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Abstract: Physiological data have shown to be useful in tracking and differentiating cognitive processes in a variety of 
experimental tasks, such as numerical skills and arithmetic tasks. Numerical skills are critical because they 
are strong predictors of levels of ability in cognitive domains such as literacy, attention, and understanding 
contexts of risk and uncertainty. In this work, we examined frontal and parietal electroencephalogram signals 
recorded from 36 healthy participants performing a mental arithmetic task. From each signal, six RQA-based 
features (Recurrence Rate, Determinism, Laminarity, Entropy, Maximum Diagonal Line Length and, Average 
Diagonal Line Length) were extracted and used for classification purposes to discriminate between 
participants performing proficiently and participants performing poorly. The results showed that the three 
classifiers implemented provided an accuracy above 0.85 on 5-fold cross-validation, suggesting that such 
features are effective in detecting performance independently from the specific classifiers used. Compared to 
other successful methods, RQA-based features have the potential to provide insights into the nature of the 
physiological dynamics and the patterns that differentiate levels of proficiency in cognitive tasks. 

1 INTRODUCTION 

Numerical skills have shown to be strong predictors 
of attention, literacy, and decision-making (Merkley 
& Ansari, 2016), as well as of socioeconomic status 
and planning skills (Fernandez & Liu, 2019). 
Therefore, for being able to identify an individual’s 
performance on numerical skills – and consequently 
other cognitive skills and abilities – it is important to 
reliably track processes connected to the development 
of numerical skills and their related performance. 
Tracking such processes might allow us to detect 
when an intervention is needed, helping individuals 
who have difficulties in tackling numerical problems, 
as well as improving socio-economic status, 
unemployment, and other skills connected to 
numeracy (Fernandez & Liu, 2019).   

Past research has shown that performance in 
several skill domains can be effectively tracked using 
physiological signals such as electrocardiograms, 
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galvanic skin response, and electroencephalograms 
(Sharma et al., 2020). Processes involved in 
mathematical tasks can be effectively monitored 
using electroencephalograms (EEG; Río et al., 2019). 
EEG tracks the electrical activity of specific 
electrodes placed on the subject's scalp, the signal is 
used to extract features using linear methods such as 
the time-frequency distribution, the fast Fourier 
transform, and the autoregressive method (Al-
Fahoum & Al-Fraihat, 2014). Furthermore, EEG 
signals have been used for classification tasks using 
deep learning models such as long short-term 
memory neural networks (Ganguly et al., 2020). Deep 
learning models overall yield high accuracy but tend 
to not provide insights into the nature of the signal 
and the patterns differentiating groups.  

In the current study recurrence quantification 
analysis (RQA) was used to extract features from the 
EEG signal of participants who either performed well 
or poorly on a mental arithmetic task. RQA is robust 
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to noise and has the added advantage that it is based 
on recurrences and self-similarity. Consequently, it 
does not require data transformations or mathematical 
assumptions (Zbilut, Thomasson, & Webber 2002). 
Using RQA, instead of the time-frequency 
distribution, fast Fourier transform, autoregressive 
method, or long short-term memory neural networks, 
might not only result in extracting effective features 
for machine learning purposes but also in obtaining 
insights about the nature of the signal itself and the 
patterns it contains.  

RQA-based features have shown to be effective 
for hypothesis testing purposes and for training 
machine learning models (Hou et al., 2019; Lyby et 
al., 2019). For example, RQA-based features, 
combined with machine learning models, have been 
used successfully to detect drowsiness and epileptic 
seizures (Gruszczyńska et al., 2019; Shabani, Mikaili, 
& Noori, 2016). Taken together, the evidence 
supports the idea that RQA might effectively capture 
the complexity of biological processes, which are 
often not linear (Zbilut & Weber 2008). Nevertheless, 
RQA-based features, combined with machine 
learning, have so far not been used yet to detect 
differences in performance on a cognitive task. 

The current work aims to explore the possibility 
of using RQA-based features to track performance in 
cognitive skills within the domain of numeracy. The 
hypothesis is that the recurrent structures in the EEG 
signals, reflected by the RQA-based features, will 
differ between participants performing proficiently 
and participants performing poorly in the task. We 
will make use of the RQA-based features extracted to 
perform a binary classification task to discriminate 
proficient and non-proficient participants. 

2 BACKGROUND AND THEORY 

2.1 Neurophysiology and Numeracy 

Mathematical skills are rooted in human capabilities 
to deal with space, numbers, and time. These skills 
are argued to stem from a non-linguistic ability that 
appeared during the late Palaeolithic and underwent 
development throughout human history (Amalric, & 
Dehaene, 2016; Wildgen, 2020). 

