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Learning hierarchical representation has been vital in natural language processing and information retrieval.
With recent advances, the importance of learning the context of words has been underscored. In this paper
we propose EmBoost i.e. Embedding Boosting of word or document vector representations that have been
learned from multiple embedding models. The advantage of this approach is that this higher order word
embedding represents documents at multiple levels of abstraction. The performance gain from this approach
has been demonstrated by comparing with various existing text embedding strategies on retrieval and semantic
similarity tasks using Stanford Question Answering Dataset (SQuAD), and Question Answering by Search
And Reading (QUASAR). The multilevel abstract word embedding is consistently superior to existing solo
strategies including Glove, FastText, ELMo and BERT-based models. Our study shows that further gains can
be made when a deep residual neural model is specifically trained for document retrieval.

1 INTRODUCTION

The objective of question answering system (QA) is to
generate concise answers to arbitrary questions asked
in natural language. Given the recent successes of
increasingly sophisticated neural attention based ques-
tion answering models, (Yu et al., 2018), the QA task
can be broken into two as suggested by (Chen et al.,
2017), (Cakaloglu and Xu, 2019):

* Document retrieval: Retrieval of the document
most likely to contain all the information to answer
the question correctly.

* Answer extraction: Utilizing one of the above
question- answering models to extract the answer
to the question from the retrieved document.

We used a collection of unstructured natural lan-
guage documents as knowledge base to retrieve an-
swers for questions. In this study we aim to explore
and compare the quality of various retrieval strategies
and further investigate the feasibility of training spe-
cialized neural network models for document retrieval.
Towards this end embedding strategies play a pivotal
role in retrieval by converting the text to vector repre-
sentation. Traditional word embedding methods learn
hierarchical representations of documents where each
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layer gives a representation that is a high-level abstrac-
tion of the representation from a previous layer. Most
text embedding strategies utilize either the highest
layer like Word2Vec (Mikolov et al., 2013), or an ag-
gregated representation from the last few layers, like in
ELMo (Peters et al., 2018) to generate representation
for information retrieval.

In this paper, we present a new text embedding
strategy called EmBoost that consists of two steps
as shown in Figure 1. In the first step, a mixture of
weighted representations across the entire hierarchy
of text embedding model is formed so as to preserve
all levels of abstraction. In the second step, all
representations from various models are combined
to generate an ensemble representation and used for
document retrieval task. This strategy takes advantage
of the abstraction capabilities of individual embedding
models and various models complement one another
to create higher quality embedding. Taking the
example of ”--- match ---” in Figure 1, different
levels of representation of “match” including word
level (word sense) and concept level (abstract meaning
like competition, resemblance, and burning wick)
are aggregated to form a mixture of representations.
In the second step, all these mixture representations
from different word embedding models are aggregated
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to form an ensemble representation, which takes
advantage of the complementary strength of individual
models and corpora. Consequently, EmBoost delivers
the power of multilevel abstraction with the strength
of individual models.

Further in this study we introduce a convolutional
residual network (ConvRR) over the embedding vec-
tors to improve the performance of document retrieval
task. The retrieval performance is further improved by
employing triplet learning with (semi-)hard negative
mining on the target corpus i.e. add a margin to
the positive sample such that the negative sample
is closer to the anchor thereby forcing the model to
learn to solve such hard cases: ||gnchors @positive|| <

||qanchor7dnegative|| < annchorvdPOSitiVBH +margin

This paper is structured as follows: First, we re-
view recent advances in text embedding in Section
2. In Section 3 we dive deeper into the details of our
approach. More specifically, we describe EmBoost
approach followed by a formulation of deep residual
retrieval model that can be used to augment the text
embedding and thereby enhance the quality of docu-
ment retrieval. In this paper we compare the proposed
method to the baselines that utilize existing popular
text embedding models. Experimentation details such
as datasets, evaluation metrics and implementation
details can be found in Section 4. The results are re-
ported in Section 5. Future work in Section 6 discusses
potential improvements and spin off studies.
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Figure 1: The illustration of EmBoost method using an
example of ”--- match ---”

