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Abstract: With the advent of big data in healthcare, machine learning has rapidly gained popularity due to its potential 
to analyse large volumes of complex data from a variety of sources. Unsupervised learning can be used to 
mine data and discover patterns such as sub-groups within large patient populations. However challenges with 
implementation in large-scale datasets and interpretability of solutions in a real-world context remain. This 
work presents an application of unsupervised clustering techniques for discovering patterns of comorbidities 
in a large dataset of osteoarthritis patients with a view to discover interpretable and clinically-meaningful 
patterns.

1 INTRODUCTION 

Electronic health records present a wealth of routinely 
collected patient care information that can be used for 
data-driven health research (Binder and Blettner 
2015), (Ehrenstein, Kharrazi et al. 2019).  

Machine learning has shown potential for analysis 
of large volumes of complex, multi-modality health 
data, including pattern recognition to unravel sub-
groups of patients within a large population  (Cohen, 
Vawdrey et al. 2015, Pinedo-Villanueva, Khalid et al. 
2018, Windgassen, Moss-Morris et al. 2018, Khalid 
and Prieto-Alhambra 2019, Agrawal and Prabakaran 
2020). A variety of algorithms, clustering strategies, 
and evaluation criteria exist, as these choices are 
largely dataset- and application- dependent (Liao, Li 
et al. 2016, Grant, McCloskey et al. 2020).  

In this paper we demonstrate the application of 
unsupervised learning methods for the task of 
identifying patterns of comorbidities within a large 
cohort of osteoarthritis and methods for evaluating an 
optimal clustering solution. 
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1.1 Clinical Context 

Osteoarthritis (OA) is a musculoskeletal disorder that 
occurs when joint cartilage deteriorates, causing 
inflammation, stiffness, reduction of the mobility and 
pain on joins. The most commonly affected areas 
include knees, hands, hip and spine. OA is considered 
the most common type of arthritis and it is estimated 
to affect one of ten adults just in the UK (Swain, 
Sarmanova et al. 2020). Patients diagnosed with OA 
can experience considerable deterioration of their life 
quality and severe cases can require a joint 
replacement to reduce pain and restore joint function.  

In addition to the personal and social implications 
of the disease, OA has an important economic impact. 
The National Joint Registry estimate that more than 
90% of hip, knee and ankles replacements, and 59% 
of shoulder replacements in 2019 at the UK were 
caused by OA (NJR Report 2020). Moreover, patients 
with OA are more likely to have other comorbidities 
such as hypertension, dyslipidaemia and back pain 
(Swain, Sarmanova et al. 2020). 
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The study of comorbidity patterns in OA patients 
at the time of OA diagnosis can help to identify sub-
groups of patients e.g., individuals who might require 
additional care. This can in turn aid patient care 
decision-making and healthcare resource allocation. 

1.2 Contribution in This Paper 

Unsupervised machine learning methods such as 
cluster analysis are well-suited to the problem of 
patient sub-group identification (Pinedo-Villanueva, 
Khalid et al. 2018, Violan, Roso-Llorach et al. 2018, 
Grant, McCloskey et al. 2020, Hansen, Angquist et al. 
2020, Wartelle, Mourad-Chehade et al. 2021).  

In this work, we demonstrated the application of 
cluster analysis methods to a large routinely collected 
dataset representative of patients diagnosed with OA 
to unravel patterns of OA comorbidities.  

Although cluster analysis methods are widely 
known, their use for detecting comorbidity patterns in 
a large and representative database of OA patients is 
presented for the first time in this work, and we 
describe key methodological challenges in 
implementing cluster analysis with a large sample 
size using an open-source software.  

2 METHODS  

2.1 SIDIAP Database 

The Information System for Research in Primary 
Care (SIDIAP) is a healthcare database that contains 
de-identified patients records from more than 370 
primary care teams in Catalonia (Spain), covering 
approximately 80% of the Catalan population 
(https://www.sidiap.org/). 

