
Upper Confident Bound Fuzzy Q-learning and 
Its Application to a Video Game 

Takahiro Morita1 and Hiroshi Hosobe2 
1Graduate School of Computer and Information Sciences, Hosei University, Tokyo, Japan  

2Faculty of Computer and Information Sciences, Hosei University, Tokyo, Japan 

Keywords: Machine Learning, Fuzzy Q-learning, UCB Algorithm, Video Game. 

Abstract: This paper proposes upper confident bound (UCB) fuzzy Q-learning by combining fuzzy Q-learning and the 
UCBQ algorithm and applies it to a video game. The UCBQ algorithm improved the action selection method 
called the UCB algorithm by applying it to Q-learning. The UCB algorithm selects the action with the highest 
UCB value instead of a value estimate. Since the UCB algorithm is based on the premise that any unselected 
actions are selected and value estimates are obtained, the number of unselected actions becomes small, and it 
is able to prevent local optimal solutions. The proposed method aims to promote the efficiency of learning by 
reducing unselected actions and preventing the Q value from becoming a local optimal solution in fuzzy Q-
learning. This paper applies the proposed method to a video game called Ms. PacMan and presents the result 
of an experiment on finding optimum values in the method. Its evaluation is conducted by comparing the 
game scores with the scores obtained by a previous fuzzy Q-learning method. The result shows that the 
proposed method significantly reduced unselected actions. 

1 INTRODUCTION 

Recently, there has been a great deal of interest in 
artificial intelligence (AI) due to the increase in data 
volume and the development of computing and 
storage technologies. Research on machine learning, 
especially image processing and voice processing 
using deep learning, has been increasing, and the 
technology is used in familiar places such as early 
detection of cancers, automatic driving of 
automobiles, and automatic translation of texts. 

Research on game AI by machine learning is also 
being actively conducted. In 2017, Ponanza, AI of 
Shogi (Japanese chess), won a professional player. In 
the same year, AlphaGo (Silver, et al., 2016), AI of 
another board game Go, also won professional 
players. In addition, incomplete board games such as 
The Werewolves of Millers Hollow (Katagami, et al., 
2018) and video games such as Tetris and Space 
Invaders have been widely studied in the field of AI. 
For example, general-purpose AI using deep Q-
learning was created (Mnih V. , et al., 2013); it 
automatically generated features and evaluation 
functions for simple games such as Pong and 
Breakout by using only game screens. 

Reinforcement learning, a kind of machine 
learning, is frequently used for video game agents. It 
is a method of learning the most profitable behavior 
for each environment by trial and error. Q-learning 
(Watkins & Dayan, Q-Learning, 1992) is one of the 
mainstream reinforcement learning methods. It gives 
value estimates called Q values to a discrete set of 
states and actions. Fuzzy Q-learning (Glorennec, 
1994) deals with continuous spaces in Q-learning. It 
is used for applications such as robot control that 
cannot be treated discretely (Gu & Hu, 2004)  (Hu, Li, 
Xu, & Xu, 2015). 

However, there is a problem in Q-learning. It 
always selects the action with the largest Q value. 
Therefore, it might generate local optimal solutions 
by continuously selecting the actions with the largest 
Q values, which will make learning not progress. To 
solve this problem, action selection algorithms are 
generally used. For example, the ε-greedy algorithm 
(Watkins, Learning From Delayed Rewards, PhD 
Thesis, 1989) and the upper confident bound (UCB) 
algorithm (Auer, Cesa-Bianchi, & Fischer, 2002) are 
popular action selection algorithms. 

