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Abstract: Social network users receive a large amount of social data every day. These data may contain malicious un-
wanted social spams, even though each social network has its social spam filtering mechanism. Moreover, 
spammers may send spam to multiple social networks concurrently, and the spam on the same topic from 
different social networks has similarities. Therefore, it is crucial to building a universal spam detection system 
across different social networks that can effectively fend off spam continuously. In this paper, we designed 
and implemented a tool Spam-Fender to facilitate spam detection across social networks. In order to utilize 
the raw social data obtained from multiple social networks, we utilized a semi-supervised learning method to 
convert unlabelled data into usable data for training the model. Moreover, we developed an incremental 
learning method to enable the model to learn new data continuously. Performance evaluations demonstrate 
that our proposed system can effectively detect social spam with satisfactory accuracy levels. In addition, we 
conducted a case study on the COVID-19 dataset to evaluate our system. 

1 INTRODUCTION 

In modern society, online social networks have 
become a necessity in human interactions. Especially 
due to the impacts of the COVID-19 pandemic, 
people rely on online social networks to know what is 
going on around them. In the meantime, spammers 
have taken the opportunity to send out spam more 
frequently. There are many messages, including 
profanity, malicious links, bot users, fraudulent 
reviews, on different social media. For example, 
Facebook deleted 865 million posts and removed 583 
million fake accounts in the first quarter of 2018 
(Frenkel, 2018). The percentage of Twitter accounts 
exhibiting social bot behaviours is between 9% and 
15% (Newberg, 2017). 

Thanks to the rapid development of machine 
learning, spam detection systems are becoming more 
and more sophisticated, but at the same time, there are 
not much research works on the detection of social 
spam. Although different social networks have their 
social spam detection mechanisms, there is still a 
large amount of social spam that can bypass the 
detections and interfere with user activities. There are 
various online social networks such as Facebook, 
Twitter, Snapchat, and Pinterest. However, there are 

no effective spam detection systems that can detect 
across different online social networks. Also, social 
spam detection relies on large data, but since the data 
on the internet is raw and unlabeled, data labeling is 
one of the issues that need to be addressed. Moreover, 
due to time-sensitive nature of data on online social 
networks, concept drift can make the detection 
inaccurate. To solve these problems, we build an 
online incremental learning social spam detection 
system named SpamFender that can work across 
different online social networks and continuously 
fend off unwanted social spams. In particular, it can: 
1) detect social spam across different social networks; 
2) collect social data in an effective way; 3) propagate 
labels to real social network unlabeled data; 4) 
incrementally learn for the new social data; 5) detect 
social data for spam and inform users timely.  

The rest of the paper is organized as follows. 
Section 2 covers the related work. The design 
methodology is described in Section 3. Section 4 
presents the system implementation, evaluation, and 
a case study about COVID-19 spam detection. And 
finally, we conclude in Section 5. 
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2 RELATED WORK 

With the increasing number of social network users, 
people begin paying attention to social spam 
detection. Social spam is featured by crossing 
multiple platforms, with large volume, and ever-
increasing. For different social networks, spammers 
may send social spam with similar content. When the 
spam detector is not limited to a specific social 
network, the detection efficiency and accuracy rate 
will be significantly improved. Xu proposed spam 
detection across online social networks (Xu et al., 
2016), Wang proposed a framework to detect social 
spam in different social networks and websites (Wang 
et al., 2011). Fakhraei proposed a collective spammer 
detection method in evolving multi-relational social 
networks (Fakhraei et al., 2015). 

There is some research about incremental learning 
for spam detection. Sheu et al. (2017) proposed an 
efficient incremental learning mechanism for email 
spam detection. Kho et al. (2019) proposed an 
incremental learning method for spoof fingerprint 
detection. Yang et al. (2017) proposed an incremental 
laplacian regularization extreme learning machine for 
online learning. Sanghani and Kotecha (2019) 
proposed an incremental personalized E-mail spam 
filter using a novel TFDCR feature. Peris and 
Casacuberta (2019) proposed an online learning for 
effort reduction in interactive neural machine 
translation. Luo et al. (2020) developed an appraisal 
of incremental learning methods. Guan and Zhu 
(2005) proposed an incremental approach to genetic-
algorithms-based classification. Li et al. (2010) 
proposed an incremental feature selection algorithm 
for data stream classification. Polikar et al. (2001) 
proposed an incremental learning algorithm for 
supervised neural networks. However, previous 
researches haven’t implemented a practical system to 
detect social spam. 

