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Abstract: The success of deep learning on computer vision tasks is due to the convolution layer being equivariant to
the translation. Several works attempt to extend the notion of equivariance into more general transformations.
Autoencoding variational transformation (AVT) achieves state of art by approaching the problem from the
information theory perspective. The model involves the computation of mutual information, which leads to a
more general transformation-equivariant representation model. In this research, we investigate the alternatives
of AVT called variational transformation-equivariant (VTE). We utilize the Barber-Agakov and information
noise contrastive mutual information estimation to optimize VTE. Furthermore, we also propose a sequential
mechanism that involves a self-supervised learning model called predictive-transformation to train our VTE.
Results of experiments demonstrate that VTE outperforms AVT on image classification tasks.

1 INTRODUCTION

The success of convolutional neural networks (CNN)
in computer vision tasks is due to the equiv-
ariant property (Hinton et al., 2011; Cohen and
Welling, 2016). Specifically, the CNN extracts fea-
tures/representations that are equivariant to the trans-
lation. In general, transformation-equivariant guaran-
tees the obtained representation changes in the same
way as we transform the image. Figure 1 shows the
illustration of transformation-equivariant. This prop-
erty enables CNN to extract a better representation
structure from the given image. Some efforts have
been made such that CNN can handle various types
of transformations. However, current methods are
restricted to discrete transformations. Such circum-
stance limits the capacity of CNN to capture visual
structure under more complex transformation, includ-
ing continuous and non-linear transformations.

An unsupervised approach solves the limitation of
the transformations. State of the art utilizes an au-
toencoder called autoencoding transformation (AET)
(Zhang et al., 2019). This autoencoder reconstructs
the transformation t given the original image x and the
transformed image tx. The transformation t is drawn
from the affine and projective family of transforma-
tions. Another work extends the AET to an infor-
mation theory perspective, resulting in autoencoding

Figure 1: The illustration of transformation-equivariant.
The representation z2 can be obtained in two ways. The first
approach is to feed a transformed image x2 = t(x1) through
a function fθ, with t is the transformation in image space.
Another approach is to transform representation z1 through
function r.

variational transformation (AVT) (Qi et al., 2019).
AVT adopts the notion of steerability and extends

it to an information theory perspective. The steerabil-
ity guarantees that we can transform the representa-
tion ẑ the same way we transform the image x with-
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out requiring x (Cohen and Welling, 2017). From an
information theory point of view, we can view the
steerability property as the MI between the represen-
tation of the original image ẑ, the representation of
the transformed image z, and the transformation t (Qi,
2019). The goal of AVT is to maximize MI I(z; ẑ, t).
However, computing the closed-form of MI is often
intractable, especially for high-dimensional data. In-
stead, AVT estimates the MI by decomposing the MI
into two terms and maximizing the lower bound of
one of them.

I(z; ẑ, t) = I(ẑ;z)+ I(z; t|ẑ)

AVT maximizes I(z; t|ẑ) by using Barber-Agakov es-
timation (Agakov, 2004). Results show that AVT
achieves promising results on image classification
tasks. However, It remains unclear whether term
I(ẑ;z) gives the same performance as AVT.

This research investigates I(ẑ;z) as an alterna-
tive objective to train an unsupervised transformation-
equivariant representation. Later on, we call the
alternative models as variational transformation-
equivariant (VTE). Our finding shows that maximiz-
ing I(ẑ;z) without prior information is not feasible.
Instead, we train VTE into two stages. In the first
stage, we build a self-supervised learning model that
maximizes MI between transformation t and the rep-
resentation of the transformed image z. In the sec-
ond stage, we build VTE model and incorporate the
previous self-supervised learning model to maximize
I(ẑ;z). Moreover, we apply Barber-Agakov (Agakov,
2004) and InfoNCE (van den Oord et al., 2018) MI es-
timation to maximize the MI, resulting in three differ-
ent models. Finally, we evaluate the proposed models
on image classification tasks. We conduct the classifi-
cation on two datasets: CIFAR-10 (Krizhevsky et al.,
2009) and STL-10 (Coates et al., 2011) datasets. The
main contributions of this paper are as follow:

• We design a mechanism to train VTE, an alterna-
tive version of AVT.

• We build a self-supervised model to help training
the VTE.

• We utilize Barber-Agakov and InfoNCE MI esti-
mation to train our VTE.

• We apply the proposed models as feature extractor
on image classification tasks.

We make our code available on Github.1

The rest of this paper is organized as follows. In
Section 2, we cover works related to self-supervised
learning, transformation-equivariant representation,
and MI estimation methods. Section 3 gives a detailed

1https://github.com/MarshalArijona/VTE

explanation of how to train VTE. In Section 4, we dis-
cuss the settings and results of experiments. Finally,
Section 5 gives the conclusion of this research.