2 RELATED WORK

One of the most widely used measure for ranking im-
portance of a word or token in a document is the term
frequency-inverse document frequency or TF-IDF as

proposed by (Salton and McGill, 1986). TF-IDF cal-
culates a weighting factor for each token and is widely
employed in information retrieval and text mining. Sig-
nificant recent advances have been made in word em-
bedding which is the way to convert text to numeric
vectors. The literature on embedding strategies is ex-
tensively covered by (Perone et al., 2018). Word2Vec
by (Mikolov et al., 2013), which is built upon on the
neural language model for distributed word represen-
tations by (Bengio et al., 2003), has become widely
adopted in natural language processing. It is a shal-
low network that can conserve semantic relationships
between words and their context; or in other terms,
surrounding words. The two approaches proposed in
Word2Vec are the Skip-gram model which predicts
surrounding words from the target word and the Con-
tinuous Bag-of-Words (CBOW) which predicts target
word given the surrounding words. Global Vectors
(GloVe) by (Pennington et al., 2014), was proposed
to address some of the limitations of Word2Vec by
focusing on the global context instead of the immedi-
ate surrounding words for learning the representations.
The global context is calculated by utilizing the word
pair co-occurrences in a corpus. During this calcula-
tion, a count-based approach is performed, unlike the
prediction-based method in Word2 Vec.

Another very popular embedding approach has
been fastText, by (Mikolov et al., 2018). Concep-
tualy Word2Vec and Fasttext work in a similar fashion
to learn vector representations of words. But unlike
Word2Vec, which uses words to predict words, fast-
Text treats each word as being composed of character
n-grams. The vector for a word is made of the sum of
this character n-grams. To further extract high quality
meaningful representation embedding from Language
Models (ELMo) was proposed by (Peters et al., 2018).
ELMo extracts representations from a bi-directional
Long Short Term Memory (LSTM), (Hochreiter and
Schmidhuber, 1997), that is trained with a language
model (LM) objective on a very large text corpus.
ELMo representations are a function of the internal
layers of the bi-directional Language Model (biLM)
that outputs good and diverse representations about
the words/token (a convolutional neural network over
characters). ELMo is also incorporating character n-
grams, as in fastText, but there are some constitutional
differences between ELMo and its predecessors.

The encoder-decoder approaches however func-
tion by compressesing the input source sentence into
a fixed length vector. This has shown to lead to de-
cline in performance when dealing with long sentences.
Additionally, the sequential nature of the model archi-
tecture prevents parallelization. To overcome these
challenges, attention based transformer architecture
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was proposed (Bahdanau et al., 2016; Vaswani et al.,
2017).

One of the earliest Transformer based model to
come out was BERT (Bidirectional Encoder Repre-
sentations from Transformers) (Devlin et al., 2019)
which was pre-trained on a large corpus of unlabeled
text including entire Wikipedia (2.5 billion words) and
Book corpus (800 million words). A key takeaway
about BERT is that it is a deeply bidirectional model
allowing it to learn from both the left and right side
of a token’s context during the training phase. This
bidirectionality is important for truly understanding
the meaning of language. BERT has been optimized
further with XLNet (Yang et al., 2020) and RoBERTa
(Liu et al., 2019) whereas DistilBERT (Sanh et al.,
2020) improves on the inference speed. This was then
followed by sentence-BERT (Reimers and Gurevych,
2019) which adapted the BERT architecture by using
siamese and triplet network structures to derive seman-
tically meaningful sentence embeddings that can be
compared using cosine-similarity.

Last, but not least, distance metric learning is a
technique to learn a distance metric for invariant data
representations in a way that retains the related vec-
tors close to each other while separating different ones
in the vector space, as stated by (Lowe, 1995), (Cao
et al., 2013), and (Xing et al., 2002). However, in-
stead of using standard distance metric learning, us-
ing deep networks to infer a non-linear embedding
of data has shown significant improvements when it
comes to learning representations using various loss
functions, including triplet loss—by (Hadsell et al.,
2006), (Chopra et al., 2005)—, contrastive loss—by
(Weinberger and Saul, 2009), (Chechik et al., 2010)—,
angular loss—by (Wang et al., 2017)—, and n-pair
loss—by (Sohn, 2016)—for influential studies—by
(Taigman et al., 2014), (Sun et al., 2014), (Schroff
et al., 2015), and (Wang et al., 2014)—.