Evidence from cognitive neuroscience shows that 
brain regions involved in mathematical problems 
such as the bilateral intraparietal and prefrontal areas 
are present not only in humans but also in non-human 
animals, such as monkeys (Cantlon & Brannon, 
2007). Similar brain areas seem to be activated by 
mathematical tasks belonging to different domains 

such as topology, analysis, algebra, and geometry. 
These brain areas include the bilateral inferior 
temporal regions, bilateral intraparietal sulci, 
cerebellum, and several regions of the prefrontal 
cortex (dorsolateral, bilateral, superior, and mesial) 
(Amalric, & Dehaene, 2016). Different mathematical 
tasks involve high activity in the prefrontal and 
parietal areas during their execution. Therefore, EEG 
signals obtained from these areas are likely to be of 
interest when investigating the levels of mathematical 
abilities.  

2.2 Recurrence Quantification Analysis 

2.2.1 RQA and Its Specifications 

Performing RQA requires a phase space 
reconstruction (PSR) that is used to unfold the 
dynamics of the signal. PSR is based on the setting of 
a few parameters, such as the delay and the number 
of embedding dimensions.  

2.2.2 Phase Space Reconstruction 

Phase space reconstruction is needed to define the 
temporal evolution and behavior of the signals before 
one can proceed with the use of RQA on continuous 
data. One method to reconstruct the time-series 
behavior in a multidimensional phase-space form is 
to use the time-delay embedding (Takens, 1981) that 
is based on four main parameters: the delay (τ), the 
number of embedding dimensions (D), the radius (r), 
and the rescaling norm (Wallot & Leonardi, 2018).  

The delay specifies the number of time lags to 
shift the copies of the signal, while the number of 
embedding dimensions refers to the number of 
dimensions (i.e., time-delayed copies) needed to 
unfold the higher-dimensional dynamics that 
characterize the time-series (Wallot, 2017). The 
radius and the rescaling norm refer respectively to the 
interval that defines two points as recurrent and to the 
phase-space rescaling of the distance matrix. The 
choice of the aforementioned parameters depends on 
the time-series typology, its characteristics, and the 
use of specific methods to obtain the optimal values 
when considering the embedding dimensions and the 
delay parameters. 

The optimal delay value is calculated using the 
average mutual information function, which provides 
the lag representing the first local minima after which 
the average mutual information remains generally 
quite constant (Wallot, 2019). The number of 
embedding dimensions is defined using the false 
nearest-neighbor function, which computes the 
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optimal number of dimensions considering the 
number of delays selected. Conversely, the radius and 
the norm are chosen according to the level of noise in 
the data and the magnitude of the values composing 
the time series. Generally, the radius is set between 
0.01 and 0.05 while the norm has three possible 
options: Euclidian, Supremum, and Manhattan 
(Marwan et al., 2007). Most important in setting the 
norm, however, is keeping the norm constant when 
comparing different time-series (Wallot & Leonardi, 
2018). 

2.2.3 Recurrence Plot and Features 

The parameters listed in the previous sections are 
used as input to create the Recurrence Plot (RP; 
Figure 2 and 3). The RP provides a visual 
presentation of the patterns, repetitions, and dynamics 
contained in the time-series under analysis. 

The RQA-based features are directly extracted 
from the patterns present in the RP. For the current 
study we extracted those features also used in 
previous studies (Gruszczyńska et al., 2019; Shabani, 
Mikaili, & Noori, 2016; Turianikova et al., 2015): 

 Recurrence Rate (RR): The likelihood of 
recurrence of a specific state in the signal. 
The recurrence rate is obtained by dividing 
the number of recurrent elements, 
represented by the points in the plot, by the 
RP size.  

 Determinism (%DET): The percentage of 
diagonal recurrent points lying adjacently. 

 Laminarity (%LAM): The percentage of the 
number of recurrent elements arranged 
vertically on the RP. 

 Average Diagonal Line (ADL): The mean 
length across all the diagonal lines present in 
the RP. 

 Maximum Diagonal Line (MDL): The length 
of the longest diagonal line present in the 
RP. 

 Entropy (ENT): A feature based on the 
frequency distribution of the diagonal lines. 
The value obtained in this feature is directly 
proportional to the complexity of the signal 
analyzed. For example, uncorrelated noise 
has a low value of ENT. 

Since RQA considers self-similarity within a 
single time-series, these features concern the points 
on one side of the line of identity (the diagonal line 
dividing the RP in two). The features extractable from 
the RP are not limited to the ones listed above. For 
example, other features include, but are not limited to, 

trapping time and trend. Webber & Marwan (2015) 
provide further information about additional features 
and detailed explanations of the RQA equations. 