2 RELATED WORKS

2.1 Transformation-Equivariant
Representation

The capsule net initiated the idea of general
transformation-equivariant representation (Hinton
et al., 2011; Wang and Liu, 2018). Capsule net takes
groups of neurons, which are responsible to capture
specific information of the image. Each capsule is
designed to be equivariant to specific transformations.
However, there was no rigorous algorithm to control
and guarantee the equivariance property for each
capsule.

Several works attempted to build a special con-
volution network that captures more types of trans-
formation operations. Group equivariant convolution
network (Cohen and Welling, 2016) introduces p4
and p4m groups to handle the equivariance for ro-
tation, translation, and reflection. This network pro-
duces a more complex visual structure which is bene-
ficial for the classification layer. Steerable CNN (Co-
hen and Welling, 2017) utilizes a filter bank that is
responsible to capture the equivariant property. An-
other work proposed dynamic routing for capsule net
(Lenssen et al., 2018) with concepts of equivariant
pose vectors and invariant agreements.

2.2 Self-supervised Learning

In general, self-supervised learning attempts to gen-
erate a surrogate label to enable supervised learning.
The surrogate label is synthesized from the part of
the data. (Noroozi and Favaro, 2016) divided the im-
age into several patches and permute the order of the
patches. Subsequently, they build a context-free net-
work to predict the index of the permutation. (Doer-
sch et al., 2015) also treat the images as grids/patches.
The idea is to predict the relative position of a ran-
dom grid given another grid that acts as the context.
(Noroozi et al., 2017) attempt to count the number of
features of the transformed images. In this research,
they restrict the transformation operation into scal-
ing and tiling. (Gidaris et al., 2018) apply discrete
rotation on the image and ask the model to predict
the type of rotation. (Dosovitskiy et al., 2016) apply
several transformations to the image. Subsequently,
they assign the same surrogate label to the original
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image and the transformed images. Finally, a classi-
fier is asked to predict the surrogate class. Most self-
supervised methods require some transformation op-
erations to train the model. However, the transforma-
tions are restricted to the pseudo label on which the
model is trying to solve. Furthermore, there is no ex-
plicit algorithm that guarantees the model preserves
the equivariant property.

2.3 Mutual Information Estimation

Given two random variables x and y, the mutual in-
formation I quantifies the amount of information (in
nat or bit) obtained about x after observing y or vice
versa. Mathematically, MI is defined by:

I(x;y) = Ep(x,y)

[
p(x,y)

p(x)p(y)

]
= Ep(x,y)

[
p(x|y)
p(x)

]
= Ep(x,y)

[
p(y|x)
p(y)

]
(1)

Computing MI is often intractable. Specifically, the
source of intractability is due to the unavailability to
the conditional distribution p(x|y). Furthermore, it
is often that we only have samples from the joint
distribution. Therefore, sample-based methods are
developed to estimate MI. In general, there are two
approaches to estimating MI: taking the variational
lower bound of MI and taking the variational upper
bound of MI.

Barber-Agakov MI estimation (Agakov, 2004) ap-
proximates the p(x|y) with a variational distribution
q(x|y) to obtain the lower bound of MI. This ap-
proach is relatively easy to compute but gives a high
bias. Another approaches transformed q(x|y) into an
unnormalized form by introducing a partition func-
tion Z (Nguyen et al., 2010; Donsker and Varadhan,
1975). However, those approaches require the sam-
ples from the marginal distribution, which we want to
avoid. InfoNCE (van den Oord et al., 2018) obtains
the lower bound by incorporating a contrastive loss
approach. The advantage of this method is the low
variance of the estimation. This method requires the
positive pair and the negative pairs of samples. How-
ever, the method is heavily dependent on the number
of samples.

We can adopt the Barber-Agakov method to ob-
tain the upper bound of MI. (Alemi et al., 2017) ap-
proximate the marginal distribution p(x) with a vari-
ational distribution q(x). However, approximating
the marginal distribution without prior information is
challenging, especially on high dimensional data. The
Leave-one-out (Poole et al., 2019) method attempts to
approximate p(x) by taking the sum of p(xi|y j) over

the samples (xi,y j), except yi. yi is the correspond-
ing pair of xi. Another approach incorporates a con-
trastive method to derive the variational upper bound
of MI (Cheng et al., 2020).

In this research, we perform MI maximization
with the help of Barber-Agakov and InfoNCE esti-
mation. Both methods only require samples from the
joint distribution, which fit the problem we aim to
solve.

3 VARIATIONAL
TRANSFORMATION-
EQUIVARIANT

3.1 The Generalization of
Transformation-Equivariant
Representation

Let ẑ ∈ Z be the representation of image x ∈ X and
t : X ×T → X be a transformation that involves im-
age x and a transformation operation t. We have
z ∈ Z be the representation of a transformed image
t(x, t) = tx. We can view the transformation t as a
matrix. Representations ẑ,z, and transformation t sat-
isfy the transformation-equivariant property if there
exists a function r : Z×T → Z, such that

z = r(z, t) = τ(t)(ẑ) (2)

where τ(t) denotes a function that enable t to be ap-
plied in Z. Note that the representation z is com-
pletely determined by t and ẑ (no need access to x).
This notion is called steerability (Cohen and Welling,
2017; Qi, 2019), which enables computing z by ap-
plying an independent transformation τ(t) to ẑ.