After providing a brief review of the latest trends
in the field, we describe the details of our approach
and experimental results in the following sections.

3 PROPOSED APPROACH

3.1 Overview

The proposed approach for document retrieval begins
with first devising a new text embedding approach
called EmBoost which is an ensemble of multilevel
abstract representations learned from multiple distinct
pre-trained text embedding models. Secondly a neural
network model called ConvRR ,short for Convolu-
tional Residual Retrieval Network (and alternatively
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FCRR, short for Full-Connected Retrieval Network
by (Cakaloglu et al., 2018), is trained using triplet
loss. The general architecture of the proposed Con-
vRR model is shown in Figure 2.

The model begins with a series of word inputs
w1, w2, W3, ....,W, that could represent a phrase, sen-
tence, or paragraph. Those inputs, then, are initialized
with different resolutions of pre-trained embedding
models which may be context-free, contextual or nu-
merical. ConvRR then further improves the multilevel
abstract representation by using convolutional blocks
through residual connection to the initialized origi-
nal embedding. The residual connection enables the
model not to lose the meaning and the knowledge
derived from the pre-trained multilevel abstract em-
bedding and enables it to make some adjustments to
its knowledge using limited additional training data. A
final representation is then sent to the retrieval task.

| Input

jmsrrsxrj

EmBoost

Y

| Output

Figure 2: An overview of proposed approach consisting of an
ensemble of multilevel abstract representations learned from
multiple distinct pre-trained text embedding models and the
Convolutional Residual Retrieval Network (ConvRR).
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3.2 EmBoost

Existing powerful pre-trained text embedding strate-
gies are trained using different data sources
(Wikipedia, Common Craw, and etc.) as well as dif-
ferent techniques (supervised, unsupervised or varia-
tions). These pre-trained representations can broadly
belong to three types- context-free (GloVe, FastText,
etc.), or contextual (ELMo, Bert, etc.), and statistical
(term frequency—inverse document frequency). The
contextual strategies can further be unidirectional or
bidirectional. Generally, context-free and statistical
text embeddings are represented as a vector whereas
contextual text embedding strategies are represented
as a matrix.

Traditionally, one of pre-trained embedding mod-
els is selected to initialize a network for a defined
downstream task. Hence, a series of word inputs to the
network is initialized using the selected embedding
model. If the selected embedding model generates a
matrix instead of d-dimensional vector, then the matrix
for each word is represented as follows:

E,] =le,e, - ,€/xa )]

where E/ € R"*? is the | x d-dimensional pre-trained
word matrix of i-th word input, j denotes the given
embedding model and / represents the number of lay-
ers in the embedding model. Averaging all the layers
(ELMo), %Zle e;, or concatenating each of the last
4 layers (Bert), < e;_3 D e;_r B e;_1 He; > in the ma-
trix are the best practice to create a d’-dimensional
vector, where d’ = d if averaging all layers is used,
and d’ = L x d in case concatenating is used, L is the
number of layers (We used the notation of L to refer
to the selected layers from /-layers embedding model).
Current practice is to use only the last layer or top
few layers, while we propose to consider all layers for
multilevel abstract representation.

The proposed multilevel abstract word embed-
ding has two cascaded operations: fpisure(:,-,-) and
fensemhle ( . ) .

Forming a mixture of the representations from an
embedding model, fyixrure(:, -, "), can be formulated as
below: . . ‘

X,! = fmixture(E{a Widfamj> 2
where m/ € R/ is a coefficient vector and Y/_; m] = 1.
Each coordinate of the m/ represents a magnitude
to weight the corresponding layer of the model E!.
wiay denotes an IDF weight of the i-th word in-
put. fumixture(+, ) is an aggregate function, which ag-
gregates the input using an operation such as sum,
average, and concatenate. Weighted layers of the
model E] are then computed by that aggregate func-

tion. x/ is the d’-dimensional vector where d’ = d if

Smizture(+,+,+) is defined by sum or average, and d’' =
d x lin case fiisture(+,-,-) is defined by concatenate.
The obtained mixture of representations from multi-
ple word embedding models can form an ensemble
representation as follows.

