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Abstract: Artefacts are a common occurrence in microscopic images and scans used in life science research. The 
artefacts may be regular and irregular and arise from different sources:  distortions of the illumination field, 
optical aberrations, foreign particles in the illumination and optical path, errors, irregularities during the 
processing and staining phases, et cetera. While several computational approaches for dealing with patterned 
distortions exist, there is no universal, efficient, reliable, and facile method for removing irregular artefacts. 
This leaves life scientists within cumbersome predicaments, wastes valuable time, and may alter the analysis 
results. In this article, the authors outline a systematic way to introduce synthetic irregular artefacts in 
microscopic scans via Perlin Noise and Voronoi Diagrams. The reasoning behind such a task is to produce 
pairs of “successful” and manufactured “failed” image counterparts to be used as training pairs in an artificial 
neural network tuned for artefact removal. At the moment, the outlined method only works for grayscale 
images. 

1 INTRODUCTION 

Numerous differing sub-cellular structures can be 
mimicked via computation (Abdolhoseini, Kluge, 
Walker & Johnson, 2019). Various such approaches 
have recently been fathomed (for a thorough review, 
refer to (Ulman, Svoboda, Nykter, Kozubek & 
Ruusuvuori, 2016)). Within all these methods, two 
steps fall as being a commonality in all: firstly, the 
desired image is realised with objects of wanted 
number and shape, and secondly, background and 
foreground textures are created, which are later added 
to the respective ideal image to create a realistic noisy 
representation (Abdolhoseini et al., 2019).  
Abdolhoseini et al. demonstrated a neuron image 
synthesiser in which Perlin noise (Perlin, 1985) and 
Gaussian mixture models (GMM (Reynolds, 2009)) 
were implemented, and akin characteristics in (Ulman 
et al., 2016) were utilized. Deformed elliptical shapes 
are created with spline interpolation (Unser, 1999) for 
single nuclei. Following this, foreground and 
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background textures are created via Perlin noise 
(Perlin, 1985). Xiong et al. generated images of 
healthy Giemsa-stained red blood cell populations 
using deformation models and unbiased average 
shapes (Xiong, Wang, Ong, Lim & Jiang, 2010). 
Diffeomorphic demons (Vercauteren, Pennec, 
Perchant & Ayache, 2007), a non-parametric image 
registration, is used to deploy the model which maps 
one image to another. Successively, using histogram 
distribution models to conceive a proper texture, 
colour models were learned. Peng et al. (2009) 
applied an instance-based technique to model the 
shape space of 2D images of Hela cell nuclei using 
kernel distribution (Wasserman, 2004), but with this 
method, some of the simulated shapes do not match 
the original images, and the method requires large 
training datasets (Abdolhoseini, 2019). 

Nonetheless, imaging artefacts vary in 
abstractness and reason for appearance. They mainly 
can be classified into three categories. Firstly, 
regularly patterned artefacts appear due to 
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Figure 1: Examples of microscope scans with actual (arrowheads in a) and synthetically generated (arrowheads in b, c and d) 
artefacts. The artefacts in b, c and d are generated using the method described in Section 2. 

unevenness within the illumination field during 
scanning. The centre is brighter than the peripheral 
area around it (vignetting), which leads to a grid-like 
structure (seams) after the reconstruction. There are 
methods for removing this type of distortion; 
however, they either require recording the 
illumination field before the experiment or rely on 
computed estimates, leading to biases and errors in 
the result. Contrastingly, irregular artefacts (Figure 
1a) have no method for reliable removal. They occur 
due to foreign particles or defects within the optical 
path, or form due to unstable tissue processing 
conditions, especially in areas with non-specific 
staining. These latter types are hard to predict and 
treat and are thus of most interest. The outlined 

innovative method for the generation of synthetic 
failed microscope scans focuses on imitating them.  

