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Abstract: Models for semantic segmentation require a large amount of hand-labeled training data which is costly and
time-consuming to produce. For this purpose, we present a label fusion framework that is capable of improving
semantic pixel labels of video sequences in an unsupervised manner. We make use of a 3D mesh representation
of the environment and fuse the predictions of different frames into a consistent representation using semantic
mesh textures. Rendering the semantic mesh using the original intrinsic and extrinsic camera parameters
yields a set of improved semantic segmentation images. Due to our optimized CUDA implementation, we are
able to exploit the entire c-dimensional probability distribution of annotations over c classes in an uncertainty-
aware manner. We evaluate our method on the Scannet dataset where we improve annotations produced by
the state-of-the-art segmentation network ESANet from 52.05% to 58.25% pixel accuracy. We publish the
source code of our framework online to foster future research in this area (https://github.com/fferflo/
semantic-meshes). To the best of our knowledge, this is the first publicly available label fusion framework
for semantic image segmentation based on meshes with semantic textures.

1 INTRODUCTION

Semantic image segmentation plays an important role
in computer vision tasks by providing a high-level un-
derstanding of observed scenes. However, good seg-
mentation results are limited by the quality and quan-
tity of the available training data which requires a
lot of time-consuming manual annotation work. The
popular Cityscapes dataset of traffic scenes for exam-
ple reports upwards of 90 minutes per image for pixel-
wise annotations (Cordts et al., 2016).

Since labeled datasets are rare and often cover
only narrow use cases, we consider the unsupervised
enhancement of predicted image segmentations of
video sequences by defining consistency constraints
that reflect temporal and spatial structure properties
of the captured scenes.

The majority of recent works in this area has fo-
cused on methods that establish short-term pixel cor-
respondences - for example via optical flow (Gadde
et al., 2017; Mustikovela et al., 2016; Nilsson and
Sminchisescu, 2018), patch match (Badrinarayanan
et al., 2010; Budvytis et al., 2017), learned corre-
spondences (Zhu et al., 2019) or depth and relative
camera pose of subsequent frames (Ma et al., 2017;

Figure 1: Semantically textured meshes of indoor and out-
door scenes produced by our label fusion framework and
visualized with MeshLab (Cignoni et al., 2008).

Stekovic et al., 2020). In this work, we explore a
different approach by explicitly modeling the envi-
ronment as a 3D semantically textured mesh which
serves as a long-term temporal and spatial consistency
constraint.

The main contributions of this work are as fol-
lows:
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(a) Color (b) Ground truth (c) Network prediction (d) Fused annotation

Figure 2: Results of the label fusion in the Scannet dataset. The fusion shows most improvement when seeing an object from
many different perspectives. Errors in the reconstructed mesh result in artifacts in the rendered annotations. The figure is best
viewed in color.

(1) We present a label fusion framework based on en-
vironment mesh reconstructions that is capable of im-
proving the quality of semantic pixel-level labels in an
unsupervised manner. In contrast to previous works,
we show that the proposed method improves segmen-
tation results even without requiring depth sensors for
the mesh reconstruction.

(2) We introduce a novel pixel-weighting scheme
that dynamically adjusts the contribution of individ-
ual frames towards the final annotations. This yields
a larger improvement in pixel accuracy than previous
label fusion works.

(3) Our framework uses a custom renderer and tex-
ture parametrization to optimize GPU memory uti-
lization during the label fusion process. This al-
lows us to exploit the entire c-dimensional probabil-
ity distribution of annotations over c classes in an
uncertainty-aware manner. We implement the entire
framework in CUDA (Nickolls et al., 2008), since
the texture mapping techniques of classical rendering
pipelines such as OpenGL (Woo et al., 1999) that are
used in previous works are not suited for this task.

(4) We make the code to our framework publicly
available, including all evaluation scripts used for this
paper.