In addition, we also used real data collected from 
multiple social networks. For data collection, a well-
known tool called Tweepy (Roesslein, 2021) can be 
used to collect tweets. Another tool GetOldTweets 
(Mottl, 2019) uses tweet crawling and can bypass the 
two-week collection limit. Since the raw data is 
unlabelled, we also adopted the Semi-Supervised 
learning method to propagate the labels 
automatically. Sedhai and Sun (2017) proposed a 
semi-supervised spam detection method in the 
Twitter stream. Whissell and Clarke (2011) proposed 
a clustering method for semi-supervised spam 
filtering. Chen et al. (2018) proposed a semi-
supervised clue fusion for spammer detection in Sina 
Weibo. Imam et al. (2019) proposed a semi-

supervised learning approach for tackling twitter 
spam drift. However, most of these approaches focus 
on a single social network, unlike ours. 

3 DESIGN METHODOLOGY 

Based on the literature study, an ideal spam detection 
system for online social networks should meet the 
following requirements: 1) It should work across 
multiple social networks seamlessly; 2) It should 
work continuously; 3) It should have high spam 
detection accuracy and efficiency; 4) It should require 
minimal user configuration efforts. 

3.1 System Design 

The system architecture of SpamFender, as shown in 
Fig. 1, is divided into two phases: the offline training 
phase and the online learning phase.  

In the offline training phase, we performed data 
collection, labelling, pre-processing, cross-
validation, and then used multiple classification 
algorithms for training and classification. For data 
collection, we scraped real-world data across 
different online social networks and then carried out 
data pre-processing to facilitate natural language 
classification. In particular, we removed punctuation 
and stop words, performed tokenization and 
lemmatization, and then applied term frequency–
inverse document frequency (TF-IDF) vectorization 
(Ramos, 2003) to the data. For the model training, in 
order to prevent overfitting, we used cross-validation 
by dividing the dataset into ten subsets. A subset was 
selected from 10 subsets as the test set in turn. At the 
end of this offline phase, we tested and measured the 
performance of the classification algorithms and 
provided the trained models for the online learning 
phase for real-time spam detection. 

In the online learning phase, the real-world users’ 
social data from multiple social networks will be 
collected using our self-developed tools and then go 
through the data pre-processing, which is similar to 
that used in the previous phase. After that, the 
classification module will work on the processed data 
by using the trained models. Finally, the users will be 
notified of the posts as spam. In addition, we designed 
an incremental learning system with label 
propagation so that the model can be trained 
continuously. The model can learn new social spam 
features on social media in time and detect new social 
spam. 
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Figure 1: SpamFender Architecture. 

3.2 Key Design Considerations 

Now that we know the SpamFender architecture, it is 
important to discuss a few key design components, 
including incremental learning, semi-supervised 
learning, and the support of multiple social networks. 

3.2.1 Incremental Learning 

Incremental learning can learn useful information 
from new and incremental data. Meanwhile, it does 
not require access to the original data that has been 
used to train the model. Specifically, it has the ability 
to continuously process the streaming flow of 
information in the real world, retain or even integrate 
and optimize old knowledge while adopting new 
knowledge. The adoption of incremental learning is 
instrumental in enabling SpamFender to detect social 
spam in an adaptive and continuous manner. 

3.2.2 Semi-supervised Learning 

Labelled data is much harder to obtain than 
unlabelled data. As the collected raw data is 
unlabelled, there should be an efficient data labelling 
method for preparing data for the training. The label 
propagation algorithm is a commonly used semi-
supervised learning method in machine learning, 
which is used to assign labels to unlabelled samples. 
The label propagation algorithm constructs an edge-
weighted graph through the similarity of all samples, 
and then each sample performs label propagation 
between its neighbouring samples. 

In the online learning phase, the streaming data 
was cumulatively collected and converted to mini-
batch data. And after basic pre-processing, the mini-
batch data will be transformed into the label 
propagation module where the previously labelled 
social data would be pre-processed and selected high-
valued features will be used in label propagation. The 
unlabelled social data will be converted to labelled 

data after applying to label propagation, as shown in 
Fig. 2. 

 

Figure 2: Label Spreading in SpamFender. 