3 METHODS 

3.1 Dataset  

For our study, we used the publicly available dataset 
on Physionet, the “Electroencephalograms during 
Mental Arithmetic Task” dataset (Zyma et al., 2019). 
This dataset contains 36 healthy participants that 
performed a mental arithmetic task for 4 minutes.  

According to their performance, Zyma et al. 
(2019) assigned the participants to two different 
groups: participants who performed well were 
assigned to group “G” (standing for good) and those 
who performed poorly were assigned to group “B” 
(standing for bad). According to the dataset on 
Physionet, 10 participants were assigned to group “B” 
(M calculations = 7 per minute, SD = 3.6) while group “G” 
had 26 participants (M calculations = 22 per minute, SD = 
7.3).  

The data were recorded using a 23 EEG channel 
system where the recording sites were defined 
according to the international 10/20 scheme; each 
channel had a 500 Hz sample rate. The signal was 
filtered with a low pass filter (45 Hz) and a power 
notch filter (50 Hz). The data are artifact-free and 
ready for analysis purposes. More information about 
the sample and the task can be found in the original 
work by Zyma et al. (2019).  

3.2 Workflow 

The workflow followed in this work is comparable to 
the one used in other works that extracted RQA-based 
features from physiological signals, and specifically 
from EEG signals (Shabani, Mikaili, & Noori, 2016). 

In order to proceed with the RQA-based features 
extraction, we focused on four electrodes for our 
analyses purposes: the F7, Pz, P4, and Fp1. These 
electrodes were adopted in a previous study using the 
same dataset to train a long short-term memory neural 
network and provided the highest accuracy on a 
classification task to detect the signal specific to the 
arithmetic task (Ganguly et al., 2020). Furthermore, 
the use of pre-selected electrodes, instead of all the 
ones present on the EEG cap, was successfully 
adopted in other studies using RQA-based features 
combined with machine learning techniques 
(Gruszczyńska et al., 2019). 
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After having selected the electrodes of interest, 
the RQA-based features were extracted to train a 
Support Vector Machine (SVM), a Random Forest 
(RF), and a Gradient Boosting Classifier (GBC). 
Before training the classifiers, we selected the five 
most relevant features, using the Extra Trees method 
(Sharma, Giri, Granmo, & Goodwin, 2019), and 
resolved the class imbalance present in the dataset 
using the Synthetic Minority Oversampling 
Technique (SMOTE) (Chawla et al., 2002). These 
processes were implemented to reduce the likelihood 
of overfitting (Ying, 2019).         

Figure 1 gives the overview of the workflow 
followed in this study, which is similar to the one 
adopted by Borowska et al. (2018). 

 
Figure 1: An overview of the workflow adopted for this 
study. 

3.3 RQA-based Features Extraction 

Before extracting the RQA-based features, the mutual 
average information function and the false nearest- 
neighbor function were used to define the optimal 
number of dimensional embedding and delays. The 
functions were run in R using the Tserieschaos 
package (Di Narzo, 2019) and the nonlinearTseries 
package (Garcia, 2021). Such functions were applied 
to a few subjects across the two groups and to 
different electrodes to verify if there was an 
approximate constant optimal value across electrodes 
and subjects. The signals analyzed had a number of 
values for delay generally ranging between 4 and 5, 
while the embedding dimensions had a value between 
6 and 8. Therefore, the delay value was set to 5 and 
the number of embedding dimensions to 7 when 
performing RQA on all the data.  

These parameters were used to create the RP 
together with a radius of 0.05, which is generally used 
for physiological data (Wallot, 2017), and Supremum 
as norm, which is the default parameter in the 
Pyunicorn library (Donges et al., 2015). The 
Pyunicorn library, in Python, was used to extract the 
RQA-based features and to visualize the RPs. To 
slightly reduce the computational power required by 
RQA, we used the initial 30,000 data points out of 
31,000 composing the original dataset (Zyma et al., 
2019); 30,000 data points correspond approximately 
to 3.87 minutes of recording out of a total of 4 
minutes.  

As conveyed in Figure 2 and Figure 3, the RP 
offers preliminary visual information of the 
differences between participants belonging to the two 
groups. 

 

Figure 2: RP illustrating the F7 electrode signal for a 
participant of group “G” (1,000 data points). The x and y 
axes represent the data points composing the signal. 

 

Figure 3: RP illustrating the F7 electrode signal for a 
participant of group “B” (1,000 data points). The x and y 
axes represent the data points composing the signal.  