In this paper, we propose UCB fuzzy Q-learning 
that combines fuzzy Q-learning and the UCBQ 
algorithm (Saito, Notsu, & Honda, 2014) and apply it 
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to a video game. This method aims to promote the 
efficiency of learning by reducing unselected actions 
and preventing the Q value from becoming a local 
optimal solution in fuzzy Q-learning. The UCBQ 
algorithm is an improved method that allows the 
action selection method called the UCB algorithm 
(Auer, Cesa-Bianchi, & Fischer, 2002) to be applied 
to Q-learning. The UCB algorithm selects the action 
with the highest UCB value instead of a value 
estimate. In addition, in the UCB algorithm, an 
unselected action is always selected, and the value 
estimate is obtained, which largely reduces the 
number of unselected actions in any state. In this 
paper, we apply the proposed method to a video game 
called Ms. PacMan, and show the changes of 
optimum numerical values for the parameters used in 
the algorithm. We also compare the scores of our 
method with those of a previous fuzzy Q-learning 
method (DeLooze & Viner, 2009). The result of the 
experiment shows that the unselected actions were 
significantly reduced by our method. 

2 MS. PACMAN 

Ms. PacMan is a video game that was produced in the 
United States of America, based on PacMan 
previously released by NAMCO in Japan in 1980. 
The purpose of this game is to control PacMan 
(player) to collect pills and power pills on a map and 
earn a high score while avoiding enemies called 
ghosts (Figure 1). The scores of each pill and each 
power pill are 10 and 50 respectively. There are 
several power pills placed on the map, and PacMan 
can take a power pill to temporarily neutralize and 
attack ghosts and earn a higher score. Especially, by 
attacking ghosts continuously, the player can get 
 

 
Figure 1: Screen of Ms. PacMan. 

increased scores such as 200, 400, 800, and 1600 
points. Therefore, the key to aiming for a high score 
is to get the increased scores. 

In the original PacMan of NAMCO, when a ghost 
finds PacMan, it acts deterministically, which 
allowed establishing AI-based strategies. By contrast, 
in Ms. PacMan, ghosts act randomly with a certain 
probability, which increases the difficulty in 
establishing AI-based strategies. Therefore, 
international conferences such as IEEE CEC held 
competitions using Ms. PacMan. 

3 RELATE WORK 

Many studies on game AI have been conducted. 
Among them, game AI using fuzzy Q-learning has 
been proposed. For example, a football agent based 
on fuzzy Q-learning was proposed (Nakajima, Udo, 
& Ishibuchi, 2003). It treated continuous state and 
action spaces as fuzzy sets, and calculated Q values 
from given environments using fuzzy inference to 
learn to intercept paths in football. It obtained state 
and action spaces by using internal information such 
as the relative velocity and relative position of a ball 
and other objects. Fuzzy Q-learning was applied to a 
car racing game (Umano, Tachino, & Ise, 2013). In 
this game, the player competes for points while 
aiming for targets placed on a two-dimensional plane. 
It used three continuous attributes, i.e., the distance to 
a target, the angle to a target, and the speed of a car 
agent, as the state space, and additional rewards 
depending on the direction of the car agent when 
passing the target. By giving a direction reward, it 
enabled the car agent to pass with a smaller number 
of steps. The direction reward is given when the car 
agent passes the current target and the next target is 
positioned ahead. This allowed the car agent to learn 
the route to the goal smoothly.  

Research on game AI for playing a video game, 
Ms. PacMan, also has been conducted. DeLooze et al. 
(DeLooze & Viner, 2009) made it possible to 
discretely capture continuous states by using a fuzzy 
state space whose attributes are the distances between 
PacMan and the closest enemy, pill, and power pill, 
and applied it to Q-learning. To obtain the fuzzy state 
space, they acquired the position of each object by 
screen capture. They also used the Warshall-Floyd 
algorithm to find the shortest path to the closest pill 
and power pill. Since they did not use the action 
selection method, learning with the highest Q value 
was always performed, which might cause a situation 
where learning did not proceed. Microsoft's AI (van 
Senjen, et al., 2017) had achieved the highest score 
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for Ms. PacMan. It used an architecture called Hybrid 
Reward Architecture, and consisted of more than 150 
single-purpose agents and the top agents that made 
comprehensive decisions from the information 
obtained from the single-purpose agents. It learned to 
improve the play skills of Ms. PacMan by linking 
these multiple AI agents in parallel. The single-
purpose agents were rewarded according to one 
condition, and multiple conditions were distributed to 
the top agents. In the case of Ms. PacMan, some 
agents were rewarded for eating a pill, and other 
agents are rewarded for being able to keep a distance 
from a ghost. The top agents received feedback from 
these rewards and the single-purpose agents and made 
decisions using weighted averages. 