2 RELATED WORK

Short-term correspondences between pixels of sub-
sequent video frames have been widely used to im-
prove semantic segmentation (Gadde et al., 2017;
Mustikovela et al., 2016; Nilsson and Sminchisescu,
2018; Badrinarayanan et al., 2010; Budvytis et al.,
2017; Zhu et al., 2019; Ma et al., 2017; Stekovic
et al., 2020). For example, Zhu et al. (2019)
and Mustikovela et al. (2016) propagate labels from
hand-annotated video frames to adjacent (unlabeled)
frames as data augmentation for training a segmenta-
tion model. Nevertheless, these methods are limited
to short-term correspondences since label accuracy
decreases with each propagation step (Mustikovela
et al., 2016).

To establish long-term correspondences, most
works explicitly represent the environment as a three-
dimensional model and find corresponding pixels via
their model projections. Voxel maps (Kundu et al.,
2014; Stückler et al., 2015; Li et al., 2017; Grinvald
et al., 2019; Rosinol et al., 2020; Jeon et al., 2018;
Pham et al., 2019) have been used for this purpose, but
suffer from discretization and high memory require-
ment. Point clouds (Floros and Leibe, 2012; Hermans
et al., 2014; Li and Belaroussi, 2016; Tateno et al.,
2017) on the other hand accurately represent tempo-
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ral but not spatial correspondences and only model the
environment in a sparse or semi-dense way. McCor-
mac et al. (2017) use surfels as a dense representation
of the environment and model the class probability
distribution of each surfel to fuse the two-dimensional
network predictions from different view points. Sim-
ilar to our work, Rosu et al. (2020) use a semantically
enriched mesh representation of the environment to
fuse the predictions of individual frames. In contrast
to their work, we show that our framework is able
to improve segmentations even with an off-the-shelf
image-based reconstruction pipeline. Additionally,
Rosu et al. (2020) use OpenGL for rendering the se-
mantic mesh and therefore have to resort to a classical
texture mapping technique that maps the entire mesh
onto a single texture. We implement our framework
in CUDA which enables the use of a custom texture
parametrization and avoids expensive paging opera-
tions when interacting with OpenGL textures. While
Rosu et al. (2020) only use the maximum of the prob-
ability distribution, we are able to exploit the entire
c-dimensional probability distribution of pixel labels
over c classes.

3 METHOD

Our method is designed to fuse temporally and spa-
tially inconsistent pixel predictions, e.g. of a segmen-
tation network, into a consistent representation in an
uncertainty-aware manner. For this purpose, we first
establish correspondences between image pixels that
are projections of the same three-dimensional envi-
ronment primitive by using the intrinsic and extrinsic
camera parameters. The predicted class probability
distributions of corresponding pixels are then aggre-
gated resulting in a single probability distribution for
the primitive. Finally, the primitive’s fused annotation
is rendered onto all corresponding pixels to produce
consistent 2D annotation images.

3.1 Environment Mesh

To determine the three-dimensional environment
primitives, a mesh of the scene captured with a set
of images is reconstructed using off-the-shelf recon-
struction frameworks like BundleFusion (Dai et al.,
2017b), if depth information is available, and Colmap
(Schönberger and Frahm, 2016; Schönberger et al.,
2016b), when only working with RGB input. This
recovers static parts of the environment as well as in-
trinsic and extrinsic camera parameters of individual
frames. Pixels are then defined as correspondences if

they stem from projections of the same primitive ele-
ment in the environment mesh.

Since the reconstruction step does not explicitly
account for semantics, the geometric borders of mesh
triangles and the semantic borders of real-world ob-
jects are not guaranteed to always coincide. Indi-
vidual triangles might therefore span across multi-
ple semantic objects and lead to incorrect pixel cor-
respondences. This problem can be alleviated by in-
creasing the resolution of the mesh to include sub-
triangle primitive elements with smaller spatial ex-
tension. This reduces the total number of pixel cor-
respondences during the label fusion, but at the same
time decreases the proportion of incorrect correspon-
dences. To increase the resolution while preserving
the geometry of the mesh, we introduce semantic tex-
tures that further subdivide a triangle into smaller tex-
ture elements called texels (Glassner, 1989).