Upon visual inspection, participants who performed 
well on the task have an RP characterized by a higher 
degree of complexity, compared to those performing 
poorly. This visual information might provide early 
insights into the differences between groups and how 
their physiological signals may affect RP’s outlook.  
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3.4 Features Selection 

Each electrode selected for this work (F7, Pz, Fp1, 
and Pz) was used to extract the six RQA-based 
features (RR, %DET, %LAM, MDL, ADL, ENT). 
The final dataset contained 24 features obtained by 
multiplying the six RQA-based features times the 
four electrodes. To avoid overfitting and to select the 
most important features, the Extra Trees method 
(Sharma, Giri, Granmo, & Goodwin, 2019) was 
implemented for features selection. The Extra Trees 
method was also used to obtain more insights into 
which electrodes and features are likely to be the most 
important to track cognitive performance and 
differences between groups. After having performed 
the Extra Trees method on the data, we selected the 
top 5 features out of the 24 initial ones that were 
extracted. More specifically, as shown in figure 4, the 
features used as input for the classifiers were ADL for 
electrode F7, RR for electrode F7, %LAM for  
electrode F7, %LAM for electrode Pz, and RR for 
electrode Fp1. The features selection process was 
performed to reduce potential overfitting especially 
considering the limited size of the dataset used for this 
work.  

 

Figure 4: The features selected according to their level of 
contribution.  

After having selected the most relevant features, 
the class imbalance present in the dataset (10 subjects 
labeled as “B” and 26 labeled as “G”), was solved 
using the SMOTE function. Eventually, the final 
dataset fed to the classifiers was composed of 5 
features and 52 instances of which 36 were original 
and 16 synthetically created. 

3.5 Classifiers Specifications 

Multiple classifiers were used to confirm the 
effectiveness of using RQA-based features to detect 
cognitive performance. For this reason, an SVM, an 
RF and, a GBC were used for classification purposes. 
The targets of the classification were group “G” and 
group “B”, respectively encoded as 1 and 0.  

The hyperparameters selection was performed 
using a randomized search on the 3 classifiers. The 
hyperparameters adopted after having performed the 
randomized search can be found in the following link: 
https://osf.io/wtxpv/?view_only=ab98b469151a48a1
a91d221dc6596429. 

4 RESULTS 

The results obtained using the 3 classifiers show a 
performance above 0.85 accuracy using 5-fold-cross 
validation. In order to verify that the performance was 
not due to the presence of synthetic data, the 
classification task was also performed on the 
imbalanced dataset containing 36 instances. The 
results suggest that, even in the case of an imbalanced 
dataset, the classifiers managed to perform 
reasonably well on this specific task. A more detailed 
overview of the performance obtained by each single 
classifier using both the imbalance and balance 
datasets can be visualized in Table 1. 

Table 1: The accuracy scores obtained using the original 
imbalanced dataset and the balanced dataset after resolving 
the class imbalance. 

 Imbalanced 
dataset accuracy 

Balanced 
dataset 

accuracy
RF 0.77 

(SD = 0.07) 
0.89 

(SD = 0.09)
SVM 0.75 

(SD = 0.13) 
0.90 

(SD = 0.06)
GBC 0.85 

(SD = 0.12) 
0.87 

(SD = 0.04)

The use of the classifiers on the imbalanced 
dataset seemed to confirm that the three classifiers 
adopted in this study still performed above chance 
given the information provided by the RQA-based 
features. 

5 DISCUSSION 

This work aimed to investigate whether RQA-based 
features could be used to successfully detect group 
differences in a mental arithmetic task. We 
hypothesized that the dynamics of the EEG signals 
can differentiate participants with different levels of 
numerical proficiency. The obtained results confirm 
the hypothesis that the RQA-based features extracted 
from the signal could discriminate effectively 
between the two groups in a machine learning binary 
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classification task. These results are in line with other 
studies that combined machine learning and RQA-
based features to detect epilepsy, drowsiness, and 
preterm birth (Borowska et al., 2018; Gruszczyńska 
et al., 2019; Shabani, Mikaili, & Noori, 2016). Given 
the results of our study, it is reasonable to think that 
RQA has the potential to detect or differentiate 
performance in other cognitive domains. For 
example, RQA-based features might be adopted in 
the context of training and when comparing experts 
and novices on a domain-specific task. To this extent, 
there may be features showing convergence between 
novices and experts after a period of training. Future 
studies might investigate if our findings can be 
extended to skills belonging to other cognitive 
domains. 

