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Abstract: Thinning is a frequently applied skeletonization technique. It is an iterative object-reduction in a topology-
preserving way: the outmost layer of an object is deleted, and the entire process is repeated until stability is
reached. In the case of an 1-attempt thinning algorithm, if aborder pixel is not deleted in the very first time, it
cannot be deleted in the remaining phases of the thinning process. This paper shows that two 4-cycle parallel
2D thinning algorithms (i.e., one subiteration-based and one subfield-based) are 1-attempt. In addition, we
illustrate that both algorithms are considerably faster ifwe know that they fulfill the 1-attempt property.

1 INTRODUCTION

A binary digital picture(picture in short) on the 2D
square grid is composed ofblackor whiteunit squares
that are called aspixels. A parallel reductiontrans-
forms a picture only by changing some set of black
pixels to white ones at a time, which is referred to as
deletion(Hall, 1996).

Skeletonizationin 2D providescenterlinethat is
a compact representation of a binary object, and it is
used in various image processing and computer vi-
sion applications (Saha et al., 2017; Siddiqi and Pizer,
2008).

Thinningis an iterative skeletonization technique:
border pixels of a binary object that satisfy certain
topological and geometric constraints are deleted, and
this process is repeated until no pixels are deleted
(i.e., the centerline is reached) (Hall, 1996; Kong and
Rosenfeld, 1989). Parallel thinning algorithms are
composed of parallel reductions, and they fall into
three major categories: fully parallel, subiteration-
based (or directional), and subfield-based (Hall, 1996;
Németh and Palágyi, 2011).Fully parallel algorithms
apply the same parallel reduction in each iteration; in
subiteration-basedalgorithms a cycle ofd≥ 2 paral-
lel reductions are assigned to the selectedd kinds of
deletion directions, and only border pixels of a certain
kind can be deleted at a subiteration;subfield-based
algorithms partitionZ2 into s≥ 2 subsets which are
alternatively activated, and only some pixels in the
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active subfield can be deleted simultaneously. Sim-
ilarly to the directional approach, an iteration step of
an s-subfield algorithm is composed ofs parallel re-
ductions. That is whyn-subiteration andn-subfield
algorithms are referred to asn-cyclealgorithms.

In the conventional implementation of thinning
algorithm, all border pixels are examined for possi-
ble deletion in each thinning phase. Thinning is the
fastest skeletonization approach, however, the con-
ventional scheme is a rather time-consuming for ob-
jects that also contain ‘thin’ and ‘thick’ parts, since
some pixels of the produced centerline ‘get free’
within ‘a few’ (sub)iterations, but the iterative object
reduction process is to be continued until no pixels
are deleted. That is why the authors of this paper in-
troduced the concept of 1-attempt thinning(Palágyi
and Németh, 2021a). In a 1-attempt thinning algo-
rithm, if a border pixel cannot be deleted in the very
first examination for possible deletion, this pixel re-
mains unchanged in the remaining thinning phases
(i.e., it is an element of the produced centerline). In
our previous papers we constructed a new fully paral-
lel thinning algorithm, and proved that it is 1-attempt
(Palágyi and Németh, 2021a); we managed to prove
that an existing 2-subfield parallel thinning algorithm
(Németh and Palágyi, 2011) is also 1-attempt (Palágyi
and Németh, 2021b); we showed that the thinning al-
gorithms fulfilling the 1-attempt property can be im-
plemented with a remarkable speed up (Palágyi and
Németh, 2021a; Palágyi and Németh, 2021b).

In this work, our attention is focussed on 4-cycle
parallel thinning: we prove that a 4-subiteration (di-
rectional) and a 4-subfield thinning algorithm are 1-
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a b
Figure 1: The two kinds of adjacency relations studied on
the square grid (a). The four pixelsp0, p1, p2, andp3 are
4-adjacent to the central pixelp. These four pixels and the
four ones marked ‘•’ are 8-adjacent top.
Partition ofZ2 into four subfields (b). All pixels marked ‘i’
are in subfieldSi (i = 0,1,2,3).

attempt, and show that their 1-attempt property is use-
ful (i.e., it makes computationally efficient implemen-
tation schemes possible).

2 BASIC NOTIONS AND RESULTS

Next, we apply the fundamental concepts of digital
topology as reviewed in (Kong and Rosenfeld, 1989).