From the information theory perspective, we can
model the notion of steerability as the MI between z,
and (ẑ, t) (Qi, 2019). Here the MI is parameterized
by θ. Therefore, the goal is to find θ that maximizes
Iθ(z; ẑ, t).

θ
∗ = max

θ

Iθ(z; ẑ, t) (3)

The form Iθ(z; ẑ, t) is not feasible to compute. To en-
able the training, we decompose Iθ(z; ẑ, t) into:

Iθ(z; ẑ, t) = E
pθ(z,ẑ,t)

[
pθ(z, ẑ, t)

pθ(z) pθ(ẑ, t)

]
= E

pθ(z,ẑ,t)

[
pθ(ẑ)pθ(z|ẑ)pθ(t|z, ẑ)

pθ(z) pθ(t|ẑ)pθ(ẑ)

]
= E

pθ(z,ẑ,t)

[
pθ(z|ẑ
pθ(z)

]
+ E

pθ(z,ẑ,t)

[
pθ(t|z, ẑ)
pθ(t|ẑ)

]
= Iθ(z; ẑ)+ Iθ(z; t|ẑ) (4)
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AVT aims to maximize Iθ(z; t|ẑ) as the objective func-
tion. In this paper, we investigate the performance of
an transformation-equivariant repersentation model
by maximizing Iθ(ẑ;z). We name this model as vari-
ational transformation-equivariant (VTE). Both AVT
and VTE encounter the intractable computation of
MI. AVT needs to compute the intractable posterior
pθ(t|ẑ,z), while VTE needs to compute intractable
posterior pθ(z|ẑ). Therefore we need to estimate the
MI. AVT utilizes Barber-Agakov estimation to max-
imize the MI. In this research, we maximize MI by
using Barber-Agakov (Agakov, 2004) and InfoNCE
MI estimation (van den Oord et al., 2018).

3.2 Transformation as Inductive Bias

Our preliminary experiments showed that maximiz-
ing MI Iθ(ẑ;z) without prior results in the model fails
to learn. Specifically, the model will assign a trivial
posterior probability given any pair of (ẑ,z). There-
fore, we need to explicitly involve the transformation
t to train VTE.

We propose sequential mechanism to train the
VTE. The training comprises two phases of training.
In the first phase, we model the distribution of z. Re-
call that z is the representation of the transformed im-
age. We involve the transformation t the train the
model. Specifically, we build a self-supervised learn-
ing model that maximizes the MI I

θ̂
(z; t), parame-

terized by θ̂. We call this model as the predictive-
transformation. Note that this objective function is
similar to AVT (Iθ(z; t|ẑ)), except without ẑ. Due to
the absence of ẑ, the obtained representation is not
guaranteed to be equivariant anymore. We maximize
the MI by using Barber-Agakov lower bound MI esti-
mation. Barber-Agakov estimation introduces a vari-
ational distribution q

φ̌
(t|z), parameterized by φ̌ to ap-

proximate p
θ̂
(t|z).

I
θ̂
(t;z) = H(t)−H(t|z)

= H(t)+Ep
θ̂
(t,z) log p

θ̂
(t|z)

= H(t)+Ep
θ̂
(t,z) logq

φ̌
(t|z)

+Ep(z)KL(p
θ̂
(t|z)‖q

φ̌
(t|z))

≥ H(t)+Ep
θ̂
(t,z) logq

φ̌
(t|z) (5)

H(.) and KL(.‖.) denote the entropy and the
Kullback-Leibler divergence between two distribu-
tions, respectively. Since H(t) does not depend on
θ̂ and φ̌, we simply maximize

max
θ̂,φ̌

Ep
θ̂(t,z)

logq
φ̌
(t|z) (6)

We implement the predictive-transformation in the
framework of autoencoder. Figure 2 shows the archi-
tecture of predictive-transformation.

Figure 2: The architecture of predictive-transformation
model. Transformed image is fed through the encoder p

θ̂
.

The output of encoder is the mean µ
θ̂

and the standard-
deviation σ

θ̂
. The representation z is sampled and fed

through the decoder q
φ̌
. The output of the decoder is the

mean µ
φ̌
, which corresponds to the transformation t.

The encoder E
θ̂

represents p
θ̂
(z|tx). We assume that

p
θ̂
(z|tx) is following a factored multivariate Gaussian

distribution N (z;µ
θ̂
,σ

θ̂
). Therefore, the output of the

encoder is the mean µ
θ̂

and the standard-deviation σ
θ̂
.