Let t ∈ T be a triangle in mesh T and Xt the set
of texels on the triangle. We choose a uv represen-
tation for texture coordinates on the triangle (Heck-
bert, 1989) with the uv coordinates (0,0), (0,1) and
(1,0) for the three vertices as well as u≥ 0, v≥ 0 and
u+ v < 1 for any point on the triangle. The uv space
is discretized into s ∈ N steps per dimension yielding
a total of |Xt | = s2+s

2 texels (cf . Figure 3). A texel
x ∈ Xt covers the subspace [ux,ux +

1
s )× [vx,vx +

1
s )

of the triangle’s uv space. To reduce the skew of texel
shapes we also choose the vertex which is located on
the triangle’s interior angle closest to a right angle as
origin of the uv space.

We choose s = max(1,dγ√ate) based on the
worst-case frame in which the triangle occupies the
most number of pixels at . We take the square root of
the area a so that |Xt | ∈ O(at). The variable γ serves
as a tunable parameter defining the resolution of the
mesh, such that for a given triangle larger γ lead to
more texels and smaller γ to fewer texels. At γ = 0
triangles are not subdivided into texels. This formula-
tion of texture resolution aims to be agnostic w.r.t. the
granularity of the input mesh: For a given γ > 0 texels
will roughly encompass the same number of pixels on
the worst-case frame regardless of the triangle size.

Let K further denote the set of all pixels in all im-
ages. For a pixel k ∈ K, let tk denote the projected tri-
angle and (uk,vk) the corresponding uv coordinates.
We define Kx ⊂ K as the set of pixels that are pro-
jected onto a given texel x according to (1), and xk
as the texel that pixel k is projected onto, such that
k ∈ Kxk .
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Figure 3: Example texture mapping of a single triangle. uv
dimensions are discretized into s = 6 steps each yielding
s2+s

2 = 21 texels.

Kx = {k|tk = tx

∧ (uk,vk) ∈ [ux,ux +
1
s
)× [vx,vx +

1
s
)} (1)

3.2 Label Fusion

In general, a single texel is projected onto a set of pix-
els in multiple images where each pixel k is annotated
with a probability distribution pk ∈Rc over c possible
classes. Each pixel prediction represents an observa-
tion of the underlying texel class. Potentially conflict-
ing pixel predictions are fused in an uncertainty-aware
manner into a single probability distribution px ∈ Rc

that represents the label of the texel x.

3.2.1 Aggregation

Let f : P(K) 7→ Rc represent an aggregation function
that maps a set of pixels onto a fused probability dis-
tribution. The annotation px of a texel x is then de-
fined as

px = f (Kx) (2)

and its argmax defines the texel’s class.
Previous work on mesh-based label fusion (Rosu

et al., 2020) uses only the maximum of the probability
distribution in the aggregator function due to perfor-
mance reasons, as shown in (3).

fmaxsum(K) = norm ∑
k∈K

g1(pk)
...

gc(pk)

 (3)

with gi(p) =

{
pi, if pi = maxp
0, if pi < maxp

and norm(p) =
p
‖p‖1

Due to our optimized CUDA implementation and
custom texture parametrization, we are able to exploit
the entire c-dimensional probability distribution in the

label fusion. This allows us to utilize Bayesian up-
dating (McCormac et al., 2017; Rosinol et al., 2020)
in our aggregation function as shown in (4), which is
defined by an element-wise multiplication of proba-
bilities.

fmul(K) = norm ∏
k∈K

pk = norm ∏
k∈K

pk,1
...

pk,c

 (4)

We also evaluate the average pooling aggregator
(Tateno et al., 2017) shown in (5), which uses sum-
mation of probabilities similar to Rosu et al. (2020),
but does not discard parts of the probability distribu-
tion.

fsum(K) = norm ∑
k∈K

pk = norm ∑
k∈K

pk,1
...

pk,c

 (5)

All aggregation results are normalized to a sum of
‖p‖1 = 1 to represent a proper probability distribu-
tion.

