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Abstract: Thinning is a frequently applied skeletonization techeiqt is an iterative object-reduction in a topology-
preserving way: the outmost layer of an object is deleted,tha entire process is repeated until stability is
reached. In the case of an 1-attempt thinning algorithmbibraler pixel is not deleted in the very first time, it
cannot be deleted in the remaining phases of the thinningepeo This paper shows that two 4-cycle parallel
2D thinning algorithms (i.e., one subiteration-based ame subfield-based) are 1-attempt. In addition, we
illustrate that both algorithms are considerably fasterdfknow that they fulfill the 1-attempt property.

1 INTRODUCTION active subfield can be deleted simultaneously. Sim-
ilarly to the directional approach, an iteration step of

A binary digital picture(picturein short) on the 2D @ns-subfield algorithm is composed efparallel re-
square grid is composed backor whiteunit squares ductu_)ns. That is why-subiteration an_dw-subﬁeld
that are called apixels. A parallel reductiontrans-  @lgorithms are referred to ascyclealgorithms.
forms a picture only by changing some set of black In the conventional implementation of thinning
pixels to white ones at a time, which is referred to as algorithm, all border pixels are examined for possi-
deletion(Hall, 1996). ble deletion in each thinning phase. Thinning is the
Skeletonizationn 2D providescenterlinethat is  fastest skeletonization approach, however, the con-
a compact representation of a binary object, and it is ventional scheme is a rather time-consuming for ob-
used in various image processing and computer vi- jects that also contain ‘thin’ and ‘thick’ parts, since
sion applications (Saha et al., 2017; Siddigi and Pizer, some pixels of the produced centerline ‘get free’
2008). within ‘a few’ (sub)iterations, but the iterative object
Thinningis an iterative skeletonization technique: reduction process is to be continued until no pixels
border pixels of a binary object that satisfy certain are deleted. That is why the authors of this paper in-
topological and geometric constraints are deleted, andtroduced the concept of-dttempt thinning(Palagyi
this process is repeated until no pixels are deleted@nd Nemeth, 2021a). In a 1-attempt thinning algo-
(i.e., the centerline is reached) (Hall, 1996; Kong and 'ithm, if a border pixel cannot be deleted in the very
Rosenfeld, 1989) Parallel thinning a|g0rithms are first examination for pOSSibIe deletion, this pixel re-
composed of parallel reductions, and they fall into Mains unchanged in the remaining thinning phases
three major categories: fully parallel, subiteration- (i.€., it is an element of the produced centerline). In
based (or directional), and subfield-based (Hall, 1996; Our previous papers we constructed a new fully paral-
Németh and Pa]'agyh 201]5u||y para||e| a|gorithms lel thinning algorithm, and proved that it is 1-attempt
apply the same parallel reduction in each iteration; in (Palagyi and Nemeth, 2021a); we managed to prove
subiteration-basedlgorithms a cycle ofl > 2 paral- that an existing 2-subfield parallel thinning algorithm
lel reductions are assigned to the seleaddnds of ~ (Németh and Palagyi, 2011) is also 1-attempt (Palagyi
deletion directions, and only border pixels of a certain @nd Németh, 2021b); we showed that the thinning al-
kind can be deleted at a subiteratimubfield-based ~ gorithms fulfilling the 1-attempt property can be im-
algorithms partitiorZ? into s > 2 subsets which are ~ plemented with a remarkable speed up (Palagyi and
alternatively activated, and only some pixels in the Nemeth, 2021a; Palagyi and Németh, 2021b).

In this work, our attention is focussed on 4-cycle

https://orcid.org/0000-0002-3274-7315 parallel thinning: we prove that a 4-subiteration (di-
b® https://orcid.org/0000-0002-4118-5019 rectional) and a 4-subfield thinning algorithm are 1-
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Figure 1: The two kinds of adjacency relations studied on
the square grid (a). The four pixets, p1, p2, andps are
4-adjacent to the central pixpl These four pixels and the
four ones markede’ are 8-adjacent tq.
Partition ofZ2 into four subfields (b). All pixels marked'*
are in subfields (i=0,1,2,3).

attempt, and show that their 1-attempt property is use-

ful (i.e., it makes computationally efficient implemen-
tation schemes possible).