3.2.3 Support of Multiple Social Networks 

Due to the diversity of social networks, the same type 
of social spam can be sent to more than one social 
network by a spammer. And therefore, it would be 
more cost-effective to consider multiple social 
networks at the same time. We have therefore 
collected data from more than one social network so 
that our model is not limited to detecting social spams 
in one social network, and we can input text data from 
any social network into our model for detection. At 
the same time, to further enhance our model's ability 
to support multiple social networks, the training 
dataset of the model is extended by collecting raw 
data from different social networks and transforming 
the raw data into the training dataset through label 
propagation. The detection capability of the model is 
also enhanced when the training data come from 
various social networks. 

4 IMPLEMENTATION AND 
EVALUATION 

We implement a prototype of SpamFender by 
following the system architecture depicted in Fig. 1. 

4.1 System Implementation 

4.1.1 Data Collection and Processing 

In our implementation, for the offline phase, we 
developed data collection tools for both Twitter and 
Facebook. For Twitter data collection, we made use 
of a python library CollectOldTweet. It can bypass 
Twitter API limitation that a developer can only 
collect tweets data less than 2 weeks old. However, 
the library can be easily detected by Twitter when 
reaching the request sending limit. Hence, we used a 
sleep timer to automatically pause the collection 
module for 10 minutes. In this way, we collected 
about 6,000 tweets on specific topics: bitcoin and 
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news, and around 2,000 tweets in the chronological 
order, as part of our initial training dataset. For 
Facebook, we used an online collecting tool Netvizz 
(UP2, 2015), and collected about 5,000 of the posts. 
We then manually labelled this part of data and did 
some exploratory analysis of it. The data collected in 
this phase was also used in the online phase label 
propagation processing as a learnable dataset. 

After the data collecting process, we got a total of 
13,721 data records, including 6,445 spam and 7,276 
ham. The spam rate is 46.97% in our dataset, which 
is close to the real-world ratio of around 40%. 

Data processing is a must-do in natural language 
classification. For punctuations and stop words 
removing, we used String.punctuation which is a pre-
initialized constant in Python 3, a list of stop words 
contained by NLTK (NLTK Team, 2021), and a 
common natural language processing library. And 
then we used re.split() function to split text into words 
(tokens) and used .lower() function to convert them 
into lower case. Lemmatization converts the different 
forms of a word to its root word. Thus, they can be 
analyzed as a single word. We adopted a WordNet 
Lemmatizer in NLTK to lemmatize the sentences in 
the dataset. Then we used a TF-IDF vectorizer 
provided in scikit-learn to calculate the frequency of 
words. After applying the TF-IDF vectorizer, the 
content was transformed into a 5,000-column 
frequency table. 

4.1.2 Algorithm Selection 

In our prototype, different classification algorithms 
can be selected, such as Multinomial Naïve Bayes, 
Bernoulli Naïve Bayes, Decision Tree, Random 
Forest, Neural Network, SVC, Logistic Regression, 
SGD Classifier, Passive-Aggressive Classifier, and 
Perceptron. The algorithm with better performance 
can be selected for the online learning phase to detect 
social spam during real time. In this phase we used 
10-fold cross-validation by dividing the entire 
manually labelled dataset into 10 subsets, rotating 9 
subsets as the training set and one data set as the test 
set, taking the average of the ten results. In the later 
sections we compared multiple performance metrics 
of different algorithms. Meanwhile, the trained 
models will be stored by using the Pickle package 
(Kimbro et al, 2019) in the offline phase. 

4.1.3 Online Learning 

In the online phase, we used the Selenium (Stewart, 
2021) package to simulate user actions and login 
accounts to collect tweets and posts related to the 
users. After the program is running, there will be a 

Chrome window started with a Chromedriver 
(Chromium, 2021) program pre-installed. Next, 
Chrome is being controlled automatically to login to 
an account with a preserved credential and scrape the 
posts in the mini window. The program uses HTML 
locators to download posts. The data scraped from 
web pages was cleaned by the pre-processing 
component. Finally, we used the Pickle package to 
load the trained model to detect the spam. A 
notification containing the spam post will be sent to 
the user by using social networks API message 
functions when a spam is detected. 