4 PRELIMINARIES 

4.1 Q-learning 

Q-learning was proposed as a machine learning 
method (Watkins & Dayan, Q-Learning, 1992). This 
method learns by updating the value estimation 
function 𝑄(𝑠, 𝑎), which is an index of what kind of 
action 𝑎 the agent should take under a certain state 𝑠. 
The agent receives a reward according to the result of 
the action, and updates 𝑄(𝑠, 𝑎) using the reward. The 
update equation is as follows: 𝑄(𝑠, 𝑎) ൌ (1 − 𝛼) 𝑄(𝑠, 𝑎) + 𝛼ሾ𝑅(𝑠, 𝑎, 𝑠ᇱ)+ 𝛾 max 𝑄(𝑠ᇱ, 𝑎ᇱ)ሿ 
where 𝛼 is a learning rate and 𝛾 is a discount rate. The 
term 1 − 𝛼  represents the current Q value, and the 
term 𝛼  represents the value used in learning. This 
equation causes a higher reward to make a higher 
updated Q value. In addition, the action with the 
highest Q value in the current state is selected. 
Therefore, if the Q value of one action becomes 
higher than the other Q values in a certain state, the 
same action will continue to be selected unless the Q 
value is lowered by a penalty. Even if there is another 
optimal action, it cannot be learned, and the learning 
will be delayed. 

4.2 Fuzzy Q-learning 

Fuzzy Q-learning was proposed (Glorennec, 1994). 
The state and action spaces of Q-learning are treated 
as fuzzy sets and expressed by the membership 
functions. The membership value obtained from the 
membership function is used to calculate the Q value 
to be able to handle continuous state and action spaces 

in Q-learning. In the state space, the label with the 
highest membership value is obtained as the attribute 
of the state. As an example, the distance between two 
objects is divided into three, “near”, “middle”, and 
“far”, and is expressed by the membership function of 
the fuzzy set in Figure 2. 

 
Figure 2: Fuzzy set. 

For example, if the distance between two objects 
is 150, the “middle” with the highest membership 
value is obtained as an attribute. This attribute is 
obtained from multiple fuzzy sets, and the state is 
determined by the combination of the attributes. 
Multiple Q values are updated based on the degree of 
agreement 𝜇  of the state together with the reward 
obtained by the action. The Q value is updated by the 
following equation: 𝑄(𝑠, 𝑎) ൌ (1 − 𝜇௦𝛼) 𝑄(𝑠, 𝑎) + 𝜇௦𝛼ሾ𝑅(𝑠, 𝑎, 𝑠ᇱ)+ 𝛾 max 𝑄(𝑠ᇱ, 𝑎ᇱ)ሿ 

Fuzzy Q-learning was applied to Ms. PacMan 
(DeLooze & Viner, 2009). Since the action space is 
discrete, only the state space was treated as a fuzzy set. 
As a result, it was able to perform learning with fuzzy 
sets, but it could not sufficiently learn with this method 
because there were many combinations of states and 
actions that did not occur during the learning. The 
reason why the learning was hindered was probably 
that the actions with the highest Q values were pursued 
due to the characteristics of Q-learning. 

4.3 UCB Algorithm 

The UCB algorithm (Auer, Cesa-Bianchi, & Fischer, 
2002) uses UCB values instead of estimated Q values 
in Q-learning and selects the action with the highest 
UCB value. Another feature is that if there is an 
unselected action in a certain state, it is always 
selected, and a value estimate is obtained. The UCB 
value is expressed by the following formula: 

𝑈𝐶𝐵(𝑠, 𝑎) ൌ 𝑄(𝑠, 𝑎) + 𝐶ඨ ln(𝑛)𝑁(𝑠, 𝑎) 

where 𝑛  is total number of selections in state 𝑠 , 𝑁(𝑠, 𝑎)  is the number of selections of action 𝑎  in 
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state 𝑠 , and 𝐶  is a constant that determines the 
tendency of the search. A larger value of 𝐶 makes the 
search more aggressive. By contrast, a smaller value 
of 𝐶 makes it more important to utilize the learning. 