An (8,4) picture on the 2D square grid is a
quadruple(Z2,8,4,B), where an element ofZ2 is as-
signed to each pixel (i.e., unit square);B⊆Z

2 denotes
the set ofblack pixels; each pixel inZ2 \B is said to
be awhite pixel; adjacency relations 8 and 4 are as-
signed toB andZ2 \B, respectively. Two pixels (i.e.,
unit squares) are 4-adjacentif they share an edge, and
they are 8-adjacentif those pixels share an edge or a
vertex, see Fig. 1a. LetN(p) denote the set of (eight)
pixels that are 8-adjacent top.

Since both studied relations are symmetric, their
reflexive-transitive closure form equivalence rela-
tions, and the generated equivalence classes are called
components. A black componentor an object is an
8-component ofB, while a white componentis a 4-
component ofZ2 \B.

A pixel p∈B is aninterior pixel for B, if all pixels
being 4-adjacent top are in B, p is called aborder
pixel if it is not an interior pixel, andp is said to be an
isolated pixelif it forms a singleton object (i.e., it is
not 8-adjacent to a black pixel). Here we distinguish
four types of border pixels: a black pixelp is called
an i-border pixel(i = 0,1,2,3) in an(8,4) picture, if
the pixel markedpi in Fig. 1a is white.

Thinning algorithms preserve some (border) pix-
els that provide relevant geometric information with
respect to the shape of the object. Most of existing
2D thinning algorithms preserveendpixels (i.e., ter-
minating pixels of curves). The two 4-cycle parallel

Figure 2: Examples of the studied two types of endpixels.
In the first two configurations,p is an endpixel of type 1 and
an endpixel of type 2. The third example gives an example
of an endpixel of type 2 (that is not an endpixel of type 1).

thinning algorithms described in Section 3 use the fol-
lowing two types of endpixels (Hall, 1996; Németh
and Palágyi, 2011):

Definition 1. A black pixel (in an(8,4) picture) is
anendpixel of type 1if it is 8-adjacent to exactly one
black pixel.

Definition 2. A black pixel p (in an(8,4) picture) is
an endpixel of type 2if it is endpixel of type 1 or it is
8-adjacent to exactly two black pixels q and r, where
q is4-adjacent to r.

Figure 2 shows some examples of the two types of
endpixels taken into consideration.

A crucial issue in thinning algorithms is to en-
sure topology preservation(Kong, 1995; Kong and
Rosenfeld, 1989). A reduction in a 2D picture is
topology-preserving if each object in the input picture
contains exactly one object in the output picture, and
each white component in the output picture contains
exactly one white component in the input picture. A
single black pixel issimplefor a set of black pixels if
its deletion is a topology-preserving reduction. Here
we make use of the following characterization of sim-
ple pixels:

Theorem 1. (Kong and Rosenfeld, 1989)A black
pixel p is simple in an(8,4) picture if all the following
conditions hold:

1. p is a border pixel.

2. There is exactly one black8-component in N(p).

Note that the simpleness in(8,4) pictures is a lo-
cal property, it can be decided by examining the eight
pixels that are 8-adjacent to the given black pixel,
and only non-isolated border pixels may be simple.
Here we representnon-simple pixels in(8,4) pictures
by the six basematching templates shown in Fig. 3.
All rotated and reflected versions of these base tem-
plates match non-simple pixels, too. It can be readily
seen that a pixel is non-simple if at least one template
matches it.

Parallel reductions can delete a set of black pixels.
Hence, we need to consider what is meant by topol-
ogy preservation when a number of black pixels are
deleted simultaneously. Kong gave the following suf-
ficient condition:
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Figure 3: The six base matching templates for character-
izing non-simple pixels in(8,4) pictures. Notations: each
black template position matches a black pixel; each white
element matches a white pixel; each position depicted in
gray matches either a black or a white pixel.

Theorem 2. (Kong, 1995)A parallel reduction act-
ing on(8,4) pictures is topology preserving, if all the
following conditions hold:

1. Only simple pixels are deleted.
2. For every set{p,q} of two 4-adjacent pixels that

are deleted, p is simple after deletion of q.
3. No object contained in a2× 2 square is deleted

completely.

Kong’s result provides a method for verifying that
a fully parallel or a subfield-based thinning algorithm
preserves topology. Rosenfeld gave another sufficient
condition that is useful in verifying the topological
correctness of subiteration-based algorithms:

Theorem 3. (Rosenfeld, 1975)A parallel reduction
acting on(8,4) pictures is topology preserving, if all
the following conditions hold for every pixel p that is
deleted:

1. p is an i-border pixel(i ∈ {0,1,2,3}).
2. p is not an endpixel of type 1.
3. There is exactly one black8-component in N(p).