4.1.4 Incremental Learning 

For the incremental learning module, we make our 
data collector periodically collect the social news data 
from social networks. When the amount of data 
reaches the threshold, the data will be batched into a 
mini dataset. In the experimentation, we collected ten 
batches with a total of 240,000 records. Natural 
language pre-processing can reduce the data size and 
classification time through punctuations and stop 
words removing, tokenizing, lemmatization, and TF-
IDF. The mini dataset will then be annotated by label 
propagation. In this module, we used the data 
collected in the offline phase as an input learnable 
labelled data set for label propagation and used the 
label propagation method with the radial basis 
function (RBF) kernel in scikit-learn. The dataset 
labelled by propagation will be used in partial fit (to 
reduce memory usage) to several incremental 
learning algorithms: Multinomial Naïve Bayes, 
Bernoulli Naïve Bayes, Perceptron, SGD Classifier, 
and Passive-Aggressive Classifier. After each time 
partial fit, every algorithm can predict the social spam 
and then continuously learn the new data. Fig. 3 
shows the incremental learning module architecture. 
We will elaborate on the performances of different 
algorithms in the evaluation section. 

 

Figure 3: Incremental Learning Module Architecture. 

4.2 System Evaluations 

Our evaluation was performed by running 
SpamFender on a PC workstation with Windows 10 
64-bit Operating System, AMD Ryzen 1700X 8-Core 
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CPU @ 3.4GHz, and 24GB RAM. The evaluation 
consists of two steps: offline phase evaluation and 
online phase evaluation. 

4.2.1 Offline Phase Evaluation 

In the offline phase, we compared the performance of 
several algorithms, including multinomial Naive 
Bayes, decision tree, random forest, logistic 
regression, support vector classification, basic neural 
network, stochastic gradient descent classifier, and 
passive-aggressive classifier. The metrics we used 
include accuracy, precision, recall rate, AUC, and 
running time in our experimentation. Accuracy is the 
ratio of the number of samples correctly classified by 
the classification model to the total number of 
samples. Precision is the ratio of the number of 
positive samples correctly classified by the model to 
the total number of positive samples. The recall rate 
is the ratio of the number of positive samples with the 
correct classification of the model to the total number 
of samples with the correct classification. The 
receiver operating characteristic (ROC) curve and 
area under the ROC curve (AUC) are the 
conventional metrics for evaluating imbalanced 
classification. The ROC curve of a good classification 
model should be as close as possible to the upper left 
corner of the square with area 1. ROC curve 
illustrates the TPR (True Positive Rate) against the 
FPR (False Positive Rate), and it is a good 
performance measurement to show the trade-off 
between sensitivity (TPR) and specificity (1-FPR). If 
the curve is closer to the top left corner, it indicates 
the classifier has good performance. On the other 
hand, if the curve is closer to the 45-degree diagonal 
line, it indicates it is less accurate. Fig. 4 shows ROC 
curves of three algorithms used in our 
experimentation. In particular, the AUC is the area 
under the blue line for Random Forest.  

 

Figure 4: ROC Curve & AUC. 

Table 1 shows the detailed performance metrics 
for the algorithms. All the values are averaged over 
10 runs. Of all the algorithms we studied, Random 
Forest has the best overall performance. Neural 

Network also performed well, but the running time is 
much longer than Random Forest. The precision of 
the Random Forest is higher than Neural Network, 
which means the Random Forest can identify more 
positive samples than the Neural Network. Moreover, 
the AUC of Random Forest is higher than the AUC 
of Neural Network. The decision tree has a good 
accuracy, but comparatively a poor precision, which 
means there was a lot of spam that was not classified 
properly. Due to the same reason, the recall rate of the 
Decision Tree is not good as well. We can also see 
that Multinomial Naive Bayes, Logistic Regression, 
SGD Classifier, Passive-Aggressive Classifier have 
comparatively poor accuracy. Because they are linear 
models and the social spam feature is not in a linear 
distribution, the performance of these three 
algorithms is comparatively poor. Since Naive Bayes 
uses a likelihood function to calculate word 
probability and takes into account every relevant 
word in the content, the Naive Bayes algorithms have 
comparatively higher precision, i.e. identify positive 
sample ability, than the other linear models. 

Table 1: Algorithms Comparison in Offline Phase. 