4.4 ε -Greedy Algorithm 

The ε-greedy algorithm (Watkins, Learning From 
Delayed Rewards, PhD Thesis, 1989) in Q-learning 
basically selects the action with the highest Q value, 
but randomly selects the action with a search rate of 𝜀  (0 ≤  𝜀 ≤  1) . The advantage of the ε-greedy 
algorithm is that it improves the efficiency of Q-
learning by alleviating the limitation that it does not 
select any action once evaluated as a low value. The 
drawback of the ε-greedy algorithm is that, when 
making an action selection with a probability of 𝜀, it 
behaves randomly regardless of the action value. This 
causes the problem that the probability of selecting 
the action that seems to be the worst in the action 
selection and the probability of selecting the action 
that seems to be the most suitable at present are the 
same with a probability of 𝜀. 

4.5 UCBQ Algorithm 

The UCBQ algorithm applies the UCB algorithm to 
Q-learning (Saito, Notsu, & Honda, 2014). Problems 
arise if the UCB algorithm is simply incorporated into 
Q-learning; since the UCB algorithm always selects 
an unselected action, there is a possibility that it will 
continue to select an action that cannot progress to the 
next state. On the other hand, Saito et al. used the ε-
greedy algorithm to randomly select actions with a 
constant probability, which solved the problem and 
allowed the UCB algorithm to be applied to Q-
learning. They showed that the learning efficiency 
was significantly improved by performing an active 
search from the early stage of learning, as compared 
with the ε-greedy algorithm shown in Subsection 4.4. 

5 PROPOSED METHOD 

In this paper, we propose UCB fuzzy Q-learning by 
combining the UCB Q-learning and fuzzy Q-learning. 
This method significantly reduces unselected actions, 
and makes learning proceed efficiently. We adopt 
UCB fuzzy Q-learning for the following two reasons. 
First, since there were few studies that applied fuzzy 
Q-learning to the AI of video games, we think that it 
has potential for improvement. Second, since the deep 
Q-network (DQN) (Mnih V. , et al., 2015) is currently 

widely used for the AI of video games, we think that 
focusing on another method enables us to make a 
contribution to the field. 

UCB fuzzy Q-learning is performed by repeating 
the following steps: 
1. Obtain a fuzzy state from the distances between 

PacMan (player) and a ghost (enemy), a pill, and 
a power pill; 

2. With a probability of 𝜀, select and execute the 
action with the highest UCB value in the fuzzy 
state, and otherwise randomly select an action; 

3. Update the Q value from the numerical value of 
the distance and the reward for the result of the 
action. 

 procedure UCB fuzzy Q-learning 
1 begin
2 initialize 𝑄, 𝑈𝐶𝐵, 𝑁௔, ∀𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴 
3 for cycle ← 1 to numEpisode 
4 initializeState(𝑠) 
5 while not done do 
6 if rand() > 𝜀 
7 𝑎 ← argmax UCB(𝑠, ∶)  
8 else
9 𝑎 ← selectRandomly  

10 end
11 𝑠′ ← fuzzyState(pacman, ghost, 

pill, powerpill) 
12 𝑅 ← GetReward(𝑠, 𝑎) 
13 for cycle ← 0 to len(Q) 
14 𝜇௦ ← (membership(pacman, ghost) +membership(pacman, pill) +membership(pacman, 

powerpill))/3 
15 𝑄(𝑠, 𝑎) ← (1 − 𝜇ୱ𝛼)𝑄(𝑠, 𝑎) +𝜇ୱ𝛼 ൤𝑅 + 𝛾 max௔ᇲ∈஺(௦) 𝑄(𝑠ᇱ, 𝑎ᇱ)൨ 
16 end
17 𝑁௔ ← 𝑁௔ + 1
18 𝑈𝐶𝐵(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝐶ඨln∑൫𝑁௔(𝑠, : )൯𝑁௔(𝑠, 𝑎)  

19 𝑠 ← 𝑠′
20 end
21 end
22 end

Figure 3: UCB fuzzy Q-learning. 