2 BASIC NOTIONS AND RESULTS

Next, we apply the fundamental concepts of digital
topology as reviewed in (Kong and Rosenfeld, 1989).
n (8,4) picture on the 2D square grid is a

quadrupleZ?,8,4,B), where an element ¢#? is as-
signed to each pixel (i.e., unit squarB)Z Z? denotes
the set oblack pixes; each pixel irz? \ B is said to
be awhite pixe] adjacency relations 8 and 4 are as-
signed toB andZ? \ B, respectively. Two pixels (i.e.,
unit squares) are-ddjacentf they share an edge, and
they are 8adjacentif those pixels share an edge or a
vertex, see Fig. 1la. L&(p) denote the set of (eight)
pixels that are 8-adjacent fo

Since both studied relations are symmetric, their
reflexive-transitive closure form equivalence rela-
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Figure 2: Examples of the studied two types of endpixels.
In the first two configurationgy is an endpixel of type 1 and
an endpixel of type 2. The third example gives an example
of an endpixel of type 2 (that is not an endpixel of type 1).

thinning algorithms described in Section 3 use the fol-
lowing two types of endpixels (Hall, 1996; Németh
and Palagyi, 2011):

Definition 1. A black pixel (in an(8,4) picture) is
anendpixel of type Iif it is 8-adjacent to exactly one
black pixel.

Definition 2. A black pixel p (in an8,4) picture) is
an endpixel of type 4f it is endpixel of type 1 or it is
8-adjacent to exactly two black pixels g and r, where
g is4-adjacenttor.

Figure 2 shows some examples of the two types of
endpixels taken into consideration.

A crucial issue in thinning algorithms is to en-
suretopology preservatiorfKong, 1995; Kong and
Rosenfeld, 1989). A reduction in a 2D picture is
topology-preserving if each object in the input picture
contains exactly one object in the output picture, and
each white component in the output picture contains
exactly one white component in the input picture. A
single black pixel isimplefor a set of black pixels if
its deletion is a topology-preserving reduction. Here
we make use of the following characterization of sim-
ple pixels:

Theorem 1. (Kong and Rosenfeld, 1989 black
pixel p is simple in ari8,4) picture if all the following
conditions hold:

1. pisaborder pixel.

tions, and the generated equivalence classes are calley, There is exactly one blagcomponentin Kp).

componerg. A black componentr anobjectis an
8-component oB, while awhite componenis a 4-
component ofZ? \ B.

A pixel p € Bis aninterior pixelfor B, if all pixels
being 4-adjacent t@ are inB, p is called aborder
pixelif it is not an interior pixel, ang is said to be an
isolated pixelif it forms a singleton object (i.e., it is
not 8-adjacent to a black pixel). Here we distinguish
four types of border pixels: a black pixplis called
ani-border pixel(i =0,1,2,3) in an (8,4) picture, if
the pixel markedp; in Fig. 1a is white.

Thinning algorithms preserve some (border) pix-
els that provide relevant geometric information with
respect to the shape of the object. Most of existing
2D thinning algorithms preservendpixe$ (i.e., ter-
minating pixels of curves). The two 4-cycle parallel
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Note that the simpleness {i8,4) pictures is a lo-

cal property, it can be decided by examining the eight
pixels that are 8-adjacent to the given black pixel,
and only non-isolated border pixels may be simple.
Here we represemion-simple pixels in(8,4) pictures
by the six basenatching templateshown in Fig. 3.
All rotated and reflected versions of these base tem-
plates match non-simple pixels, too. It can be readily
seen that a pixel is non-simple if at least one template
matches it.

Parallel reductions can delete a set of black pixels.
Hence, we need to consider what is meant by topol-
ogy preservation when a number of black pixels are
deleted simultaneously. Kong gave the following suf-
ficient condition:
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Figure 3: The six base matching templates for character-
izing non-simple pixels ir{8,4) pictures. Notations: each
black template position matches a black pixel; each white
element matches a white pixel; each position depicted in
gray matches either a black or a white pixel.

Theorem 2. (Kong, 1995)A parallel reduction act-
ing on(8,4) pictures is topology preserving, if all the
following conditions hold:

1. Only simple pixels are deleted.

2. For every sefp,q} of two4-adjacent pixels that
are deleted, p is simple after deletion of g.

No object contained in & x 2 square is deleted
completely.

3.

Kong's result provides a method for verifying that
a fully parallel or a subfield-based thinning algorithm

1-Attempt 4-Cycle Parallel Thinning Algorithms

Algorithm 1: 4-cycle algorithnT (T=SI,SF).