2.2 Data 

Participants aged ≥18 years with at least one 
physician-recorded diagnosis of OA for hip, knee, 
ankle/foot, wrist/hand, or site recorded as 
‘unspecified’ from 1st of January 2006 to 31st of June 
2020 in SIDIAP database were included in the study 
cohort. Incident cases i.e., first-ever diagnoses of OA 
cases were identified, and individuals were followed-
up from the first diagnosis date (index date). 

Patients with data recorded for less than a year 
before index date were excluded. Exclusion criteria 
also included any record of specific non-OA 
diagnosis (soft-tissue disorders, other bone/cartilage 
diseases) at the same joint in the 12 months before or 
after the recorded OA/joint pain consultation. 

For the OA cohort, a total of 58 comorbidities of 
OA, identified by clinical experts and literature, were 
available in the dataset. Patient characteristics 
included socio-demographics, medical history, 
clinical procedures, laboratory tests, and treatments. 

2.3 Pre-processing 

Prevalence of the 58 OA comorbidities was 
measured. Comorbidities with less than 1% 
prevalence in the dataset were excluded. Highly 
correlated variables were identified using Pearson 
correlation: if a pair of comorbidities had a 
correlation coefficient > ±0.6, clinical expert opinion 
was used to consolidate the two comorbidities. 

2.4 Cluster Analysis 

Cluster analysis was used to split the dataset based on 
patterns of comorbidities and identify sub-groups of 
individuals with similar comorbidities. 

The choice of clustering technique can be guided 
by the nature of data (e.g., categorical or continuous 
distribution) and the goal of the clustering task.  
Hard clustering may be preferred where it is desirable 
to assign each individual to a single group (non-
overlapping clusters). Conversely, soft clusters 
generate cluster membership probabilities for each 
individual, such that an individual may have 
membership in more than one cluster (overlapping-
clusters). 

2.4.1 K-means 

K-means is one the most popular hard clustering 
approaches, perhaps for being one of the simplest and 
less computational demanding. Ideally, it is meant for 
continuous data, but it can be applied to binary 
variables not highly correlated (Henry, Dymnicki et 
al. 2015).  

In k-means we must pre-specify the desired 
number of clusters (k). Then, k randomly selected 
points from the d-dimensional space are assigned to 
be the cluster centroids (in our case, k random 
individuals became centroids). The distance between 
each individual and the centroids is computed, and 
each individual is assigned with its closest centroid. 
After that, clusters centroids are re-calculated based 
on the values within each group, and individuals are 
re-allocated to the new closest centroid.  
Re-calculation and re-allocation steps are repeated 
until position of cluster centroids stops changing. 

Since k-means is sensitive to initial random 
selection of centroids, the obtained solution might 
become trapped in a local minimum. To prevent this 
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limitation, the algorithm should be repeated with 
random initialisation and the results pooled. 

Cluster Evaluation in K-means 
The choice of the optimal number of clusters (𝑘෠) can 
be subjective, but we can use a set of internal and 
external evaluation criteria to assist us in the decision. 
Additionally, both evaluations can provide us a better 
understanding of the performance of the cluster 
algorithm, and the existing grouping behaviour of the 
data. 

The internal evaluation aims to find the solution 
of k clusters that maximizes the homogeneity of 
individuals within a cluster, while enhances the 
heterogeneity between different clusters. The 
simplest criteria to evaluate this is based on 
measuring the variance or scatter within a cluster:  the 
within-cluster sum of squares (WCSS). 

  𝑊𝐶𝑆𝑆 ൌ  Σ௞ୀଵ
௄ Σ௜∈ௌೖ

Σ௝ୀଵ
ௗ ሺ𝑥௜௝ െ �̅�௜௝ሻଶ     (1) 

where Sk is the subset of individuals assigned in 
the kth cluster, x̅ represents the cluster mean, and k is 
the candidate number of clusters, k = 1:K. K is the 
maximum numbers of clusters considered.  
Other methods that are well described in the literature 
and are frequently used are Calinski-Harabasz 
(Caliński and Harabasz 1974), Gap (Tibshirani, 
Walther et al. 2001), and Silhouette (Rousseeuw 
1987). The 𝑘෠ is the k solution where all or most of the 
criteria concur, but when the results are not clear, the 
best is to select few models and assess them through 
an external and clinical evaluation. 