In this paper, we utilise Perlin Noise and Voronoi 
diagrams through non-canonical means of original 
use for the sake of replicating the abstract shape and 
appearance of optical path artefacts in microscope 
scans. Subsequently, an aptly sized dataset, consisting 
of successful and unsuccessful microscope scans, can 
be produced due to both algorithms’ mass versatility 
and leniency (their ability to have various parameters 
altered for specific desired outcomes). Generating 
such a dataset is paramount. The large dataset will be 
appropriate as input data to train a neural network to 
remove such artefacts in natural microscope scans. 
Thus, the authors have explored and identified a 
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method for realising such artificial artefacts on 
microscope scans within this article. The rest of the 
article is organised as follows: Section 2 outlines the 
method in detail, Section 3 focuses on the results and 
their outcome, Section 4 highlights the technique’s 
versatility and leniency, and Section 5 discusses the 
results’ implications. A note of caution, in the 
subsequent paragraphs, a “cell” should be understood 
as “Voronoi cell” and not the biological entity. 

2 METHOD 

2.1 Voronoi Generation Mixed with 
Perlin Noise 

Perlin noise and Voronoi diagrams have previously 
been used in parallel for achieving very concentrated 
and desired results (e.g., generating 3D digital 
phantoms of colon tissue (Svoboda, Homola & 
Stejskal, 2011) and generation of infinite virtual 
terrain, a common use case (Choros & Topolski, 
2016)). 

This step uses Voronoi diagrams, a data structure 
extensively investigated in computational geometry 
(Ferrero, 2011; Berg, Krevald, Overmars & 
Schwarzkopf, 1997), and Perlin noise, a type of 
gradient noise (Perlin, 1985; Bae, Kim, Kim, Park, 
Kim, Seo & Lee, 2018), coherently to create patches 
resembling image artefacts. The authors utilized 
Voronoi diagrams with the Euclidean distance 
calculating function. However, diverse desired results 
may be achieved using other distance metrics. A few 
additional parameters were deployed to aid in 
increasing the variance and prospect in results: these 
parameters are “noisiness”, “excluded cells”, and 
“desired cell(s)”, where “noisiness” affects the 
noisiness of the Voronoi diagram (higher values 
results in smaller artefacts), “excluded cells” defines 
what parts of the Voronoi diagram will be removed 
and “desired cell(s)” defines what patch(es) will be 
used as the final artificial artefact(s).  

Firstly, we define the number of cells (higher 
values produce better results but increase the number 
of computations), their locations (which are 
arbitrarily chosen) and an “excluded” value (a label 
with a value between 0 and 1, can be defined twice). 
The “desired cell(s)” value is defined later since 
potentially the “desired cell(s)” could be excluded if 
they are above, or below if “excluded cell(s)” is 
defined twice, the “excluded cell(s)” value. Also, the 
authors constrained the maximum and minimum 
value of each Voronoi cell’s x and y coordinates to 

enhance efficacy, refer to Table 1 for more 
information.  

Secondly, we iterate through each pixel within the 
image and identify the closest points to each cell 
through calculating their Euclidian distance as thus: 

 𝑑ሺ𝑝, 𝑞ሻ  ൌ √∑ ሺ𝑞 െ 𝑝ሻଶ
ୀ                  (1) 

where n defines the number of dimensions, and p and 
q represent the points within Euclidean space. 
Moreover, the closest points for the chosen cell are 
computed using the following formula: 

  𝑅 ൌ  ሼ𝑥 ∈ 𝑿 | 𝑑ሺ𝑥, 𝑃ሻ   𝑑ሺ𝑥, 𝑃ሻ  ∀ 𝑗 ് 𝑘ሽ (2) 

such that X is a metric space with the distance 
function d, (2); K is a set of indices and (Pk) k∈K is 
a tuple of non-empty subsets within the space X; and 
Rk, which is associated with the site Pk, is the set of 
all points within X whose distance to Pk is not higher 
than their distance to the remaining sites Pj Such that 
j is any index that differs from k.  

Thirdly, once the closest points are decided and 
each Voronoi cell is calculated, we normalise each 
distance value by dividing them by the maximum-
distance value, allowing the distance values to range 
between 0 and 1. Following this, a “noisiness” value 
is generated (the value is a floating point number and 
ideally is below 2.0), then a Perlin noise value is 
generated for each pixel, which then is normalised to 
a value between 0 and 1 by dividing each value by 2 
and adding 1. 