Input : picture(Z2,8,4,X)
Output: picture(Z2,8,4,Y)
Y+ X

repeat

/] one iteration step
for i < 0to 3do
L /] i-th subiteration

D(i) < { p| pis T-i-deletable fory }
Y +Y\D(i)
until D(O)uUD(1) UD(2)UD(3) = 0;

The description of the two 4-cycle parallel thin-
ning algorithms (i.e., algorithmS| and SF) is com-
pleted by specifying their deletion rules:

Definition 3. A black pixel p in picturéZ?, 8,4, B) is
Sl-i-deletablefor B (i = 0,1,2,3) if all the following
conditions hold:

1. pis ani-border pixel.

2. pis not an endpixel of type 2.

3. pissimple.

A black pixel (in an(8,4) picture) isnon-Sl-i-
deletableif it is not Sl-i-deletablei = 0,1,2,3), i.e.,

preserves topology. Rosenfeld gave another sufficientat |east one condition of Definition 3 is violated.

condition that is useful in verifying the topological
correctness of subiteration-based algorithms:

Theorem 3. (Rosenfeld, 19757 parallel reduction
acting on(8,4) pictures is topology preserving, if all
the following conditions hold for every pixel p that is
deleted:

1. pis ani-border pixeli € {0,1,2,3}).
2. pis not an endpixel of type 1.
3. There is exactly one bla&componentin Np).

3 TWO 4-CYCLE PARALLEL
THINNING ALGORITHMS

In this section, we describe two 4-cycle topology-
preserving parallel thinning algorithm acting (8)4)
pictures on the square grid. The first algoriti®his
subiteration-based, and the second &fefalls into
the category of subfield-based. Algorithm 1 gives the
studied two algorithms.

In Algorithm 1, the kernel of theaepeat cycle

Definition 4. A black pixel p in pictur¢Z?, 8,4, B) is
SFKi-deletabldor B (i = 0,1,2,3) if all the following
conditions hold:

1. pe S (i.e., itisin the i-th subfield, see Fig. 1b).
2. pis not an endpixel of type 1.

3. pissimple.

A black pixel (in an(8,4) picture) is said to be
a non-SFKi-deletablepixel if it is not SFi-deletable
(i=0,1,2,3), i.e., at least one condition of Definition
4 is not satisfied.

Since all endpixels of type 1 are also endpixels of
type 2, the following statement holds:

Proposition 1. All endpixels of type 1 are n@l-i-
deletable(i = 0,1,2,3).

Let us state another obvious proposition:
Proposition 2. If pe § (i=0,1,2,3) and qe N(p),
q¢S.

By Proposition 1 and Proposition 2, it can be read-
ily seen that the parallel reductions that delSte

corresponds to one iteration step that comprises fouri-deletable orSFi-deletable pixels satisfy all con-

subiterations (i.e., four parallel reductions). In these
subiterations, algorithr81 considers the four deletion

directions that are specified by the studied four types

of border pixels, and algorithi8F alternatively acti-
vates the four subfields shown in Fig. 1b.

ditions of Theorem 3. Thus both algorithms are
topology-preserving.

Note that the idea of algorithr8I is originated
from Rosenfeld, but his early algorithm preserves
endpixels of type 1 (Rosenfeld, 1975). Algoriti8f

231



ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods

is proposed in (Németh and Palagyi, 2011), and it is SfL LIS
referred to aSF-4-1 NS
For reasons of scope, we do not analyze the ge- I WV
ometric properties of the studied two 4-cycle algo- AN S
rithms. Here we present five illustrative examples of ({1)) “: ({
the centerlines produced by algorith®isandSF, see N J‘
Fig. 4-8. The pairs of numbers in parentheses are the W W N
counts of object pixels in the produced centerlines and SI (10092 61) SF (10104 61)
the number of the required iterations.

Figure 6: Centerlines produced by the studied algorithms
superimposed on a 730795 image of a spider. The origi-
nal image contains 58557 object pixels.

;:’"" 4 /,k‘" N :
Sl (39685 107) SF (39824 107)
Figure 4. Centerlines produced by the studied algorithms
superimposed on a 730820 image of a ship. The original

image contains 214310 object pixels. SI (7555 175) SF (7839 175)

Figure 7: Centerlines produced by the studied algorithms
superimposed on a 990804 image of a jellyfish. The orig-
inal image contains 214514 object pixels.