Figure 3 shows the proposed method in pseudo 
code. The 4th to 20th lines indicate the UCB fuzzy Q-
learning algorithm for learning one episode. An 
episode in Ms. PacMan means the period from the start 
to the end of a game. The 5th to 20th lines repeat 
learning until the Boolean variable “done”, which 
indicates whether the game is over, becomes true. 
From the 6th to the 10th line, the action that has the 
maximum value of UCB is selected with a probability 
of 𝜀 , and an action is randomly selected with a 
probability of 1 − 𝜀. This is the important feature of 
the UCBQ algorithm that prevents continuous 
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selection of non-proceeding actions. At the 11th line, 
after the action is executed, the next state 𝑠′  is 
obtained; it is the combination of the attributes with the 
highest membership value in the fuzzy set of the 
distances between PacMan and ghosts, pills, and power 
pills. From the 13th to the 16th line, it is possible to 
treat a fuzzy state space (which is continuous) as a 
discrete state space by updating multiple Q values 
using the membership value. At the 14th line, the 
membership value is obtained from the fuzzy set 
according to the attribute of the corresponding state 𝑠′, 
and the average is computed to obtain the value 𝜇௦. At 
the 15th line, the Q value for action 𝑎  in the 
corresponding state is updated by 𝜇௦, and reward 𝑅 is 
obtained by the action. When the degree of coincidence 𝜇௦ is 0, the Q value does not change. At the 17th line, 
the value of 𝑁௔  corresponding to action 𝑎 , which is 
selected in state 𝑠, is updated. This records how many 
times that action 𝑎 is selected in state 𝑠. At the 18th 
line, the UCB value is updated using 𝑁௔ value and the 
updated Q value. Then the next state 𝑠′ is changed to 
the current state 𝑠, the loop returns to the beginning, 
and the learning is continued. 

6 IMPLEMENTATION 

6.1 Ms. PacMan 

To implement Ms. PacMan, we used OpenAI Gym 
(Brockman, et al., 2016). OpenAI Gym is a platform 
for the development and evaluation of enhanced 
algorithms provided by OpenAI. It provides various 
reinforcement learning environments such as inverted 
pendulum and video games including Ms. PacMan. In 
OpenAI Gym, it is possible to return the contents of 
the environment after the action to a variable by using 
the function env.step(action). For example, in 
Ms. PacMan, the RGB value of each pixel can be 
obtained as an array of numbers such as (210, 160, 3). 
When a score is obtained, its value can be returned as 
a variable, and whether the game is over can be 
returned as a Boolean variable. In addition, actions 
that can be selected are defined by numbers. These 
functions make it easy to develop algorithms for 
reinforcement learning. 

6.2 Position Coordinates of Objects 

OpenCV was used to grasp the positions of PacMan, 
ghosts, pills, and power pills on the map. OpenCV is 
a library for image processing, image analysis, and 
machine learning functions. Since Ms. PacMan of 

OpenAI Gym has clear colors, the screen image can 
be processed easily. In the implemented program, the 
position coordinates of an object were grasped as 
follows: 
1. Convert the RGB values of the screen to the 

HSV values; 
2. Extract the HSV values of the object whose 

position coordinates are needed; 
3. Extract the outline of the object from the screen 

where the colors are binarized; 
4. Find the center of gravity of the object and 

return its coordinates. 
Color binarization converts the colors white or 

black to clarify the contour and perform contour 
extraction easily. In the case of multiple objects such 
as pills, the program returns a list of coordinates. 
Since in OpenAI Gym the colors of pills, power pills, 
and the wall of the map are the same, their sizes are 
used in order not to detect other objects. 

