
An Extensible Framework for Data Reliability Assessment 

Óscar Oliveira a and Bruno Oliveira b  
CIICESI, School of Management and Technology, Porto Polytechnic, Rua do Curral, Felgueiras, Portugal  

Keywords: Data Quality, Data Reliability, Data Warehouse, Data Lake, Quality Indicator. 

Abstract: Data Warehouse (DW) and Data Lake (DL) systems are mature and widely used technologies to integrate 
data for supporting decision-making. They support organizations to explore their operational data that can be 
used to take competitive advantages. However, the amount of data generated by humans in the last 20 years 
increased exponentially. As a result, the traditional data quality problems that can compromise the use of 
analytical systems, assume a higher relevance due to the massive amounts and heterogeneous formats of the 
data. In this paper, an approach for dealing with data quality is described. Using a case study, quality metrics 
are identified to define a reliability indicator, allowing the identification of poor-quality records and their 
impact on the data used to support enterprise analytics. 

1 INTRODUCTION 

Data is the main ingredient to generate information. 
Reliable data is a critical asset for reducing the risks 
of negative business outcomes relating to the 
decision-making process. For that reason, measuring 
overall Data Quality (DQ) is fundamental to ensure 
reliable decisions. 

DQ is a complex topic involving several facets 
that should be carefully studied and framed when data 
is analysed. DQ involves several different analyses 
related to the nature of problems that can occur. 
Missing values, referential integrity violations or 
contradictory data can ruin a project that highly 
depends on the data to support decision making.  

In the so-called Big Data era, these problems are 
even more critical than before, since more 
unstructured data from heterogeneous data sources 
are consumed from analytical systems to support 
decision-making activities. Controlling these 
problems can be difficult and can lead to serious 
drawbacks that can compromise all analytic 
procedures over the generated data.  

The definition of policies can be used to reduce 
these problems, contributing to the establishment and 
deployment of roles, responsibilities, policies, and 
procedures concerning the acquisition, maintenance, 
dissemination, and disposition of data (Batini & 
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Scannapieco, 2016). However, dealing with the 
problems generated by bad data is not a 
straightforward task and usually involves very 
specific knowledge and tools that should be combined 
to achieve a specific result. This result is sometimes 
ambiguous. Analysing individual metrics (such as the 
number of null values or duplicate rows) can provide 
relevant information but does not provide the 
necessary meanings considering the different data 
quality dimensions. It is not always clear what is the 
impact of each metric on the overall data quality and 
what are the necessary dimensions to produce a 
global score. Measuring the incoming data using 
multidimensional metrics and establishing proper 
mechanisms to deal with bad data can improve the 
overall data quality and reduce the negative impact of 
bad data that can pass unnoticed in big datasets. 

In this paper, a framework for managing DQ is 
presented. This framework aims to provide a flexible 
and extensible approach for consuming, analyzing 
and handling data before their use to generate 
business insights. Section 2 describes some relevant 
research works in the DQ field. Section 3 presents an 
overview of the proposed framework. Section 4 
presents a case study to demonstrate some aspects of 
the proposed framework. Finally, in Section 5, 
conclusions and future work directions are presented. 
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2 RELATED WORK 

Data engineers deal frequently with a lot of data 
quality problems when developing analytical 
systems. The use of several sources, structural and 
semantically heterogeneous, lacking in 
documentation and consistency, results in several 
data quality problems that compromise analytical 
systems trust.  

Data quality can be related to very different 
problems that produce noisy data that can lead to 
wrong or inadequate analysis. These problems are 
related to missing values, data duplication, 
misspellings, contradictory values, or inconsistent 
values. Rahm (Rahm & Do, 2000) classified data 
quality problems in single-source and multi-source 
problems. For both scenarios, schema and instance 
level data quality problems can occur. Rahm also 
discusses cleaning approaches to deal with such 
problems, presenting the several phases needed to 
data cleaning processes: data analysis involving the 
identification of metadata, use of transformation, and 
mapping rules applied by an ETL process that assures 
a common data schema to represent multi-source 
data, ETL correctness and effectiveness verification, 
execution of the transformation steps, and the 
backflow of cleaned data that results in data 
correction directly in the data sources to reduce 
further cleaning processes. Rahm also addresses 
conflict resolution, describing preparation steps that 
involve data extraction from free-form attributes, data 
validation, and correction, that can be applied using 
existing attributes or data dictionaries to correct or 
even standardize data values. Another common 
problem referred is related to the identification of 
matching instances without common attributes, 
which involves the calculation of the similarity to 
evaluate the matching confidence between data. Most 
of these problems can be identified using specific 
strategies, typically embodied in data profiling tools, 
proving several metrics used to measure data 
adequacy. However, despite being useful, the metrics 
are not easy to understand and use. Data perfection is 
almost impossible in real scenarios, and it is difficult 
to integrate metrics from each data quality dimension 
and conclude about its global state. 

