3: Precision (%) and recall (%) of the proposed ap-
proach on the KARD dataset using the ”new-person” set-
ting.

Precision Recall
(Gaglio et al., 2015) 84.8 84.5

(Cippitelli et al., 2016) 95.1 95.0
Transformer (ours) 96.7 96.3

Table 4: Accuracy (%) of the proposed approach on the
Florence 3D dataset using the ”new-person” setting.

Accuracy
(Seidenari et al., 2013) 82.0

(Vemulapalli et al., 2014) 90.9
(Taha et al., 2015) 96.2

(Cippitelli et al., 2016) 86.1
Transformer (ours) 91.0

answer phone, and also the high intraclass similarity
which means that an action can be performed in dif-
ferent ways by the same person like using once the
left hand and once the right hand to perform the same
activity.

4.2.3 UTKinect Action 3D Dataset

As in the case of the Florence 3D dataset, the work in
(Xia et al., 2012) proposed the leave-one-out cross-
validation (LOOCV) evaluation protocol, which is
similar to the “new-person” protocol. Table 5 shows
the obtained results on this dataset compared to pre-
vious works. The results show that the work in (Vem-
ulapalli et al., 2014) produced the best accuracy, but
their approach is very complex since they model the
skeleton in a Lie group and then, before classifica-
tion with one-versus-all multiclass SVM, they pro-
cess it with Dynamic Time Wrapping to achieve tem-
poral alignments and a special representation known
as the Fourier Temporal Pyramid. In the other hand,

our approach outperforms the original work on this
dataset (Xia et al., 2012) with 3.1% in term of accu-
racy. The key performance constraint with this dataset
is the limited number of frames that some sequences
contain compared to other sequences, which can de-
crease the results dramatically.

Table 5: Accuracy (%) of the proposed approach on the
UTKinect Action 3D dataset using the LOOCV setting.

Accuracy
(Xia et al., 2012) 90.9

(Theodorakopoulos et al., 2013) 90.95
(Zhu et al., 2013) 91.9

(Gan and Chen, 2013) 92.0
(Vemulapalli et al., 2014) 97.1

(Cippitelli et al., 2016) 95.1
(Liu et al., 2017) 92.0

Transformer (ours) 94.0

4.2.4 MSR Action 3D Dataset

In the literature, there is a lot of uncertainty on which
validation parameters should be used with MSR Ac-
tion 3D dataset. Padilla-Lopez et al. (Padilla-López
et al., 2014) suggested employing all feasible com-
binations of 5-5 subject splitting, which consists in
using 252 combinations of 5 persons for training
and 5 persons for testing, or using leave-one-actor-
out (LOAO) protocol, which is similar to the “new-
person” scenario. Here, we considered the “new-
person” protocol since it is used by most of the works
in the literature. According to the results reported
in Table 6, we were able to reach an accuracy of
93%, which is better than all of the previous works.
Therefore, the work in (Azary and Savakis, 2013)
proposed an approach based on skeleton data. How-
ever, Chaaraoui et al. (Chaaraoui et al., 2013) used

View-invariant 3D Skeleton-based Human Activity Recognition based on Transformer and Spatio-temporal Features

713



more advanced techniques, such as the fusion of depth
and skeleton data, or selection of the best set of
joints. More recent works exploits subspace cluster-
ing and temporal pruning to recognize activity (Pao-
letti et al., 2021). The work in (Zhao et al., 2019)
proposed a bayesian hierarchical dynamic model for
action recognition. Finally, a Graph based skeleton
model is used in (Kao et al., 2019) to recognize the
human activity.

Table 6: Accuracy (%) of the proposed approach on the
MSR Action 3D dataset using the LOAO setting.

Accuracy
(Azary and Savakis, 2013) 78.5

(Chaaraoui et al., 2013) 90.6
(Cippitelli et al., 2016) 81.2

(Zhao et al., 2019) 86.1
(Kao et al., 2019) 74

(Paoletti et al., 2021) 88.51
Transformer (ours) 93.0

5 CONCLUSION

In this paper, a view-invariant HAR approach based
on 3D skeleton data has been proposed. A spatio-
temporal features generation step has been imple-
mented. Therefore, after translating the origin of the
skeleton’s coordinate system from the center of the
camera to the head and spine in order to prevent the
view variance problem, we compute the distances be-
tween each joint and the new origins and the move-
ment angles as well as the movement direction of each
joint between each two consecutive frames of the in-
put sequence. The extracted features are then ana-
lyzed by a pure Transformer Encoder in order to rec-
ognize the activity associated to these features. Our
approach shows improvements compared to most of
the state-of-the-art approaches after being tested on
the KARD, Florence 3D, UTKinect Action 3D and
MSR Action 3D datasets. In future works, we aim
to use more sophisticated methods like Graph Neu-
ral Networks since the human skeleton can be eas-
ily modeled as a graph and evaluate bigger and more
challenging datasets such as NTU-RGB-D dataset.
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