Sl (7652 186) SF (7839 186)

3 SF (17366 123 Figure 8: Centerlines produced by the studied algorithms
superimposed on a 6402200 image of a helicopter. The
original image contains 399984 object pixels.

Figure 5: Centerlines produced by the studied algorithms
superimposed on a 730730 image of the yin and yang

symbol. The original image contains 190246 object pixels. alple alple
: . d
By Figs. 4-8, we can state that both algorith8is .
andSF produce one pixel width and well-positioned a b

centerlines. Figure 9: Templates (configurations) associated with

Lemma 1 (a) and Lemma 2 (b).

can be deleted by algorithn® andSF.
4 FULFILLING THE 1-ATTEMPT Since{q} is a black 8-component iN(p), pixel
PROPERTY p is simple (by Theorem 1) iff all the five pixets b,
¢, d, andein N(p)\ {q} are white. In this case is
In this section, we show that the studied algoritt8hs  an endpixel of type 1. Thup cannot be deleted by
andSFfulfill the 1-attempt property. algorithmsS| andSF. O

In order to prove that both alg(_)rithms are 1- | emma 2. Let p be a black pixel (in ari8, 4) pic-
attempt, we shall state two lemmas, introduce & New y,re) that is matched by the template shown in Fig. 9b
concept, and examine the matching templates shown gy jts rotated versions). Then p cannot be deleted by

in Fig. 9. algorithmsSI and SF.

Lemma 1. Let p be a black pixel (in ai8,4) pic- Proof. By Definition 3, Definition 4, and Proposition
ture) that is matched by the template shown in Fig. 9a 1, only simple pixels that are not endpixels of type 1
(or its rotated versions). Then p cannot be deleted by -5, pe deleted by algorithn® andSF.

algorithmsSI and SF. Since {q} is a singleton black 8-component in

Proof. By Definition 3, Definition 4, and Proposition  N(p), pixel pis simple (by Theorem 1) iff all the three
1, only simple pixels that are not endpixels of type 1 pixelsa, b, andcin N(p)\ {q} are white. In this case
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p is an endpixel of type 1. Thus cannot be deleted
by algorithmsSI andSF. O

Now let us introduce a new concept.

Definition 5. Let pe B be a non-simple pixel in pic-
ture (Z2,8,4,B). The set of pixels S N(p)NB is a
simplifier set(associated to p) if pixel p is simple in
picture (Z?,8,4,B\ S).

For the sake of brevity in the following we will
refer to positions in the matching templates shown in
Fig. 3 as pixels in8,4) pictures.

Proposition 3. Let p be a non-simple border (black)
pixel (in an(8,4) picture) that is matched by template
To (see Fig. 3). Then p cannot be deleted by algo-
rithms Sl and SF.

Proof. Sincep is an isolated pixel (i.e., there is no
black pixel inN(p)), there is no simplifier set associ-
ated top. Thusp remains a non-simple black pixel.
By Definition 3 and Definition 4, only simple pix-
els can be deleted by algorithr8é and SF. Thusp
cannot be deleted. O

Proposition 4. Let pe B be a non-simple border
(black) pixel in picturgZ2,8,4,B) that is matched by
template T (see Fig. 3). Then p cannot be deleted by
algorithmsSl| andSF.

Proof. We can state th&tq} and{s} are the two pos-
sible simplifier sets associatedpoThis follows from
a careful examination ofj.

Since, by Lemma 1g ands cannot be deleted by
algorithmsSI andSF, p remains a non-simple black
pixel.

By Definition 3 and Definition 4, only simple pix-

els can be deleted by the studied two algorithms. Thus
O

p cannot be deleted.

Proposition 5. Let us assume that a non-simple bor-
der (black) pixel p (in ar{8,4) picture) is matched by
template 7 (see Fig. 3). Then p cannot be deleted by
algorithmsSI| and SF.

Proof. Since, by Lemma 1, all the two black pixels
(i.e.,g andu) and the two potentially black ones (i.e.,
s andw) cannot be deleted by algorithr§é and SF,
p remains a non-simple black pixel.

By Definition 3 and Definition 4, only simple pix-
els can be deleted by algorithrg$ and SF. Thusp
cannot be deleted. O

Proposition 6. Let us assume that a non-simple bor-
der (black) pixel pc B in picture (Z?,8,4,B) is
matched by templatesT{see Fig. 3). Then p cannot
be deleted by algorithmSI and SF.