Once the pixels of all frames have been aggregated
the texels of the mesh store a consistent representa-
tion of the semantics of the environment. The mesh
can then be rendered from the reconstructed camera
poses to produce new consistent 2D annotation im-
ages corresponding to the original video frames.

Assuming non-erroneous pixel correspondences,
the rendered annotation images will statistically have
more accurate pixel labels than the original network
prediction due to the probabilistic fusion. In practice,
this fusion effect is weighed against the negative im-
pact of erroneous pixel correspondences which stem
from inaccurate mesh reconstructions and too coarse
mesh primitives.

3.2.2 Pixel Weighting

Previous works (McCormac et al., 2017; Rosu et al.,
2020) perform label fusion under the assumption
that individual pixel predictions of the segmenta-
tion network are independent and identically dis-
tributed (i.i.d.) observations of the underlying texel
class. Each pixel is therefore given an equal weight
towards the final label of its corresponding texel. This
implicitly gives higher weight to frames where the
texel occupies more pixels.

To compensate this effect, we propose a novel
weighting scheme based on the assumption that indi-
vidual images rather than pixels are i.i.d. observations
of the underlying texel class. Each image is there-
fore given an equal weight w.r.t. the final label of a
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texel. This reduces the implicit overweight of highly
correlated pixel predictions and thereby improves the
fused annotation. Our evaluation in Section 4.3 sup-
ports this decision.

The distinction between i.i.d. pixels and i.i.d im-
ages can effectively be realized by extending (3) - (5)
with a weight factor wk per pixel k as shown in
(6) - (8).

fw-maxsum(K) = norm ∑
k∈K

wk

g1(pk)
...

gc(pk)

 (6)

fw-mul(K) = norm ∏
k∈K

pwk
k (7)

fw-sum(K) = norm ∑
k∈K

wkpk (8)

The aggregator function thus interprets pixel k as
having occurred wk many times. Weighting pixels
equally is achieved with

wk = w(P)
k = 1 (9)

and weighting images equally is achieved with

wk = w(I)
k =

1
|Ki∩Kxk |

(10)

where Ki ⊂ K is the set of pixels in image i with
k ∈ Ki.

3.3 Implementation

Our framework is divided into a module for rendering
the environment mesh and a module for the texel-wise
aggregation of probability distributions.

3.3.1 Renderer

The renderer takes as input a triangle mesh and the
extrinsic and intrinsic camera parameters of a given
frame and projects all triangles onto the camera plane.
To handle occlusion, we maintain depth information
in a z-buffer.

For each pixel k and its texture coordinates (uk,vk)
on the projected triangle t, we compute an identifier
idx ∈ {0, · · · , |Rt |−1} for the corresponding texel x as
shown in (11).

idx =
bs ·ukc2 + bs ·ukc

2
+ bs · vkc (11)

We store both a triangle identifier idt and the texel
identifier idr per pixel. This rendered image of iden-
tifiers is passed to the aggregator module.

We employ CUDA’s data parallelism over the set
of triangles to speed up the rendering process.

3.3.2 Aggregator

The aggregator fuses the pixel predictions of all
frames into a consistent representation on texel level.

We store the probability distributions of all texels
in an array P ∈ Rnx×c where nx = ∑t∈T |Xt | is the to-
tal number of texels in the mesh . The texels of all
triangles are stacked along the first dimension of the
array. Since triangles can have different number of
texels, we define the triangle identifier idt as its off-
set into the array along the first dimension for quick
access. The pair of triangle and texel identifiers that
are produced by the renderer module can therefore be
used to find the corresponding row in P as shown in
(12).

px = Pl with l = idtx + idx (12)

For each frame, we first render the mesh and pre-
dict semantic pixelwise labels using the 2D segmen-
tation model. For every pixel in the frame, the cor-
responding row in P is then updated as defined by
the aggregator function f using the pixel’s predicted
probability distribution. The aggregator function f is
defined to be permutation-invariant to achieve deter-
ministic results up to floating point inaccuracies.