Algorithms Accuracy Precision Recall AUC Speed 
(s)

Multinomial 
Naïve Bayes

0.89458 0.94 0.87 0.87 0.012 

Bernoulli 
Naïve Bayes

0.87485 0.93 0.81 0.90 0.731 

Decision 
Tree

0.95551 0.825 0.79 0.87 0.195 

Random 
Forest

0.97678 0.96 0.93 0.98 0.316 

Neural 
Network

0.98162 0.93 0.95 0.96 40.24 

SVC 0.88007 0.72 0.59 0.75 3.220 
Logistic 

Regression
0.92647 0.88 0.73 0.91 0.338 

SGD 
Classifier

0.86334 0.70 0.78 0.81 1.858 

Passive-
Aggressive 
Classifier

0.78046 0.66 0.83 0.82 1.011 

Perceptron 0.88377 0.88 0.88 0.75 0.567 

4.2.2 Online Phase Evaluation 

For the online phase evaluation, we mainly focused 
on the incremental learning module. In particular, we 
tested five different algorithms: Multinomial Naive 
Bayes, Bernoulli Naive Bayes, Passive-Aggressive 
Classifier, SGD Classifier, and Perceptron. The result 
was shown in Table 2 and Fig. 5. As we can see, 
Multinomial Naive Bayes has a significant 
improvement as the size of training samples 
increases. Bernoulli Naive Bayes has a comparative 

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

392



higher accuracy and a slight improvement as training 
samples increase. Passive-Aggressive Classifier, 
SGD Classifier, and Perceptron have a minor 
improvement as training samples increase. Because 
Naive Bayes uses a likelihood function to calculate 
word probability and takes into account every 
relevant word in the content, they showed 
comparatively better performance than the other three 
algorithms. 

Table 2: Incremental Algorithms Accuracy with Increasing 
Sample Size. 

 Samples Increasing Percentage 

 100% 200% 300% 400% 500% 600% 

Multinomial 
Naive Bayes 

0.800 0.830 0.860 0.872 0.879 0.881 

Bernoulli 
Naive Bayes 

0.875 0.878 0.881 0.879 0.883 0.882 

Passive 
Aggressive 
Classifier 

0.798 0.810 0.811 0.809 0.812 0.810 

SGD 
Classifier 

0.801 0.815 0.822 0.817 0.809 0.821 

Perceptron 0.788 0.802 0.792 0.791 0.795 0.800 

 

Figure 5: Incremental Algorithms Accuracy with Increasing 
Sample Sizes. 

4.3 Case Study about COVID-19 

In the pandemic period, people are working and 
studying from home, and most of their 
communication is online. At the same time, online 
spams have grown exponentially. More than 300,000 
unique online threats have been detected in three 
months from the start of the coronavirus pandemic, 
trying to take advantage of the coronavirus crisis and 
our information about the pandemic and desire for an 
end to this pandemic (Armstrong, 2020). Some 
traditional spam detection has struggled to respond in 
a timely manner. Therefore, we have taken the 
opportunity to review our system as social spam has 
emerged on social networks. We did a case study by 
collecting coronavirus data on social networks and 
evaluating our model. 
 
 

4.3.1 COVID-19 Dataset 

Starting from March 2020 to May 2020, we collected 
around 10 million posts about COVID-19 on social 
networks using the self-developed tools, and we 
selected data from different time periods, about 
800,000 in total, for this case study. 

4.3.2 Label Propagation 

We used the semi-supervised learning method to 
obtain labels for the COVID-19 dataset.  

First, we need to obtain a small number of labels 
of data to propagate to unlabelled data. We manually 
labelled 2000 posts; the percentage of social spam is 
about 35% among those. Then we performed label 
propagation. In this label propagation, we compared 
two functions: Label Propagation function and Label 
Spreading function. Label Propagation function uses 
the raw similarity matrix constructed from the data 
with no modifications. In contrast, Label Spreading 
function minimizes a loss function that has 
regularization properties, as such, it is often more 
robust to noise. The algorithm iterates on a modified 
version of the original graph and normalizes the edge 
weights by computing the normalized graph 
Laplacian matrix. There are two kernels for label 
propagation. The radial basis function (RBF) kernel 
will generate a fully connected graph, which is stored 
in memory by a dense matrix. This matrix can be very 
large, which, combined with the cost of performing 
the matrix multiplication and iteration of the 
algorithm, can cause a long runtime. On the other 
hand, the K-nearest neighbor (KNN) kernel will 
generate a sparse matrix that is more memory friendly 
and can reduce the runtime significantly.  