The decoder D
φ̌

represents the variational distribution
q

φ̌
(t|z). We also assume that q

φ̌
(t|z) is a factored mul-

tivariate Gaussian distribution, with a constraint that
the standard-deviation sets to one: N (t;µ

φ̌
,I). I de-

notes the identity matrix. Thus, the output of the de-
coder is the mean µ

φ̌
.

For the second phase of training, we capture the
distribution of ẑ by training the VTE network. The
goal is to maximize the MI Iθ(ẑ;z). We estimate
Iθ(ẑ;z) by using Barber-Agakov and InfoNCE esti-
mation. The optimization can be done through a
gradient-based method such as stochastic gradient de-
scent.

3.3 Barber-Agakov Lower Bound
Estimation

Following Equation 5, we derive the lower bound
of Iθ(ẑ;z) by introducing a variational distribu-
tion qφ(z|ẑ), parameterized by φ to approximate
pθ(z|ẑ). Furthermore, we incorporate the predictive-
transformation from the first phase of training to ob-
tain the representation z. We call this model as
VTEBArber-Agakov (VTEBA).

I
θ,θ̂(ẑ;z) = H(z)−H(z|ẑ)
= H(z)+Ep

θ,θ̂(t,ẑ,z)
log p

θ,θ̂(z|ẑ)

= H(z)+Ep
θ,θ̂(t,ẑ,z)

logqφ(z|ẑ)

+Ep(ẑ)KL(p
θ,θ̂(z|ẑ) ||qφ(z|ẑ))

≥ H(z)+Ep
θ,θ̂(t,ẑ,z)

logqφ(z|ẑ) (7)
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In this phase, we do not optimize θ̂ anymore. There-
fore, the objective function of VTEBA is maximizing

max
θ,φ

Ep
θ̂,θ(t,ẑ,z)

logqφ(z|ẑ) (8)

Just like predictive-transformation, we treat
VTEBA as an autoencoder. Figure 3 shows the ar-
chitecture of VTEBA.

Figure 3: The architecture of VTEBA. The transformed im-
age is fed through the predictive-transformation’s encoder
p

θ̂
, while the original images is fed through the encoder

pθ. The output of the encoder is the mean µθ and the
standard-deviation σθ. The representation ẑ is sampled and
fed through the decoder qφ. The output of the decoder is the
mean µφ, which corresponds to the representation of trans-
formed image z, obtained from p

θ̂
.

The encoder Eθ represents pθ(ẑ|z). We assume that
pθ(ẑ|z) is following a factored multivariate Gaussian
distribution N (ẑ;µθ,σθ). Thus, the output of Eθ is the
mean µθ and the standard-deviation σθ. The encoder
E

θ̂
of the predictive-transformation is responsible to

infer z. Note that we freeze θ̂ while training VTE. We
use the samples z to compute qφ(z|ẑ). The decoder
Dφ represents qφ(z|ẑ) and takes ẑ as the input. We
assume that qφ(z|ẑ) is following N (z;µφ,I) to reduce
the complexity of the model. Therefore, the output of
Dφ is the mean µφ.

3.4 InfoNCE Lower Bound Estimation

The second estimation method is the InfoNCE. Note
that we still utilize the predictive-transformation to in-
fer z. This method adopts the notion of contrastive
learning to estimate MI. Recall that from Equation 1,
we have the MI as the expectation of a density ratio
between conditional distribution and the marginal dis-
tribution. Given I

θ,θ̂(ẑ;z), then:

I
θ,θ̂(ẑ;z) = Ep

θ,θ̂(t,ẑ,z)
log

p
θ,θ̂(ẑ|z)
p(ẑ)

(9)

Furthermore, suppose that we have a batch of sam-
ples {(ẑi,zi)}N

i=1. For a particular pair (ẑi,zi), we can

model the density ratio
p

θ,θ̂(ẑ=ẑi|z=zi)

p(ẑ=ẑi)
as:

exp( f (ẑi,zi)) ∝
p

θ,θ̂(ẑ = ẑi|z = zi)

p(ẑ = ẑi)
(10)

with f is an estimator function that takes (ẑi,zi) as the
input. Note that this approximation form can be un-
normalized, which means that the integral of the den-
sity ratio does not have to be 1. Therefore, for each
pair of (ẑi,zi), we normalize it by a partition func-
tion that takes the sum of (ẑ j,zi), 1 ≤ j ≤ N ∧ i 6= j.
We call (ẑi,zi) a positive pair, while (ẑ j,zi) a negative
pairs. Mathematically, we have

I
θ,θ̂(ẑ,z)≥ E

∏ j p
θ,θ̂(t,ẑ,z)

log
exp( f (ẑi,zi))

∑ẑ j exp( f (ẑ j,zi))
(11)

≥ E
∏ j p

θ,θ̂(t,ẑ,z)
log

exp(g(ẑi)Th(zi))

∑ẑ j exp(g(ẑ j)Th(zi))

(12)