DQ is also frequently classified and measured 
using dimensions, each one representing a class of 
errors that can occur. There are several approaches 
based on theoretical (Wand & Wang, 1996), 
empirical (Wang & Strong, 1996), or intuitive 
approaches (Redman & Godfrey, 1997). Comparing 
and defining the definitive approach is not an easy 
task since most of the proposals in the area are based 

on different assumptions related to the granularity 
level considered and the approached data model 
(most research works only focus on the relational 
model). 

Batini (Batini & Scannapieco, 2016) provided a 
classification framework based on a set of quality 
dimensions: Accuracy, Completeness, Redundancy, 
Readability, Accessibility, Consistency, Usefulness, 
and Trust. For each dimension, several metrics are 
presented in form of measure values. Several other 
authors addressed similar dimensions classification 
(Loshin, 2010)(Kumar & Thareja, 2013), providing 
slight variations to the dimension definition and using 
specific taxonomies and ontologies to relationship 
them and their potential metrics (Geisler, Quix, 
Weber, & Jarke, 2016). For example, in (Loshin, 
2010), the author classified the dimensions between 
intrinsic (related to the data model, such as the 
structure and accuracy) and contextual (related to the 
bounded context, such as completeness and 
consistency). 

Batini (Batini & Scannapieco, 2016) divides the 
DQ into several dimensions. The Accuracy 
dimension defines how accurately a specific value 
represents reality. The (structural) accuracy can be 
classified as syntactic and semantic. The syntactic 
accuracy measures the distance from a specific value 
to its correct representation (e.g., when mismatch 
input is stored) and is measured by comparison 
functions to evaluate the distance between two 
values. For semantic accuracy, the correct value 
should be known or deduced, and it is measured based 
on a “correct” or “not correct” domain. For sets of 
values, the duplication problem is also addressed, 
resulting in data duplication, mainly when less 
structured sources are used. Accuracy can be 
discussed in several scopes: single value, attribute, 
relation (or entity) and database. When a set of values 
is considered, a ratio between correct values and total 
values can be used. The relative importance of value 
accuracy is also considered since the errors found can 
have different importance in the context of a tuple or 
a table. For example, an accuracy error in attributes 
used for matching/identification data has greater 
importance than descriptive attributes that not 
compromise the data integration.  

The completeness dimension also represents 
several problems that typically occur in real-work 
scenarios. Non-null values assigned to data elements 
are analyzed considering the context in which they 
are applied (Loshin, 2009). The null values can be 
applied to data elements that should have a valid 
value (and for that reason is considered an invalid 
case), can be applied to optional values (in case the  
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Figure 1: Architecture of the proposed framework. 

value doesn’t exist), and can be applied due to the 
existence of business rules that imply specific 
conditions (Loshin, 2009). It can also be described or 
defined as the level of data missing or unusable 
(Cervo, 2015). Batini (Batini & Scannapieco, 2016) 
characterizes completeness considering the existence 
and meaning of null values, and its validity 
considering the Open World (OW) and closed world 
assumptions (CW). Thus, the existence of null values 
can have different origins:  

• The value exists but it is missing, which implies 
incompleteness 

• The value does not exist, and no incompleteness 
is found 

• The value can exist, but it is now known if exists 
or not and it is not sure if it is an incompleteness 
case 

The CW assumption complements completeness by 
considering that only the values that exist in the data 
entity (for example, a table) represents facts for 
checking for completeness. In the OW assumption, it 
is assumed that facts can be true or false, even if they 
are not present in the dataset. Thus, completeness can 
be defined considering the existence of null values 
and the OW and CW assumptions. The OW 
assumption considers the existence of reference data 
to characterize completeness even when null values 
are not found. When null values are found and CW 
assumption is followed, completeness can be 
characterized in different scopes: value (checking 
null values for some fields), tuple (checking null 
values for a tuple field), attribute (measuring null 
values for a specific field of a data entity) and relation 
(analyzing null values for a data entity). Another 
important aspect identified by Batini (Batini & 
Scannapieco, 2016) is the notion of completeness 

 
1 http://kafka.apache.org/ 

considering the evolution in time. These scenarios are 
very common and happen when data is considered 
complete during a certain period.  