Mathematically, Perlin noise is defined as: 

  𝑝ሺ𝑥, 𝑦ሻ ൌ   ∑   ሺ௫,௬ ሻ

ఊ
ିଵ
ୀ ,   𝑥 ൌ  𝛽𝑥, 𝑦 ൌ  𝛽𝑦    (3) 

where n defines the number of wanted ‘octaves’, p(.) 
represents a simple Perlin noise function defined by 
Perlin (1985), 𝛾  and 𝛽  are parameters that regulate 
and control the octave magnitude and noise 
smoothness. The higher 𝛽 is, the less smooth is the 
noise (1), refer to Table 1. 

Fourthly, we combine each normalised distance 
value with its respective Perlin noise value and the 
noisiness value through utilisation of equation (4):  

                      𝑓 ൌ  𝑣  ሺ𝑛 ∗ 𝑝ሻ                     (4) 

where 𝑣  is the normalised distance value, n is the 
noisiness parameter and p is the generated and 
normalised Perlin noise value, refer to Table 1.   
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Figure 2: Examples of images produced in the intermediate steps of the algorithm: a. Result of 2.1; b. Result of 2.2; c. Result 
of 2.2 after repetition. 

Finally, we exclude all the undesired cells by 
checking whether their final normalised value is ≥ 
“excluded cell(s)” (excluded if the expression 
evaluates to TRUE). In this article, cells that were too 
light, i.e., cells which have become non-visible and/or 
do not resemble the shading of a natural artefact were 
removed. The “excluded cell(s)” value allows the 
programmer to control the accepted shading of their 
artefact. Therefore, the criterion for estimating if a 
cell is excluded can be manipulated, depending on the 
desired outcome: if too light and dark artefacts are not 
desired, then normalised values ≥ “excluded cell(s)” 
value one and normalised values ≤ “excluded cell(s)” 
value two will be excluded. Then, we multiply all the 
non- removed cells’ final distance values by 255 and 
set each Voronoi cell’s pixel value to the final result, 
respectively. Also, a “desired cell(s)” value (which is 
between 1 and the number of cells, excluding any 
cells that have been removed) is generated and it will 
determine what cell(s) will be used as the final 
artefact(s). In the examples used in this article, the 
“desired cell(s)” value was manually chosen, but it 
can be assigned randomly. 

2.2 Blended (Optionally Can Be 
Repeated) 

Within this step, we merge the original successful 
microscope scan with the image generated in 2.1. 
This allows an image with lighter Voronoi cells, 
which fade naturally into the image to be generated. 
This is essential as the periphery of actual artefacts 
shows similar seamless fading into the microscope 
scan. Moreover, the central color of the artefact is 
lightened as well, which is vital as ideally the artefact 
should not be too dark.      

Both images are combined using equation (5): 

           𝑚ሺ𝐴, 𝐵ሻ ൌ   
ଵ

ଶ
𝐴  

ଵ

ଶ
𝐵                  (5) 

where A represents a two-dimensional matrix of the 
pixel values of the successful microscope scan, and B  
represents a two-dimensional matrix of the pixel 
values of the image from 2.2. 

 

 

 

BIOIMAGING 2022 - 9th International Conference on Bioimaging

120



Table 1. Parameters used to generate the synthetic failed microscope scan demonstrated in Figure 1b. 

Perlin noise n 𝜸 𝜷 scale Other parameters (Voronoi) 

2.1 5 0.5 2.0 
(image width, 
image height) 

C = 500, CL = random (x = 112-1957, y = 
712-1877), EC = 0.85, DC = 183 & 186 

 

Discretionally, this step can be repeated where the 
newly blended image from this step is blended again 
with the original successful microscope scan, 
depending on what type of artefacts are wanted. If the 
programmer wants to generate lighter artefacts that 
are more subtle in appearance, then this step should 
be repeated to achieve such an artefact. The authors 
have repeated this step to illustrate what artefacts are 
generated from such an approach (Figure 1a). Figure 
1d shows artefacts from only one iteration of this step; 
they are darker and more visible, generally the better 
approach in most cases. 

2.3 Extrapolation 

Finally, for the final result generation, we use the 
“desired cell(s)” parameter, defined in 2.1, to extract 
the wanted cells from the image generated in 2.3 onto 
the successful microscope used initially. Specifically, 
this is achieved by iterating over the Voronoi section 
of the image from 2.3 and checking whether it is part 
of the desired cell(s). If it is, we alter the pixel value 
of the original image to that of the one from 2.3. Upon 
completion artefacts analogous to those in Figure 1b 
are created, depending on what values were inputted 
for the parameters and if 2.2 was repeated. Artefacts 
in Figure 1c and 1d were generated without repetition 
of 2.2. 