The external evaluation uses independent 
variables (i.e., external, not included in the 
clusterization, but related to cluster features) to 
describe the cluster solutions, and therefore externally 
validating it. It can be especially useful when there is 
no clear consensus of 𝑘෠ using the internal evaluation. 

In our example, we have included age (< 50 years, 
between 50 and 70 years, and > 70 years), index of 
deprivation (rural areas, socioeconomic status > 3), 
and current smoking status. 

2.4.2 Latent Class Analysis   

Latent Class Analysis (LCA) is a type of soft 
clustering that explains the heterogeneity between 
individuals regarding a particular compilation of 
measured items. LCA is a finite mixture model: 
instead of measuring the distance between 
individuals, LCA uses a mix of distributions to 
determine the most likely model that describes the 
heterogeneity of the data as a finite number of groups 
(latent classes) (figure 1). In other words, it produces 

an estimate of how likely is for an individual to 
belong to a cluster by summarizing their patterns of 
characteristics into a pre-specified number of latent 
classes.  

In fact, the larger number of features involved in 
the analysis, the higher number of patterns can be 
found in the data (the increment is exponential), 
which increases the difficulty of the results 
interpretation. But LCA can reduce the total number 
of possible patterns by compressing them into 
subsets, showing us the most prevalent of them at the 
cost of losing certain amount of specificity. 
Nonetheless, the provided patterns will be more 
comprehensible and practical while still 
parsimonious. 

 
Figure 1: Structure of latent class analysis and application 
in our data. A latent variable can be represented by latent 
classes (i.e., groups/subgroups of the latent variable that 
cannot be measured). In our example, we want to represent 
patients with osteoarthritis into groups according to their 
combination of comorbidities (i.e., patterns). 

LCA was originally designed for discrete 
variables, which is the case of the assessed variables 
presented in this work, but there is an extension for 
dealing with longitudinal data (Jung and Wickrama 
2008). As with k-means, LCA requires the 
introduction of the expected number of k classes, but 
in this case we can statistically determine the 
performance of the proposed models in representing 
the studied population.  

Cluster Evaluation in Latent Class Analysis 
The 𝑘෠  in LCA is obtained by comparing the 
performance of the models from k = 1 or 2, to a 
reasonable number of subgroups. For example, we 
will analyse up to k = 10. We can calculate different 
criteria methods to compare the models, such as the 
likelihood and its logarithm, the entropy, entropy R2, 
the Akaike's Information Criteria (AIC), Bozdogan's 
Criterion (CAIC), the Bayesian Information Criteria 
(BIC, as well known as Schwartz's Bayesian 
Criterion) and the Akaike's Bayesian information 
criterion (ABIC).  

In this paper, we have used the entropy R2, the 
ABIC, BIC, CAIC criteria methods and log-
likelihood ratio.  
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Entropy in cluster analysis explains the amount of 
disorder (dispersion) in the data, and points how good 
the prediction of the cluster membership can be. The 
score ranges from 0 to 1, where low values represent 
less different characteristics/patterns; and high 
numbers represent greater disorder, where is more 
likely for the model to be distributed correctly across 
different groups. A common desired threshold to set 
a good entropy is > 0.7. Boeschoten et al. (2017) fully 
report the methodology to calculate the entropy R2 in 
LCA models (Boeschoten, Oberski et al. 2017).  

The AIC criteria measures of the goodness of fit 
of the proposed model derived from frequentist 
probability (Akaike 1987), while BIC is derived from 
Bayesian probability (Schwarz 1978). Compared to 
BIC, complex models are less penalized in AIC. The 
CAIC is an extension of the AIC procedure with a 
stronger penalty for overparametrized models 
(Bozdogan 1987), and ABIC is a sample-sized 
adjusted BIC (Sclove 1987). In all these parameters, 
the lowest value reflects the best model. In mixed 
models, we can measure these parameters as follows: 

       𝐴𝐼𝐶 ൌ  െ2Λ ൅ 2Φ                    (2) 
 

   𝐶𝐴𝐼𝐶 ൌ 2Λ ൅ Φሺ1 ൅ 𝑙𝑛𝑁ሻ               (3) 
 

   𝐵𝐼𝐶 ൌ  െ2Λ ൅ Φln𝑁                    (4) 
 

       𝐴𝐵𝐼𝐶 ൌ  െ2Λ ൅ ln ቀ
ேାଶ

ଶସ
ቁ                (5) 

Where Λ is the maximum log-likelihood and Φ is 
the total number of estimated parameters (degrees of 
freedom) of the model, and N is the number of 
participants in the subset. 