6.3 Finding the Shortest Distance 

We used depth-first search (Tarjan, 1971) to find the 
shortest distance. Depth-first search is a graph search 
algorithm based on the strategy of visiting adjacent 
vertices as much as possible. This algorithm is one of 
the methods often used in maze search, and the search 
continues from the original start point until all 
reachable vertices are found. The search is performed 
recursively by selecting one of the unreached vertices 
and continuing the search as a new starting point. Our 
program finds the closest pill or power pill first by 
using the shortest distance from PacMan to the pill or 
the power pill. We used the depth-first search instead 
of the Warshall-Floyd algorithm, which was used in 
the previous study. Since the number of pills is large, 
finding the shortest distance for all of them increases 
the execution time. The position coordinates of all 
pills or power pills are received from the program that 
returns the position of the object as an array, and finds 
the closest one from the position of PacMan. 

6.4 Setting Rewards 

The reward is the score obtained by the action. As 
mentioned in Section 2, PacMan obtains 10 points 
when taking pills, and 50 points when taking power 
pills. The first attacked ghost is worth 200 points, and 
the second, the thrird, and the fourth are worth 400, 
600, and 800 points respectively. This added value is 
used as a reward. However, if nothing is done, the 
value as a reward is high, and the dependence on one 
success becomes high. Therefore, the problem is 
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avoided by reducing the reward value by multiplying 
the added score value by a constant. The optimum 
value of the constant used to reduce the reward value 
is obtained by experimenting with different values. 
The reward is used to update the Q value. If only the 
score is used as the reward, avoiding the ghost cannot 
be learned. Therefore, the score of 500 points is used 
when PacMan is caught by a ghost. Since this is a 
value set according to the value of the score, the value 
of the penalty is also multiplied by a constant and 
used to update the Q value. 

7 EXPERIMENT 

We prepared multiple machines (instances of AI) that 
adjust the reward for the action of PacMan (player) 
and the constant 𝐶  used for updating UCB. We 
verified what kind of reward is given for efficient 
learning. The experiment is verified and confirmed by 
comparing the final scores after learning 200 times. 
Scores can be obtained by taking pills and power pills 
and attacking neutralized ghosts. State 𝑠  used in 
learning consists of a total of 27 combinations of 
fuzzy sets defined in Figure 4 and Figure 5. Action 𝑎 
is selected from three types: “go toward the closest 
pill”, “go toward the closest power pill”, and “escape 
from the ghost”. The elements of the value estimation 
function 𝑄(𝑠, 𝑎) are 27 × 3 = 81 in total, and their 
values are all 50 before learning. The learning rate 𝛼 
used to update the Q value is defined as 𝛼 = 0.9, and 
the discount rate 𝛾 is defined as 𝛾 = 0.3. 

 

Figure 4: Fuzzy set of distances between PacMan and a 
ghost. 

 
Figure 5: Fuzzy set of distances between PacMan and a 
(power) pill. 

Table 1 shows the parameters of the experiment 
and final scores. Machine 0 is not combined with the 
UCBQ algorithm by setting 𝐶  = 0 and 𝜀  = 0 and 
applies only fuzzy Q learning as in the previous study. 
We used the same 𝜀  and different rewards 𝑅  and 
constants 𝐶 for the machines other than machine 0. 

Machines 1 and 3 apply the ε-greedy algorithm to 
fuzzy Q-learning as an action selection method and 
differ only in how to give rewards. The reason for 
preparing these machines was to verify whether the 
proposed method would be more suitable than the 
method incorporating the ε-greedy method when 
training Ms. PacMan. Machines 2, 4, 5, and 6 apply 
UCB fuzzy Q-learning of the proposed method. 
Machines 2 and 4 have different rewards 𝑅 , and 
machines 2, 5, and 6 have different 𝐶 values. 

Table 1: Parameters and final scores of machines. 