It is known that neural network is an universal approx-
imation for any function (Heaton, 2018). Therefore,
we implement the estimator function f as neural net-
work. We call this model as VTEInfoNCE concate-
nated version. Furthermore, we can decompose the
function f into two different functions g and h, each
takes ẑ and z as input separately. We combine the
output by performing vector multiplication. We call
this model as VTEInfoNCE separated version. Let φ̂

be the parameter of estimator function f . The objec-
tive function of VTEInfoNCE concatenated version is
maximizing

max
θ,φ̂

E
∏ j p

θ,θ̂(t,ẑ,z)
log

exp( f (ẑi,zi))

∑ẑ j exp( f (ẑ j,zi))
(13)

Subsequently, let φ̃,φ′ be the parameter of the estima-
tor function g and h, respectively. The VTEInfoNCE
separated version aims to maximize

max
θ,φ̃,φ′

E
∏ j p

θ,θ̂(t,ẑ,z)
log

exp(g(ẑi)Th(zi))

∑ẑ j exp(g(ẑ j)Th(zi))
(14)

Note that we do not optimize the parameter θ̂. In the
next subsection, we provide the algorithm to train the
predictive-transformation and the VTE models. Fig-
ure 4 shows the architecture of VTEInfoNCE sepa-
rated.

3.5 Algorithm

3.5.1 Training Predictive-transformation

Suppose that we have a batch consists of N sam-
ples X =

{
xi
}N

i=1. For each sample, we draw a
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Figure 4: The architecture of VTEInfoNCE. The decoder is
replaced with estimator functions g and h, parameterized by
φ̃ and φ

′, respectively.

transformation ti from p(t). We infer p
θ̂
(zi|tixi) by

feeding tixi through encoder E
θ̂
. Note that the out-

put of E
θ̂

is the parameters of a probability distri-
bution. Therefore, we need to sample from the dis-
tribution to get zi instance. However, performing
ordinary sampling leads the model to fail to com-
pute the gradient of the objective function w.r.t. the
parameter θ̂ (encoder parameter). This condition is
undesirable if we perform the optimization through
gradient-based method. Therefore, we apply the
reparameterization trick to solve the problem. This
trick is renowned used by the variational autoencoder
(Kingma and Welling, 2013). Given the mean µ

θ̂
(tixi)

and standard-deviation σ
θ̂
(tixi), we can write repa-

rameterization trick as:

zi = µ
θ̂
(tixi)+σ

θ̂
(tixi)� ε

i (15)

with � denotes the pointwise multiplication. Recall
that µ and σ are obtained from the encoder E

θ̂
. Fur-

thermore, εi refers to a noise sampled from N (ε;0,I).
Decoder D

φ̌
takes z to output q

φ̌
(t|z). Since we only

have the samples z, we translate the expectation into
an unbiased Monte Carlo estimation:

min
θ̂,φ̌

1
N

N

∑
i=1
− logN (ti;µ

φ̌
(zi),I) (16)

By the property of the monotonic function (log), we
minimize the negative of the objective function. Fur-
thermore, the decoder D

φ̌
only outputs µ

φ̌
(by the as-

sumption of q
φ̌
(t|z)).

3.5.2 Training Variational
Transformation-Equivariant

We follow the same settings as the predictive-
transformation. Given samples X = {xi}N

i=1, we draw

transformation ti from p(t) for each xi. Subsequently,
we use encoder Eθ to infer pθ(ẑi|xi). and perform the
reparameterization trick to generate ẑ.

ẑi = µθ(x
i)+σθ(xi)� ε̂

i (17)

The noise ε̂ is drawn from a standard Gaussian distri-
bution N (ε̂;0,I).

We use the encoder E
θ̂

to infer p
θ̂
(zi|ti). Note that

E
θ̂

is the encoder of predictive-transformation. We
freeze the parameter θ̂ since we do not optimize θ̂.
For the Barber-Agakov MI-estimation, we minimize

min
θ,φ

1
N

N

∑
i=1
− logN (zi;µφ(ẑ

i),σ(ẑi)) (18)

Here we translate the expectation into an unbiased
Monte Carlo estimation method since we only have
the samples of ẑ and z. We take the benefit of the
monotonic function’s property by translating the ob-
jective function into a minimization problem. De-
coder Dφ represents qφ(z|ẑ). By the assumption of
qφ(z|ẑ), Dφ only outputs the mean µφ.

For the InfoNCE MI-estimation, we have two ver-
sions: the concated version and the separated version.
The objective function of the concatenated version is
as follows:

min
θ,φ̂

1
N

N

∑
i=1
− log

exp( f (ẑi,zi))

∑ẑ j exp( f (ẑ j,zi))
(19)

φ̂ denotes the parameter of estimator function f . Sub-
sequently, the objective function of the separated In-
foNCE is as follows:

min
θ,φ̃,φ′

1
N

N

∑
i=1
− log

exp(g(ẑi)Th(zi))

∑ẑ j exp(g(ẑ j)Th(zi))
(20)

φ̃,φ′ denote the parameters of g and h, respec-
tively. Both VTEBA and VTEInfoNCE can utilize a
gradient-based method to optimize the objective func-
tion.