X/ ={x}.x},xi} (3)
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where X! is a set of representations from different
embedding models, using fuirure(+,-,+) for the i-th
word input and 7 is the number of embedding models.
Sensembie(+) 1s a function to aggregate all representa-
tions in X/ and can be defined as follows:

X; = fensemble (Xi/a ll) (4)

where fonsempie(+) is also a aggregate function defined
by an operation like sum, average, and concatenate.
Note that, representations are coerced to a common
length, if fonsempie(:) is defined by sum or average.

Additionally, u € R" is a coefficient vector and
n ul
J=1 Tull

a magnitude to weight the corresponding embedding

model of the ensemble of text embedding models.

Hence, X; is d”-dimensional multilevel abstract word

embedding of the i-th word input. The pseudo-code of

the proposed approach is shown in Algorithm 1.

= 1. Each coordinate of the u represents

Algorithm 1: EmBoost for i-th word input.

Input:

idf weight: w; 4

set of embedding models: E; = {E}.EZ,--- E"}.
set of coefficient vectors, one for cach model:
M={m' m? ... .m"},

vector of coefficient values, one for each model:
u= _r.r]. r."'.--- Ju
Output:
EmBoost X,
Begin
X!'={}
for § 1 tondo
X] = frnizture(E],
x; is added to X!
end for
Xi = fensempte(X], 1)
Return: x;
End

Wigr, M)

With the ensemble text embedding approach, we
are generating embedding by taking the following as-
pects into consideration:

e Multi-sources: Instead of relying on one pre-
trained embedding model, we want to utilize the
power of multiple pre-trained embedding models
since they are trained using different data source as
well as different techniques. Therefore, integrating
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different word embedding models can harness the
complementary power of individual models.

Different layers: We take the embedding from dif-
ferent layers of E each embedding model instead
of just the last layer or few top layers.

* Weighted embedding: Incorporating word embed-
ding with a weighting factor like inverse document
frequency (IDF) or bm25 produce better results
for information retrieval and text classification as
presented by (Boom et al., 2015).

#o fdocuments

An IDF is formulated as: log, (== 7 ), where
a document frequency (d f,,) is the number of doc-
uments in the considered corpus that contain that
particular word w.

3.3 ConvRR

To further improve the performance of document re-
trieval, a convolutional residual retrieval (ConvRR)
model is trained on top of the proposed ensemble of
text embeddings. The model is presented in Figure 2.
Let x; € R?" be the d’-dimensional proposed multi-
level abstract word embedding of the i-th word input
in a text; therefore, the word inputs can be denoted as
a matrix:

X = [XI,XZ,X?,,"' 7Xk]k><d” (5)
where k is the number of word inputs in a text. The

ConvRR generates feature representations, which can
be expressed as the following:

X" = f(W,X,sf) (6)
-
0=X +%i;x,- )

where f(,-,-) is the convolutional residual retrieval
network that executes series of convolutional compo-
nents (a convolution and a rectified linear unit (ReLLU)
(Nair and Hinton, 2010)), a pooling, and a scaling op-
eration. X" is produced by multilevel abstract word
embedding X with trainable weights W € R xwsxd"
The weight matrix W contains d” kernels, each of
them has ws x d”, convolving ws contiguous vectors.
ws and d” represent window-size and number of ker-
nels respectively. Average pooling operation is added
after final convolutional component, which can consol-
idate some unnecessary features and boost computa-
tional efficiency. sf is a scaling factor that weights the
output with a constant factor. Hence, X” is trained on
how much contribution it adds to the X using residual
connection to improve the retrieval task. Final output
0=1[01,02,03, - ,0qn] € R is generated, which will
be fed into the next component. Note that each of
feature vector o is normalized to unit /; norm before
passing to the next step.
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Figure 3: Overall flow diagram for the proposed approach.
3.4 Loss Function