Proof. It can be readily seen thafs} and S=
{g,u,v,w,x} N B are the two possible simplifier sets
associated tq.

1-Attempt 4-Cycle Parallel Thinning Algorithms

Since, by Lemma 1, pixed cannot be deleted in
the thinning process of none of the two algorith&is
andSF, let us examine the deletability &

It is obvious thatp becomes an endpixel of type 1
after the deletion o8.

By Definition 3 and Definition 4, only simple pix-
els that are not endpixels of type 1 can be deleted by
algorithmsSI and SF. Thus the simplifiedp cannot
be deleted. O

Let us summarize the previously stated four
propositions:

Proposition 7. If a non-simple border (black) pixel p
is matched by template),TTy, T, or Tz in the input or

an interim picture of algorithmsl or SF, p cannot
be deleted in the remaining thinning phases (i.e., it is
an element of the produced centerline).

Let us take the remaining two matching templates
shown in Fig. 3 into consideration.

Proposition 8. Let p&€ B be a non-simple border
(black) pixel in picture(Z2, 8,4, B) that is matched by
template T (see Fig. 3). Then exactly one of the two
sets of pixel§qg,w,x} NB and{s,t,u} NB is a subset
of all possible simplifier sets associated to p.

This simply follows from Theorem 1 and a careful
examination of templaté;.
Lastly an absolutely obvious statement is made:

Proposition 9. Let us assume that a (non-simple
black) pixel p (in an(8,4) picture) is matched by tem-
plate & (see Fig. 3). Then pis not a border pixel (i.e.,
it is an interior pixel).

4.1 Examining Algorithm SI

We are now ready to state the following theorem:
Theorem 4. Algorithm Sl is 1-attempt.

Proof. Without loss of generality, we can assume that
0-border pixels are examined for possible deletion in
the actual subiteration.

We need to verify that if a O-border pixgl € B
in picture(Z2,8,4,B) is nonSl-0-deletable in the ac-
tual subiteration, it remains ndBl-i-deletable in the
remaining thinning phases for ang¢ {0,1,2,3}.

Let us assume indirectly that is Sl-i-deletable
for B\ D for somei € {0,1,2,3} and for some set of
deleted pixeld C B\ {p}.

Since pixelp is a nonSl-0-deletable (0-border)
pixel for B, at least one of the last two conditions of
Definition 3 is violated. Consequently,

» pis an endpixel of type 2 faB, or
e pis non-simple foB.
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a|p|c a'plc alplc alpl c
d|q|r dlq|r d r d
flwlv f v flwlv f v
8|hli 8|h|i 8|hli 8|hli
a b c d

Figure 10: Configurations associated with Theorem 4 and
Theorem 5.

It is obvious that ifp is an endpixel of type 2 for
B (i.e., the first point holds)y remains an endpixel of
type 2 forB\ D for anyD C B\ {p}. Thus only the
second point is to be examined (i.p.is non-simple
for B).

According to our assumptiom is deleted in a re-
maining thinning phase, thus it becomes simple for
B\ D. It means thalN(p)ND is a simplifier set of
deleted pixels.

Sincep is a non-simple pixel foB, at least one
template shown in Fig. 3 matches it. By Proposition 7
and Proposition 9 we can ignore the five templdtgs
Ti, T, T3, andTs. Thus templatdy is the only one to
be investigated.

If p is matched byT;, by Proposition 8, ex-
actly one of the two sets of pixelgy, w,x} "B and
{s,t,u} N B is a subset of all possible simplifier sets
associated tp. Consequently, one ¢fj, w,x} "B and
{s,;t,u} NBis to be completely deleted. Without loss
of generality, we can assume that, w,x} NB) C D.

It is known that black pixek € D (see Fig. 3), thus
the following four cases (shown in Fig. 10) are to be
checked:

* g¢D,w¢ D (see Fig. 10a):
In this case, by Lemma 2, pixel cannot be
deleted. This is a contradiction 8 D.

* g¢ D,we D (see Fig. 10b):
Then the following points have to be checked:

— If xandw are deleted in different subiterations,
andx is deleted first, then, by Lemma 1, pixel
w cannot be deleted. This is a contradiction as
we D.

— If xandw are deleted in different subiterations,
andw is deleted first, then, by Lemma 2, pixel
x cannot be deleted. This is a contradiction as
x e D.