3 TWO 4-CYCLE PARALLEL
THINNING ALGORITHMS

In this section, we describe two 4-cycle topology-
preserving parallel thinning algorithm acting on(8,4)
pictures on the square grid. The first algorithmSI is
subiteration-based, and the second oneSF falls into
the category of subfield-based. Algorithm 1 gives the
studied two algorithms.

In Algorithm 1, the kernel of therepeat cycle
corresponds to one iteration step that comprises four
subiterations (i.e., four parallel reductions). In these
subiterations, algorithmSI considers the four deletion
directions that are specified by the studied four types
of border pixels, and algorithmSF alternatively acti-
vates the four subfields shown in Fig. 1b.

Algorithm 1: 4-cycle algorithmT (T=SI,SF).

Input : picture(Z2,8,4,X)
Output : picture(Z2,8,4,Y)
Y← X
repeat

// one iteration step
for i← 0 to 3 do

// i-th subiteration
D(i)←{ p | p is T-i-deletable forY }
Y←Y \D(i)

until D(0)∪D(1)∪D(2)∪D(3) = /0;

The description of the two 4-cycle parallel thin-
ning algorithms (i.e., algorithmsSI andSF) is com-
pleted by specifying their deletion rules:

Definition 3. A black pixel p in picture(Z2,8,4,B) is
SI-i-deletablefor B (i = 0,1,2,3) if all the following
conditions hold:

1. p is an i-border pixel.

2. p is not an endpixel of type 2.

3. p is simple.

A black pixel (in an(8,4) picture) isnon-SI-i-
deletableif it is not SI-i-deletable(i = 0,1,2,3), i.e.,
at least one condition of Definition 3 is violated.

Definition 4. A black pixel p in picture(Z2,8,4,B) is
SF-i-deletablefor B (i = 0,1,2,3) if all the following
conditions hold:

1. p∈ Si (i.e., it is in the i-th subfield, see Fig. 1b).

2. p is not an endpixel of type 1.

3. p is simple.

A black pixel (in an(8,4) picture) is said to be
a non-SF-i-deletablepixel if it is not SF-i-deletable
(i = 0,1,2,3), i.e., at least one condition of Definition
4 is not satisfied.

Since all endpixels of type 1 are also endpixels of
type 2, the following statement holds:

Proposition 1. All endpixels of type 1 are notSI-i-
deletable(i = 0,1,2,3).

Let us state another obvious proposition:

Proposition 2. If p ∈ Si (i = 0,1,2,3) and q∈N(p),
q 6∈ Si.

By Proposition 1 and Proposition 2, it can be read-
ily seen that the parallel reductions that deleteSI-
i-deletable orSF-i-deletable pixels satisfy all con-
ditions of Theorem 3. Thus both algorithms are
topology-preserving.

Note that the idea of algorithmSI is originated
from Rosenfeld, but his early algorithm preserves
endpixels of type 1 (Rosenfeld, 1975). AlgorithmSF
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is proposed in (Németh and Palágyi, 2011), and it is
referred to asSF-4-1.

For reasons of scope, we do not analyze the ge-
ometric properties of the studied two 4-cycle algo-
rithms. Here we present five illustrative examples of
the centerlines produced by algorithmsSI andSF, see
Fig. 4-8. The pairs of numbers in parentheses are the
counts of object pixels in the produced centerlines and
the number of the required iterations.

SI (39685, 107) SF (39824, 107)

Figure 4: Centerlines produced by the studied algorithms
superimposed on a 730×820 image of a ship. The original
image contains 214310 object pixels.

SI (17128, 123) SF (17366, 123)

Figure 5: Centerlines produced by the studied algorithms
superimposed on a 730× 730 image of the yin and yang
symbol. The original image contains 190246 object pixels.

By Figs. 4-8, we can state that both algorithmsSI
andSF produce one pixel width and well-positioned
centerlines.

4 FULFILLING THE 1-ATTEMPT
PROPERTY

In this section, we show that the studied algorithmsSI
andSF fulfill the 1-attempt property.

In order to prove that both algorithms are 1-
attempt, we shall state two lemmas, introduce a new
concept, and examine the matching templates shown
in Fig. 9.

Lemma 1. Let p be a black pixel (in an(8,4) pic-
ture) that is matched by the template shown in Fig. 9a
(or its rotated versions). Then p cannot be deleted by
algorithmsSI andSF.

Proof. By Definition 3, Definition 4, and Proposition
1, only simple pixels that are not endpixels of type 1

SI (10092, 61) SF (10104, 61)

Figure 6: Centerlines produced by the studied algorithms
superimposed on a 730×795 image of a spider. The origi-
nal image contains 58557 object pixels.