Due to the large amount of data in our experiment 
and the fact that label spreading function slows down 
much the processing speed when optimizing 
robustness on noise. Therefore, we chose label 
propagation function and KNN kernel with a faster 
running speed. 

We also improved the feature selection 
component. In the previous label propagation, we 
used all the features instead of selecting specific 
features for propagating, which made the label 
propagation process inefficient. And this time, due to 
a significant increase in the amount of data, as natural 
language feature extraction needs to vectorize the 
words of the post to word frequency, there will be 
expanded into thousands of features. In order to work 
efficiently, we used the KBest feature selection 
function in scikit-learn, and selected K features with 
the highest scores, while the score calculation has 
three functions: f_classif, mutual_info_classif, chi2.  
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We compared the results with different k values 
and different score equations. As shown in Table 3, 
we found that the score function using 
mutual_info_classif has a much longer run time than 
the other two. Finally, we selected Chi2 score 
equation and k = 40, i.e., the 40 highest scoring 
features were selected for propagation. 

Table 3: KBest Accuracy Changes with Different Score 
Function and K. 

 Accuracy 
K chi2 f_classif mutual_info_classif 
10 0.74 0.79 0.68
20 0.71 0.73 0.74
30 0.76 0.72 0.72
40 0.84 0.74 0.71
50 0.79 0.73 0.7 
100 0.77 0.72 0.66
300 0.75 0.72 0.67
500 0.74 0.71 0.68

1000 0.74 0.73 0.65

4.3.3 Incremental Learning of COVID-19 
Dataset 

After the label propagation, we obtained 800,000 data 
with labels. We then used the data for incremental 
learning and tested the performance of different 
algorithms. We split the dataset into a training dataset 
and a test dataset at a ratio of 8:2. We set the training 
set learning increment to 32000. 

 

Figure 6: Incremental Algorithms Accuracy Changes in 
COVID-19 Dataset. 

From the trend shown in Figure 6, we can see that 
the accuracy of the two naive Bayes methods has 
lower values. And the accuracy of the other 3 linear 
models is higher than the naive Bayes methods. 
Among the three, the accuracy of the Passive 
Aggressive Classifier shows an increasing trend as 
more samples are learned. The highest accuracy 
finally reached 0.8786. SGD Classifier and 
Perceptron show a decreasing trend after the number 
of samples learned reaches a threshold. Among them, 

SGD Classifier reaches the highest accuracy, 0.8770, 
after learning grows to 5 times the samples, after 
which the accuracy hardly grows or even decreases 
no matter how many samples are learned. And 
Perceptron presents the highest accuracy, 0.8780, 
when learning reaches 8 times the number of samples, 
after which there is a significant decrease in accuracy 
as increasing the number of samples is learned. 

Table 4: Incremental Learning Algorithms Run Times for 
the Case Study. 

Algorithms Training(s) Prediction(s)
Multinomial Naïve Bayes 5.022392 20.43906

Bernoulli Naïve Bayes 13.26481 64.57252
Passive Aggressive 

Classifier
8.537352 16.02734 

SGD 7.952496 15.37584
Perceptron 7.854932 16.69584

Table 4 demonstrates the running time of the 5 
incremental algorithms. The time is obtained by 
setting a timestamp before the start of the incremental 
loop and setting a timestamp after the incremental 
learning loop. Since each loop needs to do training 
firstly and then prediction, the prediction time is not 
easy to measure directly. Hence, we set two 
timestamps to cover both the learning and prediction 
process, and then subtract the learning time from the 
total time to get the prediction time. 

From Table 4, we can see that the overall time (for 
both training time and prediction time) of Bernoulli 
Naive Bayes is the longest. The overall runtime 
performance of SGD classifier and Perceptron is very 
similar. While the Passive Aggressive Classifier 
showed a slightly longer training time and prediction 
time.  Multinomial Naïve Bayes learning time is the 
shortest, but the prediction time is slightly longer. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this research, we develop a semi-supervised 
incremental learning system SpamFender to detect 
social spam to address the ever-growing spam issues 
in different online social networks. Overall, the 
experiments show that using label propagation to 
obtain labels is the cost-effective method and 
incremental learning can obtain an increase in 
accuracy for continuous learning of new data. For the 
future work, we will work on incorporating more 
algorithms into different modules of our system. 
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