— If x andw are deleted simultaneously (i.e., in
the same subiteration), then

* W is not Sl-0-deletable, since it is not a O-
border pixel (i.e., pixek is black);

x X is not Sl-1-deletable, since it is not a 1-
border pixel (i.e., pixep is black);

x X is not Sl-2-deletable, since it is not a 2-
border pixel (i.e., pixel is black).
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Thus both pixelsx and w need to beSI-3-
deletable. Consequently, the two pixelsind

f are white. It can be readily seen by Theorem
1 that pixelx is simple iff pixeld is also white.

In this casex is an endpixel of type 2. Thus

is notSl-3-deletable, and we arrive at a contra-
diction.

* ge D,w¢ D (see Fig. 10c):

Similarly to the previous case, the following three
points are to be examined:

— If xandq are deleted in different subiterations,
andx is deleted first, then, by Lemma 1, pixel
g cannot be deleted. This is a contradiction as
geD.

— If xandq are deleted in different subiterations,
andq is deleted first, then, by Lemma 2, pixel
x cannot be deleted. This is a contradiction as
x e D.

— If xandqare deleted simultaneously (i.e., in the
same subiteration), then

* X is not SI-0-deletable, since it is not a O-
border pixel (i.e., pixetj is black);

* X is not Sl-1-deletable, since it is not a 1-
border pixel (i.e., pixep is black);

* ( is not SlI-2-deletable, since it is not a 2-
border pixel (i.e., pixek is black).

Thus both pixelsx and w need to beSI-3-
deletable. Consequently, the two pixeland

e are white. It can be readily seen by Theorem
1 that pixelx is simple iff pixel f is also white.

In this casex is an endpixel of type 2. Thus

is notSl-3-deletable, and we arrive at a contra-
diction.

g€ D,w e D (see Fig. 10d):
In this case, the following two points are to be
checked:

— Let us assume that the three pixgls¢, andw
are deleted in different subiterations.

* If just one of the two pixelg| andw is deleted
first, then we get the previously examined
cases shown in Fig. 10b and Fig. 10c. Thus
we arrive at a contradiction.

» |If pixel x is deleted first, then both pixets
andw cannot be deleted by Lemma 1. This is
a contradiction ag € D andw € D.

= |f the two pixelsg andw are deleted first, then
we get the previously examined case shown in
Fig. 10a. Thus we arrive at a contradiction.

= |f the two pixelsg andx are deleted first, then
w cannot be deleted by Lemma 1. Thisis a
contradiction asv e D.



* |f the two pixelsx andw are deleted first, then
g cannot be deleted by Lemma 1. This is a
contradiction as| € D.

— Lastly, let us assume that the three pixglx,
andw are deleted at a time (i.e., in the same
subiteration). In this case

* X is not Sl-O-deletable, since it
border pixel (i.e., pixet| is black);

* X is not Sl-1-deletable, since it
border pixel (i.e., pixep is black);

* X is not Sl-2-deletable, since it
border pixel (i.e., pixel is black).

Thus all the three pixelg, x, andw need to be
SI-3-deletable. Consequently, pixalse, and

f are all white. It can be readily seen, by The-
orem 1, pixelq is simple iff all the three pixels
a, b, andc are also white. In this casg,is an
endpixel of type 2. Thugis notSI-3-deletable,
and we arrive at a contradiction. (Similarly, by
Theorem 1, pixelv is simple iff all the three
pixels g, h, andi are also white. Sincev is
an endpixel of type 2, it is ndbl-3-deletable.
Thus we arrive at a contradiction.)

is not a O-
is not a 1-

is not a 2-

Since a norsl-0-deletable border pixel may not
be Sl-i-deletable (i = 0,1,2,3) in the remaining
subiterations of the thinning process, this theorem
holds. O

4.2 Examining Algorithm SF

Similarly to algorithmSlI, we can state that algorithm
SFfulfills the 1-attempt property:

Theorem 5. AlgorithmSFis 1-attempt.

Proof. Without loss of generality, we can assume that
a border pixelp to be examined is i.

We need to verify that ifp € B in picture
(Z2,8,4,B) is nonSF-0-deletable in the actual subit-
eration, it remains noi®~0-deletable.

Let us assume indirectly thgtis SF0-deletable
for B\ D, whereD C B\ {p} is a set of deleted pixels.

Since pixelp is a nonSF0-deletable border pixel
for B, at least one of the last two conditions of Defini-
tion 4 is violated. Consequently,

* pis an endpixel of type 1 foB, or
* pis non-simple foB.