Despite the several and complete contributions, 
sometimes companies just want to know, in simpler 
terms, how good is the data, i.e., a simple metric that 
can provide useful insight about the current data 
quality status and how this quality is evolving across 
time. Even simple, such metrics can be very useful to 
identify potential problems and promote new 
practices to improve overall data quality. 

3 PROPOSED FRAMEWORK 

Providing a classification for DQ defines possible 
solutions to handle specific problems that share some 
characteristics and solution in common. Additionally, 
it defines a possible way to measure the quality within 
a data dimension. Thus, a clearer notion of how 
incoming data is aligned to the pre-defined 
requirements at a specific moment can be delivered to 
data engineers, contributing with important insights 
to identify and correct issues that can compromise 
decision-making processes. 

The architecture for analysing the data reliability 
of heterogeneous data sources is based on the scalable 
publish/subscribe messaging system Kafka1. Kafka is 
a reliable and high-throughput system for handling 
real-time data streams and building data pipelines. In 
this system, the producers produce messages to topics 
and the consumers consume those messages. A topic 
is a collection of messages stored persistently 
(following a retention policy). The architecture 
proposed is depicted in Figure 1 and is next described. 
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The Data Layer represents the data retention 
system responsible for managing the (non-fixed size) 
data blocks data to be processed that are coming from 
diverse and heterogeneous data sources. This service 
has two main responsibilities, namely, to make 
available the next block (internal) identifier (id) and 
to deliver a block (with a given id). The Data Input is 
a simple service that communicates with the Data 
Layer and sends a message (to the process topic) to 
the Kafka broker, whenever a new block needs to be 
processed.   

The Data Quality Layer (DQL) consumes the 
messages sent to the Kafka process topic and obtains 
the Data Quality Index (DQI) from the Data Quality 
Analyser (DQA). The DQL send a message to the 
Kafka broker with the timestamps, the data block id, 
the DQI and a (boolean) outlier (i.e., anomaly) value 
evaluation. Although a manual threshold could be 
applied to detect anomalies in the DQI value, the 
DQL uses, a 𝑡 -Digest data structure for building 
sketches of data that can be used to approximate 
rank-based statistics with high accuracy (Dunning, 
2021). This data structure allows building anomaly 
detectors (Dunning & Friedman, 2014a) to look for 
deviations of what can be considered “normal” for a 
given input. The 𝑡-Digest is a simple yet widely used 
data-structure and is available as an open-source 
project2. 

The DQA uses rules defined in a JSON file for the 
data to be analysed. The rules can be grouped in a 
given (non-fixed) dimension as depicted in Figure 2. 
In the figure, two dimensions are considered, namely, 
consistency and accuracy with a weight in the DQI of 
50% and 50%, respectively. All the rules of this group 
are to be placed in the array with key rules. 
{ 
  "dimensions": { 
    "consistency": { 
      "weight": 0.5, 
      "rules": [ ... ] 
    }, 
    "accuracy": { 
      "weight": 0.5, 
      "rules": [ ... ] 
    } 
} 

Figure 2: Dimensions. 

Each rule is defined with a unique identifier (_id), 
a weight (within the dimension), the plugin to use, the 
plugin parameters, and a description.  

 
2 https://github.com/tdunning/t-digest 

In Figure 3, a rule for the column id is specified. 
This rule will use a Match plugin that receives as 
parameters, the column and the regular expression 
(RegEx) that must be used (in this case the values of 
the column should be integer values). The hits of this 
rule will weigh 20% in the result of the container 
group (i.e., dimension). The usage of RegEx provides 
a wide range of usage possibilities and flexibility to 
the Match plugin. 