Machine Reward 𝐶 𝜀 Score 
0 0.03R 0 0 3360
1 0.03𝑅 0 0.2 3480 
2 0.03𝑅 0.01 0.2 3560 
3 0.05𝑅 0 0.2 3120 
4 0.05𝑅 0.01 0.2 3300 
5 0.03𝑅 0.1 0.2 3280 
6 0.03𝑅 3.0 0.2 2460 

We first compare the scores obtained by the 
proposed method. Comparing machines 2 and 4 
indicates that machine 2 (which used the reward of 0.03𝑅 ) obtained the higher score. Comparing 
machines 2, 5, and 6 indicates that the scores are 
higher in the order of machine 6, 5, and 2, which 
suggests that a smaller 𝐶 is suitable for a higher score. 
Comparing machines 1 and 3 (which incorporated the 
ε-greedy algorithm) indicates that machine 1 (which 
used the reward of  0.03𝑅) obtained the higher score 
again. 

Next, we compare the proposed method with the 
method of the previous study and the method 
incorporating the ε-greedy algorithm. Although the 
scores increased in the order of machines 0, 1, and 2, 
there were no large differences among these three 
machines. Concerning the Q values for the final 
scores, machine 0 had more elements with a Q value 
of 50 (which was the initial value) than the other 
machines. In machines 1, 2, 3, 4, 5, and 6, the Q 
values were updated from the initial value of 50 to 
different values for most combinations of states and 
actions. There were no large differences in the degree 
of the updates of the Q values among these four 
machines using the proposed method. 
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8 DISCUSSION 

We compared machines 2, 5, and 6, in which only the 
values of the constant 𝐶 (which represents the degree 
of search) were changed. As described in Subsection 
4.3, a larger value of 𝐶  performs more aggressive 
search, and a smaller value of 𝐶  places more 
emphasis on the utilization of the learning. The result 
of the experiment indicated a larger value of 𝐶 
yielded a lower score. If the value of 𝐶 is made too 
large, it is difficult to increase the score; this is 
because the actions that have already been learned are 
selected many times even if they are inappropriate. 
Therefore, it is considered that machine 6 with a 
particularly large value of 𝐶  has a poor balance 
between search and utilization because of focusing on 
search. For this reason, it is considered that machine 
2 with the 𝐶  value of 0.01 (which had the highest 
score among the machines operated in the 
experiment) was the one that was the most efficiently 
utilized during the learning. 

We compared machines 1 and 3 (which 
incorporated the ε-greedy algorithm into fuzzy Q-
learning) and machines 2 and 4 (which used the 
proposed method). Machines 1 and 2 used 0.03𝑅 as 
the reward, and machines 3 and 4 used 0.05𝑅 as the 
reward to update the Q values. The results of the 
scores indicate that the machines gave higher scores 
when the reward of 0.03𝑅 was used. Therefore, it is 
considered that the value of the reward suitable for 
applying fuzzy Q-learning to Ms. PacMan in this 
experiment is 0.03𝑅. Also, the reason why the score 
slightly dropped by the reward of 0.05𝑅  was that 
taking pills and power pills was prioritized over 
escaping from ghosts because of the increased 
rewards. As a result, many risky actions were selected. 

We compared machine 0 that used only fuzzy Q-
learning, machine 1 that had the highest score among 
the machines that used the ε-greedy method, and 
machine 2 that had the highest score among the 
machines that used the proposed method. Comparing 
the Q values, the Q values of machines 1 and 2 had 
many updated elements compared to the Q values of 
machines 0 (see Figure 6 and Figure 7Figure 7). 
Therefore, it is considered that machines 1 and 2 
could perform sufficient search and learn efficiently. 
However, no large difference in the degree of search 
between machines 1 and 2 could be seen. Also, 
regarding the score comparison, although machine 1 
gave a score that exceeded machine 0 about 100 
points, there were no large differences between the 
three machines. It is considered that the obtained 
points were limited because the program was applied 
only to the maps up to stage 2 as in the previous study. 

Therefore, it is necessary to reconfirm the usefulness 
of the proposed method by applying it to maps on 
stages 3 and later. Moreover, to verify the learning 
efficiency, it is necessary to obtain not only the final 
score and the final Q value but also the score in the 
learning process as data on a regular basis. If the Q 
value is updated at an early stage and a high score is 
obtained, it can be judged that efficient learning is 
being performed. 