4 EVALUATION

4.1 Data and Architecture

Evaluating our method requires densely labeled video
sequences which only few publicly available datasets
contain. This stems from the fact that redundant la-
bels of subsequent frames represent a low cost-benefit
ratio for other tasks like single image segmentation.
We therefore evaluate our method on the Scannet v2
dataset (Dai et al., 2017a) of indoor scenes which con-
tains densely labeled video data and corresponding
meshes reconstructed with depth sensor data. We use
the training split to evaluate the hyper-parameters of
our method and report the final results on the valida-
tion split. We also create dense reconstructions of the
first 20 scenes using Colmap and Delaunay triangula-
tion (Schönberger et al., 2016a; Labatut et al., 2009)
to evaluate the performance on meshes created using
a multi-view stereo approach.

For the semantic segmentation we choose a set of
40 classes following the definition of the NYU Depth
v2 dataset (Nathan Silberman and Fergus, 2012). As
segmentation model, we use ESANet (Seichter et al.,
2020) trained on NYU Depth v2.
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(a) Pixel accuracy without sub-division of triangles (i.e. us-
ing a texel resolution γ = 0) for different pixel weights
w ∈ [w(P),w(I)]. Values between w(P) and w(I) represent a
weighted combination of both interpretations.

(b) Pixel accuracy for different subsets of the available
frames without sub-division of triangles (i.e. using a texel
resolution γ = 0) and with pixel weights w(I). Frames are
chosen at uniform intervals.

(c) Pixel accuracy for different texel resolutions γ with pixel
weights w(I).

(d) Pixel accuracy for meshes simplified to a proportion of
triangles with pixel weights w(I). The value γ= 0.2 is chosen
based on the results shown in Figure 4c.

Figure 4: Analysis of factors that impact the label fusion using the first 100 scenes of the training split of Scannet. The graphs
show the pixel accuracy after applying the label fusion step. The pixel weights w(P) and w(I) represent the assumptions of in-
dependent and identically distributed images and pixels, respectively. The aggregator function fmul is used in all experiments.
Values between individual measurements are interpolated.

4.2 Test Results

We define our baseline as the original predictions of
the segmentation network and use the validation split
of the Scannet dataset for evaluation. This corre-
sponds with a pixel accuracy of 52.05%.

Based on the results of the extended evaluation
in Section 4.3, we choose the aggregator function as
fmul , define pixel weights as w(I) and set the texture
resolution to γ = 0.2. With this setup, our label fusion
method improves the pixel accuracy on the validation
split to 58.25%.

4.3 Extended Evaluation

In the following, we examine the impact of several
factors on the relative improvement of the label fusion
over the original network prediction on the first 100

scenes of the training split of Scannet. The network
achieves 57.53% pixel accuracy on this split. We use
this evaluation to determine optimal hyper-parameters
for the test results.
Aggregator Function. Table 1 shows the resulting
pixel accuracy of different aggregator functions used
in the label fusion. Bayesian fusion with fmul achieves
the largest improvement, both with the i.i.d. images
and i.i.d. pixels assumptions.
Pixel Weighting. Choosing w(I) as pixel weight
shows improvements over w(P) for each aggregator
function. Our measurements suggest that pixel ac-
curacy increases monotonically for w ∈ [w(P),w(I)]
which supports our decision to interpret the network
predictions i.i.d. images rather than i.i.d. pixels (cf .
Figure 4a).
Frame Selection. Figure 4b shows the resulting pixel
accuracy when performing the label fusion with only
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Table 1: Pixel accuracy of different aggregators in percent
without sub-division of triangles (i.e. using the texel reso-
lution γ = 0). To the best of our knowledge, this is the first
work to fuse full probability distributions (such as in fmul
and fsum) on semantic mesh textures.