{ 
  "_id": "Match1", 
  "weight": 0.2, 
  "plugin": "Match", 
  "parameters": { 
    "column": "id", 
    "values": "[0-9]+" 
  }, 
  "description": "..." 
}    

Figure 3: Match rule. 

Three more plugins were implemented, namely, 
Equal, Similarity and BloomFilter. These plugins 
provide a means to verify is a value is inside a given 
set of values. The Equal plugin is used to verify if a 
given value exists in the set. The Similarity plugin 
returns the maximum similarity degree of a value 
considering the values on the set through 
Approximate String Matching 3 . The BloomFilter 
plugin uses a space-efficient probabilistic 
BloomFilter data structure to test whether an element 
is a member of a set. This latter plugin allows for a 
faster, although probabilistically, check of the 
existence of a value in the set. These three plugins use 
the same parameters, namely a column and a set of 
values. in Figure 4 it is depicted a rule that specifies 
the column location must use a probabilistic approach 
to check if the values are in the sets values specified. 

For each data block, each group of rules is 
evaluated and weighted accordingly resulting in the 
averaged and weighted ratio between the number of 
hits over the number of rows of each rule.  

Historical data (of hits and numbers of rows 
considered by each rule) is stored to provide a means 
to calculate the difference between the value obtained 
by the current block and by the historical data. The 
value obtained ranges between -1 and 1, with the 
following meaning: 1) a negative value implies that 
the current block has poorer quality than the historical 
data, 2) a value of 0 implies that the values obtained 
by the current block are in line with the historical 

3  Using the Fuzzywuzzy Python package 
(https://pypi.org/project/fuzzywuzzy/). 

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

80



data, and 3) a positive value implies that the block has 
a higher quality than the historical data. 
{ 
  "_id": "BloomFilter1", 
  "weight": 1, 
  "plugin": "BloomFilter", 
  "parameters": { 
    "column": "zone", 
    "values": [ "ASEAN", "BENELUX", ...] 
  },  
  "description": "..." 
} 

Figure 4: In rule. 

The messages sent by the DQL can be consumed by 
services with distinct purposes. In Figure 1, three of 
those services are depicted, namely, Load Data, Alert 
System, and Time Serie DB. The Load Data consumes 
the evaluation topic messages, and load the data to the 
target database. This service can, if necessary, prevent 
the load of anomalous data detected by the DQA 
staging the block data in a quarantine staging area. The 
Alert System provides a means to alert the occurrence 
of anomalous quality values of the data to be 
processed, while the Time Series DB (Dunning & 
Friedman, 2014b) stores and processes the data of the 
evaluation messages. These three services are only 
examples and serve only for the architecture 
description. Each system or domain can require 
specific services but the core processing will remain: 
1) consume the evaluation messages, 2) in some cases 
request the data block from the Data Layer, and 3) 
perform some specific task with the available data.  

4 CASE STUDY 

Customer data represents a key driver for guiding 
business strategies in almost any domain. It refers not 

only to customers’ details but also includes 
behavioural and demographic data. Apart from being 
costly, data with low quality causes inefficiency and 
loss of competitiveness in the companies’ strategic 
decisions. Due to the proliferation of data sources 
involved in modern data analytics, it’s difficult to 
control the quality of data incoming to the analytics 
stack.  

For demonstrating the approach presented in this 
paper, a customer dataset extracted from a BI system 
used by a windshield repair and replacement 
company was selected. Customer data is collected 
from several data sources, involving structured data 
from relational databases and semi-structured data 
from XML, CSV or JSON documents. Each data 
source represents data in different ways even when 
they export data in the same format. Each data source 
sends periodically the data blocks.  

4.1 Data Description 

Figure 5 presents an excerpt of an XML representing 
customer data from an input block generated by a 
specific data source.  

The elements are next briefly described: 
• The root element “newCustomers” describes the 

new customers (Customer element) inserted in a 
target operational data source. Due to the semi-
structured nature, each customer element can 
have a different composition, i.e., their schema 
is described by the data itself.  

• The “id” and “postal_code” elements are 
mandatory, while the “local”, “city” and “zone” 
not always are represented (possibly due to 
input errors or data sources limitations).  

• In this subset of customer data, the “id” 
identifies each customer individually in each 
input block and the remaining elements 
represent the customer’s address. 