 
Figure 6: Q values of machine 0. 

In our program, we set actions “go toward the 
closest pill”, “go toward the closest power pill”, and 
“escape from the ghost”. It is considered that the 
score did not increase because the action of actively 
attacking a neutralized ghost was missing. As a 
solution, increasing new actions such as “go to the 
ghost” is considered. In addition, by increasing 
actions, the number of combinations of states and 
actions increases. Therefore, it is possible to learn 
more detailed actions, and it is expected that a higher 
score can be obtained. Furthermore, since the effect 
of action selection increases with the number of 
actions, it is considered that the learning efficiency 
between the proposed method and previous studies 
will appear more prominently. 

Closest Closest Closest GoTo GoTo Avoid

Ghost Pill PPill Pill PPill Ghost

1 near near near 14 71 32

2 near near middle 24 34 31

3 near near far 10 23 40

4 near middle near 45 69 52

5 near middle middle 30 11 60

6 near middle far 37 15 52

7 near far near 27 74 57

8 near far middle 39 48 50

9 near far far 7 20 53

10 middle near near 96 79 4

11 middle near middle 76 54 34

12 middle near far 61 38 41

13 middle middle near 49 98 51

14 middle middle middle 47 55 56

15 middle middle far 43 45 47

16 middle far near 35 43 48

17 middle far middle 43 51 50

18 middle far far 30 26 43

19 far near near 87 60 54

20 far near middle 56 59 54

21 far near far 52 52 50

22 far middle near 57 54 50

23 far middle middle 47 44 50

24 far middle far 52 53 50

25 far far near 48 60 53

26 far far middle 52 53 50

27 far far far 50 50 50
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Figure 7: Q values of machine 2. 

9 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we tackled the low learning efficiency 
in applying fuzzy Q-learning to Ms. PacMan in the 
previous method. To increase the learning efficiency, 
we proposed UCB fuzzy Q-learning by combining 
fuzzy Q-learning and the UCBQ algorithm that can 
learn search and utilization in a well-balanced manner 
by reflecting the number of times an action is selected 
to eliminate local optimal solutions. In the experiment, 
the proposed method was applied to Ms. PacMan. As 
a result, the score of the proposed method exceeded 
the score of the previous method about 100 points. It 
was also shown that a lower constant used in the 
proposed method resulted in a higher score. 

Our future work is to clarify difference in scores 
between our method and the previous method by 
making the program cope with maps on stages 3 and 
later of Ms. PacMan. In addition, since it is 
considered that the influence of an action selection in 
UCB fuzzy Q-learning increases with the number of 
actions, it is necessary to verify whether the score 
increases by further dividing actions. Also, to confirm 
the learning efficiency, it is necessary to obtain scores 
for many executions of the learning of each machine 
and compare the transitions. To confirm its usefulness, 
it is necessary to compare it also with DQN. 
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Closest Closest Closest GoTo GoTo Avoid

Ghost Pill PPill Pill PPill Ghost

1 near near near 44 30 11

2 near near middle 5 50 50

3 near near far 30 49 29

4 near middle near 60 110 74

5 near middle middle 26 39 53

6 near middle far 40 27 50

7 near far near 72 99 50

8 near far middle 50 50 50

9 near far far 23 50 51

10 middle near near 80 63 44

11 middle near middle 83 50 30

12 middle near far 47 50 50

13 middle middle near 89 108 42

14 middle middle middle 50 73 44

15 middle middle far 67 50 59

16 middle far near 50 50 50

17 middle far middle 48 53 50

18 middle far far 50 50 50

19 far near near 103 82 50

20 far near middle 64 50 50

21 far near far 42 50 50

22 far middle near 31 10 36

23 far middle middle 50 71 50

24 far middle far 50 59 50

25 far far near 50 50 50

26 far far middle 51 46 48

27 far far far 50 50 50

State
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