It is obvious that ifp is an endpixel of type 1 for
B (i.e., the first point holds)y remains an endpixel of
type 1 forB\ D for anyD C B\ {p}. Thus only the
second point is to be examined (i.e.is non-simple
for B).

According to our assumptiom is deleted in a re-
maining thinning phase, thus it becomes simple for

1-Attempt 4-Cycle Parallel Thinning Algorithms

B\ D. It means thalN(p) "D is a simplifier set of
deleted pixels.

Sincep is a non-simple pixel foB, at least one
template shown in Fig. 3 matches it. By Proposition
7 and Proposition 9 we can ignore the five templates
To, T1, Tz, T3, andTs. ThusTy is the only template to
be investigated.

If p is matched byT, by Proposition 8, ex-
actly one of the two sets of pixelgy, w,x} NB and
{s,t,u} N B is a subset of all possible simplifier sets
associated tp. Consequently, one ¢fj,w, x}NBand
{s,t,u} NB s to be completely deleted. Without loss
of generality, we can assume thdt, w,x} NB) C D.

It is known that black pixek € D (see Fig. 3), thus
the following four cases depicted in Fig. 10 are to be
checked:
 g¢ D,w¢ D (see Fig. 10a):
By Lemma 2, pixek cannot be deleted. This is a
contradiction ax € D.
* g¢ D,we D (see Fig. 10b):

By Proposition 2x andw belong to different sub-

fields. Thus these two pixels cannot be deleted in

the same subiteration.

— If x is deleted first,w cannot be deleted by
Lemma 1. This is a contradiction as< D.

— If w is deleted first,x cannot be deleted by
Lemma 2. This is a contradiction as D.

* g€ D,w¢ D (see Fig. 10c):

Similarly to the previous case, by Propositiorx2,

andq belong to different subfields. Thus these two

pixels cannot be deleted in the same subiteration.

— If x is deleted first,q cannot be deleted by
Lemma 1. This is a contradiction gs= D.

— If g is deleted first,x cannot be deleted by
Lemma 2. This is a contradiction as D.

* g D,we D (see Fig. 10d):
By Proposition 2,x and g are in different sub-
fields, x and w are also in different subfields.
(Note thatq andw are in the same subfield, see
Fig. 1b.) Then the following points are to be
checked:

— If just one of the two pixelg| andw is deleted
first, then we get the previously examined cases
shown in Fig. 10b and Fig. 10c, respectively.
Thus we arrive at a contradiction.

— If x is deleted first, then both pixels andw
cannot be deleted by Lemma 1. This is a con-
tradiction agy € D andw € D.

Since a norsF0-deletable border pixel i§ may
not beSFi-deletable(i = 0,1,2,3) in the remaining
subiterations, the proof by contradiction is completed.

O
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Table 1: Speed ug/A for the five test images shown in -
Fig. 4-8 concerning the two 1-attempt algorithms, where
C is the computation time (in sec.) at the ‘conventional’
scheme, and is the required runing time according to the
advanced ‘1-attempt’ implementation.

Count of investigated points

[
|
1
I
!
ll —— conventional
\
1
i
\

o ——— 1-attempt
Test image Speed-up -
algorithmSl | algorithmSF NS
\
1.305 0.468 G“““»"w”\b@ﬂm”"ﬁ’»}w“@@ﬁ’u"@@é”@é‘
i‘ﬁ{u o006 — 28-37 | gz = 12.65 Iterations

Figure 11: Comparison of the behavior of the ‘conven-
0720 _ on g | 0264 _ g og tional’ and the ‘l-attempt’ implementations of algorithm

0.036 0.032 Sl for the image of a spider (see Fig. 6). While the ‘con-
ventional’ scheme evaluates the same border pixel several
0182 0.067 __ times, the ‘1-attempt’ approach investigates each pixl ju
oo11 = 16.55| &o1p=6-70 once.
results in a larger speed-up than the achievable speed-
98t —9.84 | 2188—-14149 up of algorithmSF. This is why a border pixel my
be a ‘morefold’ border pixel but each pixel is in just
0.403 0.208 one subfield. Figure 11 illustrates the differences be-
sees=6.01 | 355 =341 ‘ i ' ‘ i
0.067 0.061 tween the ‘conventional’ and the ‘1-attempt’ imple-
mentations.
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