Ideally, the optimal LCA model will be the one 
with the lowest value obtained in CAIC, BIC and 
ABIC criteria, and the highest entropy R2, but it might 
happen that criteria values keep decreasing and 
entropy increasing. Like the strategy of selecting the 
𝑘෠ in K-means, we choose few models for a manual 
evaluation to unravel the underlying patterns of 
comorbidities from each cluster by observing the 
posterior probabilities (i.e., probability from patients 
to be allocated to one cluster). 

2.5 Software Used 

All the analysis were conducted using R 4.1.1 for 
Windows. 

3 RESULTS 

We identified 633,330 patients diagnosed with OA in  

SIDIAP database, and from the total 58 
comorbidities, only 36 were present in more than 1% 
of the population (Table 1). No correlations equal or 
above 0.6 were found. 

Table 1: Prevalence of OA patients’ comorbidities. In bold: 
comorbidities excluded in the analysis (<1.0% of 
prevalence). Abbreviations: BHP, benign prostate 
hypertrophy; COPD, chronic obstructive pulmonary 
disease; GERD, gastroesophageal reflux disease; IBD, 
inflammatory bowel disease; PVD, peripheral vascular 
disease; SLE, Systemic lupus erythematosus. 

Comorbidities (total = 58) 
N=633330 

Anaemia 48281 (7.62%)
Ankylosing spondylitis 550 (0.09%)

Anxiety 80554 (12.7%)
Arrythmia 32605 (5.15%)

Asthma 15960 (2.52%)
Autism 24 (0.00%)

Back/neck pain 212986 (33.6%)
BHP 33560 (5.30%)

Cateract 0 (0%) 
Chronic heart disease 34300 (5.42%)
Chronic heart failure 15850 (2.50%)

Sinusitis 2675 (0.42%)
Chronic Kidney disease 36098 (5.70%)

COPD 23961 (3.78%)
Vitamin D deficiency 7569 (1.20%)

Dementia 12467 (1.97%)
Depression 48757 (7.70%)

Diabetes 57498 (9.08%)
Hyperlipidemia 11602 (1.83%)

Eczema 21924 (3.46%)
Epilepsy 2671 (0.42%)
Fatigue 16852 (2.66%)

Fibromyalgia 10008 (1.58%)
Gall bladder stone 21346 (3.37%)

GERD 6474 (1.02%)
Gout 12388 (1.96%)

Hearing impairment 41563 (6.56%)
Hepatitis 455 (0.07%)

Hypothyroidism 22153 (3.50%)

HIV/AIDs 252 (0.04%)

Hypertension 149092 (23.5%)
Hyperthyroidism 4789 (0.76%)

IBD 14810 (2.34%)
Insomnia 44278 (6.99%)

Irritable bowel syndrome 4520 (0.71%)
Leukaemia 915 (0.14%)

Liver 2336 (0.37%)
Lymphoma 948 (0.15%)

Migrane 10401 (1.64%)
Multiple sclerosis 248 (0.04%)

Obesity 80387 (12.7%)
Osteoporosis 45261 (7.15%)

Other vessel diseases 9621 (1.52%)
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Table 1: Prevalence of OA patients’ comorbidities. In bold: 
comorbidities excluded in the analysis (<1.0% of 
prevalence). Abbreviations: BHP, benign prostate 
hypertrophy; COPD, chronic obstructive pulmonary 
disease; GERD, gastroesophageal reflux disease; IBD, 
inflammatory bowel disease; PVD, peripheral vascular 
disease; SLE, Systemic lupus erythematosus (cont). 