In order to train the ConvRR network to perform well
on retrieval task and generalize well on unseen data,
we utilize the Siamese architecture with triplet loss—
by (Hadsell et al., 2006), (Chopra et al., 2005)—during
the training period as shown in Figure 3. With this
setup, the network is encouraged to reduce distances
between positive pairs so that they are lesser than dis-
tances between negative ones. A particular question
Ganchor Would be a question close in proximity to a
document dpgitive as the positive pair to the same ques-
tion than to any document degaiive as they are positive
pairs to other questions. The key point of the Ziplet is
to build the correct triplet structure which should meet
the condition of the following equation:

|| Ganchors positive | + 7 < ||Ganchors dnegative |

For each anchor, the positive dpositive is selected in
such a way argmaxy .. || @anchors Apositive || and like-
wise the hardest negative dyegative in such a way that
argming . || @anchors @negative| | to form a triplet. This
triplet selection strategy is called hard triplets mining.

Let T = (dpositive> anchor @negative) b€ a triplet in-
put. Given T, the proposed approach computes the
distances between the positive and negative pairs via a
two-branch siamese subnet through the ensemble text
embedding and ConvRR.

Lriplet = (| ganchor- 4 positive |1 = I1qanchors degative |[+m] *

®)
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where m > 0 is a scalar value, namely margin and
||, .|| represents the Euclidean distance between two
vectors.

4 EXPERIMENTS

4.1 Datasets

In order to evaluate our proposed approach, we con-
ducted extensive experiments on two large question-
answering datasets, including SQuAD (Rajpurkar
et al., 2016), and QUASAR (Dhingra et al., 2017).

4.1.1 SQuAD

The Stanford Question Answering Dataset (SQuAD)
(Rajpurkar et al., 2016) is a large reading compre-
hension dataset that is built with 100,000+ questions.
Each of these questions are composed through crowd-
sourcing on a set of Wikipedia documents, where the
answer to each question is a segment of text from
the corresponding reading passage. In other words,
the consolidation of retrieval and extraction tasks are
aimed at measuring the success of the proposed sys-
tems.

4.1.2 QUASAR

The Question Answering by Search And Reading
(QUASAR) is a large-scale dataset consisting of
QUASAR-S and QUASAR-T. Each of these datasets
is built to focus on evaluating systems devised to un-
derstand a natural language query, large corpus of text
and to extract answer to the question from that corpus.
Similar to SQuAD, the consolidation of retrieval and
extraction tasks are aimed at measuring the success
of the proposed systems. Specifically, QUASAR-S
comprises 37,012 fill-in-the-gaps questions that are
collected from the popular website Stack Overflow, us-
ing entity tags. Since our research is not about address-
ing fill-in-the-gaps questions, we want to pay atten-
tion to the QUASAR-T dataset that fulfill the require-
ments of our focused retrieval task. The QUASAR-T
dataset contains 43,012 open-domain questions col-
lected from various internet sources. The candidate
documents for each question in this dataset are re-
trieved from an Apache Lucene based search engine
built on the ClueWeb(09 dataset (Callan et al., 2009).

The number of queries in each dataset, including
their subsets, is listed in Table 1.

Table 1: Datasets Statistics: Number of queries in each train,
validation, and test subsets.

DATASET TRAIN  VALID. TEST TOTAL
SQUAD 87,599 10,570 HIDDEN 98,169+
QUASAR-T 37,012 3,000 3,000 43,012

4.2 Evaluation

The retrieval model aims to improve the recall @k
score by selecting the correct pair among all candi-
dates. Basically, recall@k would be defined as the
number of correct documents as listed within top-k
order out of all possible documents, (Manning et al.,
2008). Additionally, embedding representations are
visualized, using t-distributed stochastic neighbor em-
bedding (van der Maaten and Hinton, 2008) in order
to project the clustered distributions of the questions
that are assigned to same documents.

4.3 Implementation

4.3.1 Input

Word embeddings were adopted, using the proposed
ensemble text embedding, EmBoost. fiixrure (-, ) and
Sensembie () settings that represent the best configura-

tion are shown in Table 2 and Table 3 respectively.

Table 2: fnixture (-, -, ) configuration of EmBoost.