The difference between AVT and VTE lies in their
output. The decoder of AVT estimates the proba-
bility distribution pθ(t|ẑ,z) through Barber-Agakov
MI estimation. On the other hand, the decoder of
VTEBA and the estimator function of VTEInfoNCE
aim to estimate pθ(ẑ|z) through Barber-Agakov esti-
mation and noise contrastive loss, respectively. As a
result, AVT takes z and ẑ as the inputs, while VTEBA
only takes one of either ẑ or z. Furthermore, AVT re-
quires one stage of training while VTE requires two
stages of training. The latter is because VTE needs the
predictive-transformation model as the inductive bias,
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Table 1: The comparison of average error rate by different of each model with the various number of training data on CIFAR-
10 image classification using MLP.

Model 50K 5K 0.5K
AVT 0.147 ± 0.0001 0.355 ± 0.0018 0.797 ± 0.0021

predictive-transformation 0.142 ± 0.0006 0.383 ± 0.0028 0.655 ± 0.0036
VTEBA 0.140 ± 0.0000 0.354 ± 0.0001 0.508 ± 0.0006

VTEInfoNCE (1) 0.148 ± 0.0005 0.310 ± 0.0015 0.550 ± 0.0015
VTEInfoNCE (2) 0.152 ± 0.0000 0.362 ± 0.0016 0.476 ± 0.0006

which requires separate training. From the optimiza-
tion side, VTE and AVT depend on the gradient-based
method and reparameterization trick to optimize their
parameters.

4 EXPERIMENTS

For the experiments, we train predictive-
transformation, VTEBA, VTEInfoNCE separated
version, and VTEInfoNCE concatenated version. We
also reproduce AVT to give a fair comparison. We
then evaluate each of model on image classification
tasks. We utilize multi-layer perceptron (MLP),
K-nearest neighbor (K-NN), and multinomial logistic
regression as the classifiers. In this experiment, we
use CIFAR-10 (Krizhevsky et al., 2009) and STL-10
(Coates et al., 2011) datasets.

4.1 CIFAR-10 Experiment

Architecture. We follow the original architecture
of AVT for each model. Specifically, we use
Network-In-Network architecture (Lin et al., 2013)
for the convolution blocks (encoder). We represent
the distribution of z and ẑ as a MLP of size 1024.
The first 512 neurons represent the mean and the
rest represent the log variance. The idea of replac-
ing the standard-deviation with the log variance is
to preserve numerical stability. We can derive the
standard-deviation by performing an exponentiation
trick. We implement the Decoder D

φ̌
,Dφ, and the es-

timator function f ,g and h as MLP with three layers.

Implementation Details. All models are optimized
by adaptive moment (Adam) (Kingma and Ba, 2015)
with a learning rate of 1e− 4. We train the models
for 200 epochs. For each iteration, we chunk the data
into several mini-batches, each with size 256. We uti-
lize 1 GPU Tesla V-100 as the source of computation.
Furthermore, our models follow the same settings as
AVT (Qi et al., 2019) for the type of transformation.
For each image, we apply the projective transforma-
tion consists of random translation along horizontal

line and vertical line by [−0.125,0.125] of the width
and the height of the image, random scaling with the
ratio [0.8,1.2], and the random rotation with an angle
from {0◦,90◦,180◦,270◦}.

Evaluation. We perform image classifications to
evaluate the models. First, we feed the feature ex-
tracted by the encoder of each model through an
MLP-based classifier. The MLP consists of three
fully connected layers. The first two layers share the
exact size of 2048 neurons, while the last layer has a
size of 10. We train the classifier on the various num-
ber of training data. Specifically, we train the MLP
on 50000, 5000, and 500 training data, respectively.
We then test the MLP on 10000 images. Since the
encoder is a probabilistic model, we perform the clas-
sification 5 times for each image and take the average
of the error rate. This approach is a bit different with
AVT since they only compute the error once.

Table 1 shows the classification results using MLP
on CIFAR-10 dataset. VTEInfoNCE (1) and VTE-
InfoNCE (2) refer to VTEInfoNCE separated ver-
sion and VTEInfoNCE concatenated version, respec-
tively. The results show that VTEBA outperforms the
other models on 50000 data with a 0.14 average er-
ror rate while VTEInfoNCE (2) gives the worst re-
sult. On 5000 data, VTEInfoNCE (1) outperforms
the others with a 0.31± 0.0015 average error rate,
while VTEInfoNCE (2) gives the worst result with a
0.355± 0.00018 average error rate. Finally, VTEIn-
foNCE (2) yields the best result with a 0.476±0.0006
average error rate on 500 data, while AVT yields the
worst result with a 0.797±0.0021 average error rate.
In this experiment, the best model is different for each
number of data involved during the training. In gen-
eral, the proposed models give more satisfying results
compared to the baseline model.