Aggregator Function w(P) w(I)

fmaxsum (Rosu et al., 2020) 62.85 64.00

fsum (ours) 62.89 64.04

fmul (ours) 63.18 64.07

a subset of the available frames chosen at uniform in-
tervals. Using fewer frames also results in less in-
formation per texel that can be fused in a probabilis-
tic manner, and thus decreases pixel accuracy. Above
20% of the frames we observe that additional images
provide no significant improvement in pixel accuracy
due to the high redundancy of information in adjacent
frames.
Texel Resolution. Figure 4c shows the fused pixel
accuracy over different texel resolutions. Results im-
prove slightly from γ = 0.0 to γ = 0.2 due to a finer
texture resolution. For larger γ values accuracy starts
to decrease due to the smaller benefit of spatial con-
sistency and stronger aliasing effects.

Using sub-triangle texture primitives with γ > 0
improves accuracy by at most 0.03% compared to the
original triangles as primitives with γ = 0. This indi-
cates that the Scannet meshes already have a sufficient
granularity for the label fusion task. To test the per-
formance on coarser meshes, we simplify the Scan-
net meshes using Quadric Edge Collapse Decimation
(Cignoni et al., 2008). This results in a smaller set of
larger triangles that represent a suitable approxima-
tion of the original mesh geometry. We choose the
best texel resolution (i.e. γ = 0.2) based on the results
shown in Figure 4c and compare with the original tri-
angles as primitives (i.e. γ = 0). For a fixed γ > 0,
the number of texels is roughly constant over differ-
ent levels of simplification, while at γ = 0 the number
of primitive elements decreases with the granularity
of the mesh.

Figure 4d shows the pixel accuracy on meshes
with different levels of simplification. The relative
advantage of using sub-triangle textures increases for
coarser meshes. When reducing the number of trian-
gles to 0.3% of the input mesh, this results in a 0.3%
absolute difference in pixel accuracy. For stronger
simplifications, the geometric errors outweigh the
benefits of the probabilistic fusion. This results in
a lower pixel accuracy than the baseline annotations
produced by the segmentation network.

Input Mesh Applying the label fusion on meshes
of the first 20 scenes reconstructed with Colmap im-

proves pixel accuracy from 57.46% to 59.67%. This
demonstrates that our method can also be applied on
meshes that are created via a multi-view stereo ap-
proach.

5 CONCLUSIONS

We have presented a label fusion framework that
is capable of producing consistent semantic annota-
tions for environment meshes using a set of annotated
frames. In contrast to previous works, our method
allows us to exploit the complete probability distribu-
tions of semantic image labels during the fusion pro-
cess. We utilize the mesh representation as a long-
term consistency constraint to also improve label ac-
curacy in the original frames. We performed exten-
sive evaluation of the proposed approach using the
Scannet dataset, including the impact of factors like
aggregation functions, pixel weighting, frame selec-
tion or texel resolution. Our experiments demon-
strate that the proposed method yields a significant
improvement in pixel label accuracy and can be used
even with purely image-based multi-view stereo ap-
proaches. We make the code to our framework pub-
licly available, including a CUDA implementation for
efficient label fusion and a Python wrapper for easy
integration with machine learning frameworks.

REFERENCES

Badrinarayanan, V., Galasso, F., and Cipolla, R. (2010). La-
bel propagation in video sequences. In Conference on
Computer Vision and Pattern Recognition.

Budvytis, I., Sauer, P., Roddick, T., Breen, K., and Cipolla,
R. (2017). Large scale labelled video data augmenta-
tion for semantic segmentation in driving scenarios. In
International Conference on Computer Vision Work-
shops.

Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M.,
Ganovelli, F., and Ranzuglia, G. (2008). MeshLab:
an Open-Source Mesh Processing Tool. In Scarano,
V., Chiara, R. D., and Erra, U., editors, Eurographics
Italian Chapter Conference. The Eurographics Asso-
ciation.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele,
B. (2016). The cityscapes dataset for semantic urban
scene understanding. In Conference on Computer Vi-
sion and Pattern Recognition.

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser,
T., and Nießner, M. (2017a). Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In
Conference on Computer Vision and Pattern Recog-
nition.

Improving Semantic Image Segmentation via Label Fusion in Semantically Textured Meshes

515
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