E Widf m Sfmix ouT
BERT FaLse  [4,1,4,1,0,.,01 concar. x!
ELMo TRUE [0, 0, 1 sum x2
FASTTEXT  TRUE [1] sum x3

Table 3: fonsempie () configuration of the multilevel abstract
word embedding.

X’ u

1 2 3 1 1 1
x5, x5, x°} (3,3, 3]

f ensemble

concat.

The short form of this multilevel abstract word
embedding is called as follows: BERT ® ETwl ® FTwl
where (.)wl is denoting “with IDF” and @ represents
concatenation operation. The dimension of embedding
is 4,372.

4.3.2 ConvRR Cofiguration

ConvRR is trained, using ADAM optimizer (Kingma
and Ba, 2014) with a learning rate of 1073, For the
sake of equal comparison, we fixed the seed of ran-
domization. We also observed that a weight decay of
1073 tackles over-fitting. We choose windows-size
ws = 5, number of kernel d” = 4,372, and the scaling
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factor sf = 0.05. We trained the network with 400
iterations with a batch size of 2,000 using a triplet loss
with a margin m = 1. Note that the best performance
is achieved using a relative large batch size. All ex-
periments are implemented with Tensorflow 1.8+ by
(Abadi et al., 2015) on 2 x NVIDIA Tesla K80 GPUs.

S RESULTS

We study different embedding models. We initialize
text inputs of datasets, using different traditional em-
bedding models. We first compared our model with
the following baselines: TF-IDF, BERT, ELMo-AVG
(averaging all layers of ELMo), GloVe, and fastText.
Additionally, we also initialized text inputs, using the
proposed EmBoost approach. To demonstrate the con-
tribution of different components of EmBoost, we first
configured it without using ensemble function, which
includes ELMO-LSTMI (first layer of ELMo), BERT
w/IDF (BERT with IDF weight), ELMO-LSTM2 (sec-
ond layer of ELMo), ELMO-TOKEN (token layer of
ELMO), ELMO-TOKEN w/IDF (ELMo-TOKEN with
IDF weight), FASTTEXT w/IDF (fastText with IDF
weight). Then configured EmBoost with ensemble
function of a concatenation of ELMo token layer with
IDF weight and fastText with IDF weight (ETwI &
FTwI), as well as a concatenation of BERT (concatena-
tion of last 4 layer representations), ELMo token layer
with IDF weight, and fastText with IDF weight (BERT
@ ETwl & FTwl). Last but not least we also compared
the performance gain using downstream models includ-
ing a fully connected residual network (FCRR) and the
convolutional residual network (ConvRR) respectively.

The recall @k results that calculated for SQuUAD
and QUASAR-T datasets are listed in Table 4 and
Table 5. Our ConvRR model initialized with the
proposed EmBoost approach outperforms all the
baseline models on these datasets. More specifically
the results show that the proposed EmBoost approach
without ensemble function significantly improves
the result of all baseline methods. The improvement
is further increased when EmBoost uses ensemble
function that combines embeddings trained using
different models and corpora. The only exception is
recall@1 for the result on QUASAR-T (in Table 5).
We believe the reason is that QUASAR-T is a
relatively small dataset, for which a single word
embedding model trained using a very large corpus
should be sufficient, and ensemble function is not
necessary in this case. The best performance is
achieved when the proposed EmBoost is applied with
a downstream IR model, which is much better in
comparison with the baseline word embedding models
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applied with the same downstream IR model.

Table 4: Experimental results on SQUAD. recall @k re-
trieved documents, using different models and the proposed
approach.

EMBEDDING/MODEL @1 @3 @5
BASE EMBEDDINGS

TF-IDF 8.77 15.46 19.47
BERT 18.89 32.31 39.52
ELMO-AVG 21.24 36.24 43.88
GLOVE 30.84 47.14 54.01
FASTTEXT 42.23 59.86 67.12
EMBOOST (W/O0 ENSEMBLE)

ELMO-LSTM1 19.65 34.34 42.52
BERT w/ IDF 21.81 36.35 43.56
ELMO-LSTM2 23.68 39.39 47.23
ELMO-TOKEN 41.62 57.79 64.36
ELMO-TOKEN w/IDF  44.85 61.55 68.07
FASTTEXT w/ IDF 45.13 62.80 69.85
EMBOOST (W/ ENSEMBLE)