3 RESULTS 

The described algorithm generates a synthetic 
artefact(s) on a successful microscope scan, as shown 
in “Figure 1b and 1c”. The perceptual similarity 
between both artefacts, artificial and “natural”, 
pertaining to human-eye estimation, is high and 
desirable: the artefacts synthetically generated within 
Figure 1b, 1c and 1d naturally blend into the image 
without seeming far too artificial, i.e., a massive 
colour-contrast difference between the exterior of the 
artefact and the pixels around it, is not present, 

allowing the artefact to fade into the image and to 
seem non-artificial. Also, the artefact(s) is aptly sized 
and has the necessary shaping mechanism. The 
method does not force the artefact(s) to be 
specifically shaped; therefore, with every artefact a 
somewhat abstract/realistic shape can be generated, 
as seen in Figure 1b and 1c. This proves to be useful 
as actual artefacts cannot be identified as having 
specific shapes. Moreover, the locations and quantity 
of artefacts can be controlled, meaning one successful 
input image can be utilised to generate numerous 
successful microscope scans with artificial artefacts. 
Also, artefacts of distinctive shade can be generated 
through repetition or non-repetition of step 2.2, as 
seen in Figure 1b when compared to Figure 1c and 
1d. 

4 VERSATILITY & LENIENCY 

The potency laid in a programmer’s hand regarding 
achievable artefacts via the authors’ method is 
immense, since the method supplies the programmer 
with various parameters that can be altered for 
attaining specific results, depending on what is 
desired. For instance, the Perlin noise function 
(Perlin, 1985) has over six parameters and directly 
affects the size and shade of artefacts, enabling the 
programmer to alter the respective Perlin noise 
parameters to achieve lighter artefacts with smother 
transitions or darker artefacts with less-smooth 
transitions.  

Furthermore, by manipulating the number of 
Voronoi cells the programmer can alter effectively 
the shape and size of the generated artefacts. The 
function used for calculating the distance between 
Voronoi points can be altered as numerous distance-
calculation functions exist (e.g., Euclidean (Gomathi 
& Karthikeyan, 2014; Ranjitkar & Karki, 2016) and 
Manhatton distance (Gomathi & Karthikeyan, 2014; 
Ranjitkar & Karki, 2016)). This enables further 
manipulation opportunities for the programmer; the 
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noisiness parameter allows to increase the roundness 
of each artefact and their size, which proves to be as 
artefacts vary in roundness and size.  

Lastly, the parameters ‘excluded cell(s)’ and 
‘desired cell(s)’ allow the programmer to deduct a 
chosen proportion of cells. This controls the 
generation of certain types of artefacts (lighter 
artefacts, darker artefacts or artefacts of generic 
shade). Visually appropriate cells can be selected 
manually or automatically. The latter increases the 
speed of artificial-failed microscope scan generation.   

5 CONCLUSION 

Within this article, the authors have described a 
method for synthetic generation of “failed” 
microscope scans for later use as augmented input 
data within a neural network. The method outlined 
within this article is promising as the generated and 
the actual artefacts are very similar in visual 
appearance. The artificial image distortions created 
with this method naturally blend in microscope scans. 
Furthermore, the method is easy to use and is 
exceptionally versatile and lenient, i.e., it provides the 
programmer with numerous parameters which all can 
be slightly or massively tweaked to achieve 
distinctive results. Finally, due to the method’s 
versatility and leniency, it can synthetically generate 
numerous “failed” microscope scans by only being 
provided with one successful microscope scan, 
allowing massive datasets to be produced for training 
an artificial neural network to eliminate these 
tiresome artefacts. 

Although the quandaries above are intimidating to 
the approach regarding restoration, the authors within 
this article have developed and outlined the 
foundation for solving this reoccurring and unabating 
problem. The final solution will be achieved through 
using a dataset generated from collecting numerous 
and various successful microscope scans and their 
synthetically generated failed counterparts, using the 
method described within this article.  
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