The main contribution of this study consists in 
providing insights into the nature of the signal 
characterizing the two groups. Using RQA-based 
features, instead of other methods such as neural 
networks, provide information about how the signal 
differs in the two groups. Tracking changes in the 
extracted signal, and being able to quantify them, 
might be useful when considering the effect of 
training or to evaluate if a needed intervention to 
improve proficiency had a beneficial outcome. The 
results of our study show that %LAM and RR are 
present two times among the features selected. The 
difference in RR between the two groups seems to be 
intuitively visualized where participants belonging to 
group “B” seem to have a much more deterministic 
structure in the RP compared to participants in group 
“G” (see Figure 2 and Figure 3). Interestingly, 
according to Zbilut and Webber (2008), %LAM 
seems a crucial feature of biological signals, and more 
specifically physiological signals given that it 
represents transitions such as those occurring 
between chaotic and periodic phases. High values of 
%LAM, in the context of a physiological signal, were 
associated with low flexibility, high stability, and 
more time needed for state transitions (Curtin et al. 
2017). For example, experts showed lower %LAM 
than novices in an experiment involving eye-tracking 
when inspecting dermatological images 
(Vaidyanathan et al., 2014). ADL, the most important 
feature in our selection, might follow a similar pattern 
to %LAM where higher values might represent a 
more deterministic system. In the context of cognitive 
skills, a higher %LAM and a longer ADL might 
represent a more deterministic and less complex 
signal, which might affect the time needed to switch 
from a task to another resulting in poor performance.  

The current study also offers insights relevant for 
EEG and electrode selection, as it answers the 

question of which electrode signals are most relevant 
when extracting features using RQA. This study 
indicates that F7 alone might be relevant for 
classification purposes in this specific task. In fact, 
the three top features out of five were extracted from 
this electrode. Similarly, Mikaili and Noori (2016) 
found that F8 alone was effective in detecting 
subjects suffering from drowsiness.  

The RQA-based features extracted to detect 
cognitive performance related to numeracy seem to 
provide high performance, especially once the class 
imbalance is resolved, independently of the classifier 
used. Ghosh and Saha (2021) employed a recurrent 
neural network and features extracted using power 
spectral density and correntropy spectral density, 
obtaining an accuracy of 0.89 in detecting proficiency 
in the same task used for this study. These results, 
comparable to the ones obtained in the current study, 
seem to provide further evidence about the 
effectiveness of using RQA-based features to detect 
performance in this domain. Future work might 
implement models combining RQA-based features 
with features extracted with other methods (e.g., 
spectral content) to verify if this approach might lead 
to higher accuracy in classifying tasks in the 
numerical domain.  

More generally, RQA-based features have 
previously been shown to be effective in several 
domains to analyze numerous physiological signals 
ranging from the electrocardiogram (Zbilut & 
Webber, 2008) to the electrohysterogram (Borowska 
et al., 2018). RQA is generally noise-resistant and it 
does not require any linear transformation before 
performing the analysis (Zbilut, Thomasson, & 
Webber 2002). Furthermore, the extracted features 
offer interpretability giving insights into the nature of 
the signal. Such characteristics might encourage 
researchers to use this method in other contexts and 
domains exploring its potentiality combined with 
machine learning and deep learning models.  

However, despite the advantages offered by this 
method, it is important to put our findings in context. 
The dataset used had a relatively small sample, which 
may have affected the results. This issue characterizes 
most of the recent studies involving physiological 
measurements, machine learning, and RQA-based 
features where the number of participants often tends 
to be small. Consequently, this issue posits limitations 
when applying machine learning models.  

Another limitation affecting this study is the 
limited number of RQA-based features selected. 
RQA can be computationally expensive and it might 
require a lot of time, or computational power, to 
extract its features in case of long time-series and 
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phase space reconstructions with several dimensions 
and high delay values. Therefore, the current study 
was limited to the extraction of 6 RQA-based features 
from just 4 electrodes. As a consequence, this work 
was not able to provide a wider overview of the 
relevance of other features and electrodes, and their 
effect on the machine learning models’ performance.  

Furthermore, the results obtained in our work do 
not provide a thorough comparison between the 
features extracted using linear methods on EEG data 
and those obtained using RQA. Future studies should 
apply RQA to larger datasets and accurately compare 
RQA-based features with features extracted using 
linear methods. Such efforts might provide more 
information about the effectiveness of using this non-
linear method to extract features for machine learning 
purposes. 

6 CONCLUSIONS 

The RQA-based features extracted from EEG signals 
seem to provide adequate information to track 
cognitive performance. Such an approach might be 
implemented as an alternative to the classic linear 
methods used to analyze EEG data. Future research 
might provide insights into the effect of each single 
RQA-based feature on performance and compare the 
effectiveness of such features with the ones extracted 
using different methods. 
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