Parkinson 3872 (0.61%) 
PVD 2773 (0.44%) 

Polymyagia rheumatica 3408 (0.54%) 
Psoriasis 8179 (1.29%) 

Psoriatic arthritis 580 (0.09%)
Rheumatoid arthritis 3250 (0.51%) 

Schizophrenia 985 (0.16%)
Allergy 80449 (12.7%) 

Sjogen’s syndrome 2070 (0.33%) 
SLE 504 (0.08%) 

Solid malignancy 23946 (3.78%)
Stroke 20986 (3.31%) 

Substance abuse 40423 (6.38%)
Thrombotic diseases 823 (0.13%)

Tuberculosis 1321 (0.21%) 

3.1 Internal Evaluation  

Figure 2 shows the results for internal validation of k-
means using WCSS, and figure 3 for LCA using 
Entropy R2, goodness of fit tests and likelihood 
values. Other metrics (e.g., Gap, Silhouette and 
Calinski-Harabasz) were unable to converge given 
the sample size. Running times for LCA were larger, 
especially for higher numbers of k (up to three weeks 
when k = 10 in LCA vs. one day in K-means). WCSS 
did not change by more than ±1 std after k=6, and 
similar effect was observed in curves from internal 
validation of LCA analysis. Therefore, to determine 
an optimal number of clusters, cluster visualisation 
was performed for k=4, 5, and 6 in both methods.  

  
Figure 2: Representation of the Within-Cluster-Sum-of-
Squares (WCSS) for each number of k.  

 

Figure 3: Representation of A) entropy R2 values and, B) 
goodness of fit tests and likelihood ratio for each LCA when 
k ranges from 1 to 10. 

When using k = 4, k-means (figure 4A) show a 
generally healthy cluster, a back/neck pain cluster, an 
anxiety cluster with half of the patients experiencing 
back/neck pain, and a hypertension cluster with 
around forty percent of patients experiencing 
back/neck pain. In LCA (figure 5A), first 2 clusters 
present the same main comorbidities: relatively 
healthy group and back/neck pain. Back/neck pain 
cluster is also linked with mental disorders (anxiety 
and depression), migraine, insomnia, and/or other 
pain conditions (fatigue and fibromyalgia). Third and 
fourth clusters present a main prevalence of 
hypertension and back/neck pain. However, third 
cluster is linked to more comorbidities, including 
mental disorders, insomnia, anaemia, diabetes, and/or 
set of different cardiovascular disorders (arrythmia, 
stroke, chronic heart disease and chronic heart 
failure), among others.  

When using k = 5, k-means (figure 4B) distinguish 
patients in back/neck pain, back/neck pain plus 
hypertension, anxiety with half of them experiencing 
back/neck pain, hypertension, and healthy clusters. 
LCA (figure 5B) distinguish patients among 
hypertension and back/neck pain plus many other 
comorbidities; hypertension and back/neck pain, but 
less presence of other comorbidities; back/neck pain, 
combined with mental disorders and/or allergy; 
hypertension; and healthy clusters. 

When using k = 6, k-means (figure 4C) stratify 
patients into back/neck pain, healthy, anxiety, 
obesity, hypertension and back/neck pain, and 
hypertension clusters. LCA results (figure 5C) show: 
a cluster with prevalence of hypertension followed by 
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back/neck pain, obesity and diabetes; second cluster 
with hypertension followed by back/neck pain, plus 
different cardiovascular disorders, anaemia and/or 
diabetes; third cluster with back/neck pain followed 
by hypertension, plus allergy, mental disorders and/or 
obesity; forth cluster with back/neck pain and low 
presence of other comorbidities; fifth cluster with 
hypertension followed by back/neck pain, and low 
occurrence of other comorbidities; and last, a 
generally healthy cluster. 

 

Figure 4: Distribution of comorbidity patterns within a 
cluster using K-means: A) k = 4, B) k = 5, and C) k=6. 
Number of patients in each cluster is described. External 
variables not included in the cluster algorithm: smoke, rural 
area, SES, male and age groups. Abbreviations: SES, urban 
socioeconomic status where >3 are more deprived areas. 