Subsequently, we perform image classification
task by using K-NN. In this experiment, we choose
K = 5. All neighbors have an equal impact on the
classification result. Table 2 shows the classification
results using K-NN on CIFAR-10 dataset. From the
table, VTEBA consistently outperforms other mod-
els for every number of dataset. Furthermore, AVT
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Table 2: The comparison of average error rate by different of each model with the various number of training data on CIFAR-
10 image classification using K-NN.

Model 50K 5K 0.5K
AVT 0.693 ± 0.050 0.743 ± 0.006 0.803 ±0.009

predictive-transformation 0.527 ± 0.006 0.596 ± 0.002 0.69 ± 0.011
VTEBA 0.396 ± 0.003 0.488 ± 0.003 0.578 ± 0.008

VTEInfoNCE (1) 0.429 ± 0.030 0.508 ± 0.004 0.583 ± 0.004
VTEInfoNCE (2) 0.448 ± 0.003 0.519 ± 0.001 0.596 ± 0.006

Table 3: The comparison of average error rate by different of each model with the various number of training data on CIFAR-
10 image classification using multinomial logistic regression.

Model 50K 5K 0.5K
AVT 0.622 ± 0.0023 0.759 ± 0.0023 0.840 ± 0.0029

predictive-transformation 0.539 ± 0.0025 0.698 ± 0.0018 0.793 ± 0.0046
VTEBA 0.391 ± 0.0005 0.457 ± 0.0003 0.603 ± 0.0003

VTEInfoNCE (1) 0.439 ± 0.0010 0.550 ± 0.0014 0.681 ± 0.0012
VTEInfoNCE (2) 0.423 ± 0.0015 0.523 ± 0.0011 0.656 ± 0.0028

Table 4: Average error rate on STL-10 dataset using different classifiers.

Model PLB K-NN Logistic regression
AVT 0.522 ± 0.0000 0.707 ± 0.004 0.632 ± 0.0000

predictive-transformation 0.492 ± 0.0009 0.711 ± 0.002 0.544 ± 0.0012
VTEBA 0.460 ± 0.0007 0.607 ± 0.004 0.54 ± 0.0002

VTEInfoNCE (1) 0.365 ± 0.0000 0.475 ± 0.005 0.477 ± 0.0000
VTEInfoNCE (2) 0.363 ± 0.0005 0.473 ± 0.003 0.462 ± 0.0003

yields the highest average error rate for every number
of dataset.

Finally, we evaluate the representation models us-
ing multinomial logistic regression. The classifier op-
timize the cross-entropy loss for 100 iterations using
stochastic average gradient descent (SAG) (Schmidt
et al., 2017). Furthermore, we involve l2−norm to
regularize the weights of classifier. Table 3 shows
the classification results using multinomial logistic re-
gression on CIFAR-10 dataset. We have VTEBA con-
sistently outperforms other models for every number
of dataset. Moreover, AVT also becomes the model
with the highest average error rate for every number
of dataset.

We argue that two main factors cause the incon-
sistency results in Table 5. The first factor is the ten-
dency of MLP to suffer from over-fitting, especially if
there is only a small amount of data. The second fac-
tor is related to the characteristic of the representation
generated by VTEBA and VTEInfoNCE. We argue
that the contrastive loss leads VTEInfoNCE to gen-
erate representations that lie sparsely one each other.
On the other hand, the objective function of VTEBA
does not consider the relation of the representation
with its negative samples. Thus, the generated rep-
resentations are naturally more dense one each other.

VTEInfoNCE has an advantage on the image classi-
fication task, which involves a small amount of data
since the sparsity might reduce the overfitting to some
degree. However, this model performs poorly if we
have a large dataset since the MLP has to find a more
complex hypothesis (large and sparse). VTEBA per-
forms worse than VTEInfoNCE on a small dataset
since the MLP can fit the data too well. On the
contrary, VTEBA can give a better result on a large
dataset since the representations are more concen-
trated in some regions of the representation space.

4.2 STL-10 Experiment

Architecture. For STL-10 experiment, we adopt
the Alexnet architecture (Krizhevsky et al., 2017) for
the convolution blocks (encoder). Each block com-
prises a convolution and ReLU layer, followed by
a pooling layer. For the mean and the standard-
deviation, we adopt the same settings as the previous
experiment.

Implementation Details. In this experiment, we
train the proposed models and baseline model on
100000 unlabeled images, each with size 96×96. We
first resize each image to 32× 32. Subsequently, we
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apply the same transformation as the previous exper-
iment. All models are trained for 200 epochs with a
512 batch size. Same as previous research, the models
use 1 GPU Tesla V-100. We use the adaptive moment
to optimize the model with a learning rate 1e-4.