 
Figure 5: XML data excerpt for an input block. 
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• The “local” represents a description of a given 
place or address reference, “postal_code” 
represents the postal code for a given country,  
“city” represents the city name, and “zone” 
describes one or a group of countries (for 
example, “Iberian Peninsula” or “OCDE” 
countries). 

Even simple, this subset of customer data can 
reveal several problems that can compromise 
decision-making processes. To archive the notion of 
good data, the following expected rules were 
identified: 

1. “id” should be an integer value. 
2. “local” elements should exist and data inside 

should not be empty or have “.” (which 
signalizes the inexistence of value). Some staff 
members overcome the obligation to insert data 
placing a dot when the data is unknown. 

3. the “postal_code” can have different formats 
considering the country in which refers. For the 
Portugal postal code representation, the value 
should be composed of four digits, a hyphen, 
and three digits. Sometimes, the last three digits 
are missing. 

4. The “city” values can have several variations in 
their values for representing the same object. 
For example: “VIANA DO CASTELO”, “Viana 
do Castelo”, “Viana” and “Viana Castelo” refers 
to the same city. 

5. The “zone” value should be matched to a set of 
predefined values already known for the given 
domain. 

4.2 Rules 

After identifying the main problems related to the 
used dataset (which can be supported using data 
profiling techniques (Abedjan, Golab, Naumann, & 
Papenbrock, 2018)), it is important to categorize them 
following the DQ dimensions (Batini & Scannapieco, 
2016). Based on a specific classification, problems 
can be related together to provide a consistent 
indicator based on a set of related and similar 
problems, which may be useful to identify common 
strategies to solve or minimize them. The following 
mappings were identified: 

• Rules identified by 1 and 4 are related to the 
Accuracy dimension. Rule 1 is connected to the 
notion of model correctness while rule 5 is 
connected to the notion of syntactic accuracy, 
i.e., the value is syntactically correct.  

• Rule 2 is framed to the Completeness 
dimension, both for the existence of the “local” 

element (schema completeness) and the missing 
values associated with it.  

• Rules 3 and 5 capture the need to enforce 
semantic rules over the data for the Consistency 
dimension. Rule 3 represents a specific domain 
integrity constraint over the data instances (also 
known as interrelation constraint) and rule 5 is 
an integrity constraint based on a set of pre-
defined values that are stored in another dataset 
(interrelation constraint).  

Based on the DQ dimensions categorization, rules can 
be configured and used by the proposed framework to 
group rules together and define data problems 
prevalence. Then, a reliability score can be identified 
for each data input block, which can help in the 
identification of outliers and identify specific 
problems that can compromise data quality. 

4.3 Reliability Score 

With the rules defined, the JSON configuration file 
for the data pipeline using our framework was 
defined. Three dimensions were considered, namely, 
completeness, consistency, and accuracy with 
weights of 0.33, 0.33, and 0.34 respectively.  

The dimension rules were be defined as follows 
(less relevant elements are not described to facilitate 
the presentation): 

• The completeness dimension has one rule that 
uses the Match plugin for the “local” column. 
The value for analysis to be used by this plugin 
is the RegEx expression 
"^(?!($|NULL$|[.]{1}$))". 

• The consistency dimension has two rules, each 
one with a weight of 0.5. The first rule uses a 
Match plugin for the “postal_code” column with 
a value of "^([0-9]{4}-[0-9]{3}|[0-9]{4}|[0-
9]{5}|[A-Z]-[0-9]{5})$". The second rule uses 
a BloomFilter plugin for the zone columns with 
29 possible values (e.g., "ASEAN", "NAFTA", 
"OECD", "OPEC"). 

• The accuracy dimension has two rules, each one 
with a weight of 0.5. The first rule uses a Match 
plugin for the “id” column with a value of "[0-
9]+". The second rule uses a Similarity plugin 
for the “city” column with a set of 159 values 
(cities that are most probably to appear due to 
the business coverage). 

When a block of data is been considered for 
evaluation, each rule is executed evaluating each row 
of the column under analysis. For most cases, the 
value of the rule will represent the ratio of how many 
rows respect the current rule and the total number of 
rules. The Similarity plugin, return a continuous value 

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

82



that represents the maximum similarity encountered 
considering the set of possible values. Considering 
Figure 6 illustrates a part of a block of data received. 
The rule over the “local” column would be 0.33 as 
only one value respect the rule (hit), while, for 
example, the id column (the first one) would return 1 
as all values are integers.  