3.2 External Evaluation 

In k-means graphs, we included the external features 
along with the 10 most prevalent comorbidities 
(figure 4). In k = 4, clusters 1 and 4 are older patients. 
These clusters were annoted as healthy and 
hypertension groups, respectively. Cluster 3, the 
anxiety group, has the lower proportion of men. 
When k = 5, cluster 4 had the oldest population, 
followed by cluster 5 and 2 (identified as 
hypertension, healthy and hypertension plus 
back/neck pain, respectively). Cluster 3, once again 
anxiety group, had the lowest proportion of males. 
When k = 6, clusters 3 and 4 (anxiety and obesity, 
respectively) had lower male patients, and clusters 1 
and 4 (back/neck pain and obesity, respectively) tend 
to have younger patients. 
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Figure 5: Distribution of comorbidity patterns within a 
cluster using LCA: A) k = 4, B) k = 5, and C) k=6.  
Black horizontal lines represent the prevalence of the 
comorbidity before the clusterization. Abbreviations: Bhp, 
benign prostate hypertrophy; Chd, chronic heart disease; 
Ckd, chronic kidney disease; Copd, chronic obstructive 
pulmonary disease; Gbs, gall bladder stone; Gerd, 
gastroesophageal reflux disease; Ibd, inflammatory bowel 
disease; Ovd, other vessel diseases; Substance, substance 
abuse. 

4 DISCUSSION 

Cluster analysis is a type of unsupervised learning 
methods and therefore, we cannot test in absolute 
terms whether the number of groups and the obtained 
grouping is accurate or the most optimal. The general 
practice is to include more than one method and to 
compare the subsequent solutions. 

In terms of the limitations of each cluster method, 
we have observed that large datasets imply 
difficulties in calculating the internal validation 
methods based on distance matrix in K-means, and 
larger running times in LCA. In terms of 

interpretability, results from k-means are easier to 
interpret than LCA. Distinct clusters are assigned to 
patients, and therefore, highly distinguishable groups 
are created. Despite this, soft classification by LCA 
allows us to detect more complex patterns that 
possibly represents better the behaviour and 
interaction of comorbidities among the OA patients. 

Comparing the composition of the different 
clusters across both methods, similar clusters can be 
found: a healthy group, patients with high prevalence 
of back/neck pain and hypertension (alone or 
combined), mental disorders (i.e., anxiety and/or 
depression), etc. Observing the evolution of clusters 
when incrementing the k, higher number of groups in 
k-means seems to enhance patients’ differences. But 
in LCA, clustering patients in 6 different groups 
obscures the interpretability rather than show more 
hidden patterns. In this method, our proposed 
optimum number of stratification is 5, where we can 
distinguish a cluster of patients with high complex 
comorbidities profiles (cluster 1: hypertension and 
back/neck pain plus many other comorbidities) from 
a cluster of patients with hypertension and back/neck 
pain but less prevalence of other complications 
(cluster 2), and from patients with not only back/neck 
pain but also mental disorders (cluster 3). 
Simultaneous comorbidities exacerbate pain and 
diminish the physical function (Calders and Van 
Ginckel 2018). Differentiation of individuals from 
cluster 1 and 2 leaded us to identify a sub-group of 
patients that potentially require further supervision. 
To confirm that, next steps will include an evaluation 
of the obtained clusters with an external outcome 
such as 10-years death or a change in a quality of life 
index.  

Another limitation to note is that this work 
included all OA patients regardless of site. The 
location of the affected joint (e.g., OA in knee or hip) 
might have a different impact in the clinical profile of 
OA patients (and therefore their respective 
comorbidity patterns). Thus, examination of site-
specific OA cohorts, such as knee OA, is part of the 
on ongoing work.  

5 CONCLUSIONS 

In this work, patterns of co-morbidities within a large 
OA population were examined and sub-groups 
identified. We have shown some of the challenges 
and strategies of unsupervised machine learning 
applied to a large dataset from a representative 
primary care database, including lack of convergence 
of several methods in K-means and the alternatives to 
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overcome it, large running times in LCA, and the 
complexity of interpreting the results. 
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