Figure 5: The first row shows sample images of the STL-10
dataset. The images in the second row are obtained by ap-
plying projective transformation on images in the first row.

Evaluation. We use the encoder of each model to
extract the feature for the image classification task.
We train an MLP, K-NN, and multinomial logistic re-
gression on 5000 labeled images. All classifiers fol-
low the same settings as the previous experiment. Fi-
nally, we ask each classifier to predict the class of
8000 unseen images. We also compute the average
error rate instead of just the error rate. Table 4 shows
the image classification results on the STL-10 dataset.
The results show that VTEInfoNCE(2) yields the low-
est average error-rate for each classifier. Further-
more, AVT achieve the highest average error-rate
for each classifier. The results are quite surprising
since we expect that AVT outperforms the predictive-
transformation. Recall that the goal of AVT is to max-
imize Ep

θ̂
(t,ẑ,z)qφ(t|ẑ,z). We argue that combining z

and ẑ directly to reconstruct t restricts the expressive
power of z and ẑ mutually. Thus, it reduces the gener-
alization of the model to extract the representation. In
contrast, VTE models z and ẑ independently, allow-
ing the representations to fully exploit the structure of
data tx and x, without losing the equivariant property.

5 CONCLUSIONS

In this research, we investigate the alternatives of
autoencoding variational transformation (AVT). We
call the models variational transformation-equivariant
(VTE). We find that training VTE directly fails in the
model to learn the representation of the data. The rea-
son is due to the absence of the prior/inductive bias
that gives the context of training. Instead, we pro-
pose training the model into two phases. In the first
phase, we build a probabilistic self-supervised learn-
ing model to learn the representation of the trans-
formed image. Theoretically, this model maximizes

the mutual information (MI) between the transforma-
tion and the representation of the transformed image.
We call the model predictive-transformation. In the
second phase of training, we build a representation
model that learns the representation of the original
image. In theory, we maximize MI between the rep-
resentation of the original image and the represen-
tation of the transformed image. We leverage the
previous model to obtain the representation of the
transformed image. However, computing MI directly
is intractable. Therefore, we utilize Barber-Agakov
and InfoNCE MI estimation method to maximize MI.
Barber-Agakov estimation approximates the true pos-
terior distribution with a variational distribution that
is easy to compute. We call the model VTEBArber-
Agakov. InfoNCE estimation method uses the deep
learning network as an estimator function of the den-
sity ratio. In this research, we propose two versions of
VTE with InfoNCE estimation. We call them VTEIn-
foNCE concatenated version and VTEInfoNCE sepa-
rated version. Furthermore, we evaluate the proposed
models and baseline on image classification tasks.
Results on CIFAR-10 and STL-10 datasets show that
our proposed models outperform the baseline.
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APPENDIX

5.1 Models Architecture on CIFAR-10
Dataset

Table 5 shows the architecture being used to build
predictive-transformation, AVT, VTEBA, VTEIn-
foNCE separated, and VTEInfoNCE concatenated on
CIFAR-10 dataset. The architecture of the encoder
follows the implementation of Network-In-Network.

Table 5: Architecture being used on CIFAR-10 experiment.

Encoder Decoder, f ,g, dan h
Block(3, 192, 5) Linear(512, 2048)

Block(192, 160, 1) ReLU
Block(160, 96, 1) Linear(2048, 512)
Max-Pool(3, 2, 1)
Block(96, 192, 5)
Block(192, 192)
Block(192, 8)

Avg-Pool(3, 2, 1)
µφ→ Linear(512, 512)

logσφ→ Linear(512, 512)

Block(in, out, kernel) is a module con-
sists of Conv2D(in, out, kernel, stride=1,
padding=(kernel - 1) // 2) → Batch Norm
2D → ReLU. Parameter in denotes the size of input
channel, out denotes the size of output channel, and
kernel denotes the size of kernel which owns the
same height and width.

5.2 Models Architecture on STL-10
Dataset

Tabel 6 shows architecture being used to build
predictive-transformation, AVT, VTEBA, and VTE-
InfoNCE on STL-10 dataset. In this experiment,
the encoder adopts architecture of Alexnet. Alex
Block(in, out, kernel, stride, padding) is
a module consists of Conv2D(in, out, kernel,
stride, padding)→ ReLU.

Table 6: Architecture being used on STL-10 experiment.

Encoder Decoder, f ,g, dan h
Alex-Block(3, 64, 11, 1, 2) Linear(512, 2048)

Max-Pool(3, 2, 0) BatchNorm

ReLU

Alex-Block(64, 192, 5, 1, 2) Linear(2048, 1024)

Max-Pool(3, 2, 0) BatchNorm

ReLU

Alex-Block(192, 384, 3, 1, 1) Linear(1024, 512)

Alex-Block(96, 192, 5)

Alex-Block(192, 192)

Max-Pool(3, 2, 0)

µφ→ Linear(1024, 512)

logσφ→ Linear(1024, 512)
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