1080,SINES,7520-215,SINES,ASEAN 
1081,.,2900-737,SETUBAL,ASEAN 
1082,.,2910-737,SETUBAL,ASEAN 

Figure 6: Exert of a data block. 

To calculate the reliability score for the rule that 
considers the ”local” column, the historical ratio (all 
hits over all the number of rows already evaluated by 
the data pipeline) is considered. If, for example, the 
historical value is 0.5, then the score of this rule 
would be 0.33 – 0.5. The score –0.17 would be 
returned. 

The individual scores, as well as the number of 
hits and number of rows considered for each rule, are 
logged to provide for follow-up analysis. 

The reliability score is calculated as the sum of 
all weighted dimensions results, which in turn 
correspond the sum of all to the sum weighted score 
of the rules.  

The DQL evaluation message of a data block that 
is produced is illustrated in Figure 7. The key block-
id represents the unique identifier of the data block. 
The dqi key represents the reliability score, i.e., Data 
Quality Index, the time key represents the execution 
time of the evaluation (for logging purposes), the 
outlier key indicates if the data block is marked as an 
anomaly (by the t-Digest), and date represents the 
date and time in which the message was produced and 
sent to the broker. 
{'block-id': '17f04a2c-7847-46e6-96f3-
509a19aafbba', 'dqi': 0.09001, 'time': 0.085, 
'outlier': False, 'date': '2021-10-24 
11:25:34.459025'} 

Figure 7: DQL evaluation message. 

The following values (see Table 1) on a sequence of 
data blocks evaluations (presented in tabular format 
to simplify the presentation and discussion. For the 
same reason some values were trimmed or removed). 

Considering the presented results, it can be seen 
that most of the blocks present a value very close to 
0, indicating that the reliability is high. The block 
with identifier 2fb39a55 presents a poor or anomalous 
result reported by the t-Digest and is marked as an 
outlier, meaning that for the case presented in Figure 
1 this data block would be put in quarantine to be 

posteriorly evaluated, and the rest of the blocks would 
be loaded. The evaluation made by the t-Digest 
depends on its configuration. 

Table 1: Data blocks evaluation results. 

block-id dqi time outlier date
b93231 -0.051 0.09 False ... 
da8c80c9 0.059 0.12 False ... 
0b5f21b1 0.061 0.09 False ... 
2fb39a55 -0.130 0.06 True ... 
3e3cbe81 -0.001 0.09 False ... 
41335b6e 0.018 0.13 False ... 
51d5047b 0.096 0.03 False ... 

5 CONCLUSIONS 

The emerging of more and heterogeneous data 
coming from several data sources leads to more 
demanding scenarios that imply the use of new 
approaches for dealing with data. As data and its 
related formats are growing in volume and 
complexity, it is more difficult to ensure data quality 
standards. Sometimes, less accurate data can be used 
due to the difficulty to handle data quality problems 
that may occur, mainly when the analytical system is 
based on a real-time basis. Traditional data profiling 
tools can be used to know and identify data problems. 
However, not only the complexity of the data imposes 
additional time to analyze input data, but also 
interpreting the multi-dimensional metrics obtained is 
hard and time-consuming.  

To create more resilient systems and as we 
understand that perfect data is not always possible, a 
data pipeline was devised in the order to secure some 
data “normality”. This framework can derive system 
behaviours (e.g., load, quarantine) based on a simple 
reliability score. This framework relies on services 
dependent on message and a communication broker. 
The reliability score can also be enhanced as it relies 
on a plugin architecture and simple configuration, 
allowing the creation of specialized systems. 

This is the first step of this research project. Most 
of the future work will be undertaken developing new 
DQL plugins and service that uses the data and DQL 
evaluation information. We expect to extend its 
capacities in the future to create a more scalable, 
flexible and efficient framework for data pipelines in 
which the data is unstructured (and possibly with 
heterogeneous formats) some reliability must be 
ensured on downstream services.  We expect to first 
devise multicolumn rules as some columns only have 
true/valid meaning if others have some specific value 
(or format). Another path for this research that we 
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intend to follow is the dynamic automatization of the 
data rules generation that can be obtained through 
data mining techniques.  
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