ETwl @ FTwIl 46.33 63.13 69.70

BERT @ ETWI @ FTwl  48.49 64.96 71.05
BASE EMBEDDING + DOWNSTREAM MODELS

FASTTEXT + FCRR 45.7 63.15 70.02
FASTTEXT + CONVRR  47.14 64.16 70.87

EMBOOST + DOWNS. MODELS

BERT & ETWI & FTwI + FCRR 50.64 66.16 73.44
BERT & ETwI @ FTwI + CONVRR 52,32 68.26 75.68

The t-SNE visualization of question embeddings
that are derived, using different embedding models,
including BERT, ELMo-TOKEN layer, fastText, mul-
tilevel abstract word embedding with a concatenation
of BERT (concatenation of last 4 layer representa-
tions), ELMo-TOKEN layer with IDF weight, and
fastText with IDF weight, and ConvRR are shown in
Figure 4. Note that those questions match the par-
ticular 4 (labeled as 57, 253, 531, 984) sampled con-
texts/documents that are extracted from SQuAD valida-
tion dataset. The visualization shows that the proposed
EmBoost significantly improves the clustering of the
questions and corresponding contexts/documents. The
result is further improved by using ConvRR, the pro-
posed retrieval model.

6 CONCLUSION

We developed a new multilevel abstract word embed-
ding approach called EmBoost, which harnesses the
power of individual strength of diverse word embed-
ding methods. The performance of the proposed ap-
proach is further improved by using a convolutional
residual retrieval model optimized using a triplet loss
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Table 5: Experimental results on QUASAR-T. recall @k re-
trieved documents, using different models and the proposed
approach.

EMBEDDING/MODEL @l @3 @5
BASE EMBEDDINGS

TF-IDF 13.86 20.2 23.13
BERT 25.5 34.2 37.86
ELMO-AVG 27.93 37.86 42.33
GLOVE 32.63 40.73 44.03
FASTTEXT 46.13 56.00 59.46
EMBOOST (W/0 ENSEMBLE)

ELMO-LSTMI 24.6 33.01 36.9
ELMO-LSTM2 27.03 36.33 40.56
BERT w/ IDF 27.33 38.43 40.11
ELMO-TOKEN 44.46 54.86 59.36
ELMO-TOKEN w/IDF  48.86 60.56 65.03
FASTTEXT w/ IDF 49.66 58.70 61.96
EMBOOST (W/ ENSEMBLE)

ETwl @ FTwl 48.78 60.05 64.10

BERT @ ETWI @ FTWI  49.46 60.93 65.66
BASE EMBEDDING + DOWNSTREAM MODELS

FASTTEXT + FCRR 47.11 58.25 62.12
FASTTEXT + CONVRR  48.17 59.06 63.07

EMBOOST + DOWNS. MODELS

BERT & ETWI & FTwI + FCRR 49.55 61.58 64.53
BERT @ ETWI @ FTwl + CONvRR ~ 50.67 63.09 67.38

@ Context: 57 @ Context: 253 @ Context: 531 @ Context: 984
BERT ELMO-TOKEN FASTTEXT
57
2 2 2
2@ ) )
ES S S
*-tsne xtsne x-tsne
BERT @ ETWI® FTWI ConvRR
253
57 531g5%p] I
43 57
253 .
57 11 o @
H ' —_— 57
a e
I =
544
57 1 57
57
7 57

x-lsne xtsne

Figure 4: t-SNE map visualizations of various embedding
models for all question representations of 4 (57, 253, 531,
984) sampled contexts/documents that are extracted from
SQuAD validation dataset.

function for the task of document retrieval, which is
a crucial step for many Natural Language Processing
and information retrieval tasks. We further evaluate
the proposed method for document retrieval from an
unstructured knowledge base. The empirical study
using large datasets including SQuAD and QUASAR

benchmark datasets shows a significant performance
gain in terms of the recall. In the future, we plan to
apply the proposed framework for other information
retrieval and ranking tasks. We also want to improve
the performance of the retrieval task by applying and
developing new loss functions and retrieval models.
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