SI (7555, 175) SF (7839, 175)

Figure 7: Centerlines produced by the studied algorithms
superimposed on a 990×804 image of a jellyfish. The orig-
inal image contains 214514 object pixels.

SI (7652, 186) SF (7839, 186)

Figure 8: Centerlines produced by the studied algorithms
superimposed on a 640×2200 image of a helicopter. The
original image contains 399984 object pixels.

a b
Figure 9: Templates (configurations) associated with
Lemma 1 (a) and Lemma 2 (b).

can be deleted by algorithmsSI andSF.
Since{q} is a black 8-component inN(p), pixel

p is simple (by Theorem 1) iff all the five pixelsa, b,
c, d, ande in N(p) \ {q} are white. In this casep is
an endpixel of type 1. Thusp cannot be deleted by
algorithmsSI andSF.

Lemma 2. Let p be a black pixel (in an(8,4) pic-
ture) that is matched by the template shown in Fig. 9b
(or its rotated versions). Then p cannot be deleted by
algorithmsSI andSF.

Proof. By Definition 3, Definition 4, and Proposition
1, only simple pixels that are not endpixels of type 1
can be deleted by algorithmsSI andSF.

Since {q} is a singleton black 8-component in
N(p), pixel p is simple (by Theorem 1) iff all the three
pixelsa, b, andc in N(p)\{q} are white. In this case
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p is an endpixel of type 1. Thusp cannot be deleted
by algorithmsSI andSF.

Now let us introduce a new concept.

Definition 5. Let p∈ B be a non-simple pixel in pic-
ture (Z2,8,4,B). The set of pixels S⊆ N(p)∩B is a
simplifier set(associated to p) if pixel p is simple in
picture(Z2,8,4,B\S).

For the sake of brevity in the following we will
refer to positions in the matching templates shown in
Fig. 3 as pixels in(8,4) pictures.

Proposition 3. Let p be a non-simple border (black)
pixel (in an(8,4) picture) that is matched by template
T0 (see Fig. 3). Then p cannot be deleted by algo-
rithmsSI andSF.

Proof. Since p is an isolated pixel (i.e., there is no
black pixel inN(p)), there is no simplifier set associ-
ated top. Thusp remains a non-simple black pixel.

By Definition 3 and Definition 4, only simple pix-
els can be deleted by algorithmsSI andSF. Thus p
cannot be deleted.

Proposition 4. Let p∈ B be a non-simple border
(black) pixel in picture(Z2,8,4,B) that is matched by
template T1 (see Fig. 3). Then p cannot be deleted by
algorithmsSI andSF.

Proof. We can state that{q} and{s} are the two pos-
sible simplifier sets associated top. This follows from
a careful examination ofT1.

Since, by Lemma 1,q ands cannot be deleted by
algorithmsSI andSF, p remains a non-simple black
pixel.

By Definition 3 and Definition 4, only simple pix-
els can be deleted by the studied two algorithms. Thus
p cannot be deleted.

Proposition 5. Let us assume that a non-simple bor-
der (black) pixel p (in an(8,4) picture) is matched by
template T2 (see Fig. 3). Then p cannot be deleted by
algorithmsSI andSF.

Proof. Since, by Lemma 1, all the two black pixels
(i.e.,q andu) and the two potentially black ones (i.e.,
s andw) cannot be deleted by algorithmsSI andSF,
p remains a non-simple black pixel.

By Definition 3 and Definition 4, only simple pix-
els can be deleted by algorithmsSI andSF. Thus p
cannot be deleted.

Proposition 6. Let us assume that a non-simple bor-
der (black) pixel p∈ B in picture (Z2,8,4,B) is
matched by template T3 (see Fig. 3). Then p cannot
be deleted by algorithmsSI andSF.

Proof. It can be readily seen that{s} and S =
{q,u,v,w,x}∩B are the two possible simplifier sets
associated top.

Since, by Lemma 1, pixels cannot be deleted in
the thinning process of none of the two algorithmsSI
andSF, let us examine the deletability ofS.

It is obvious thatp becomes an endpixel of type 1
after the deletion ofS.

By Definition 3 and Definition 4, only simple pix-
els that are not endpixels of type 1 can be deleted by
algorithmsSI andSF. Thus the simplifiedp cannot
be deleted.

Let us summarize the previously stated four
propositions:

Proposition 7. If a non-simple border (black) pixel p
is matched by template T0, T1, T2, or T3 in the input or
an interim picture of algorithmsSI or SF, p cannot
be deleted in the remaining thinning phases (i.e., it is
an element of the produced centerline).

Let us take the remaining two matching templates
shown in Fig. 3 into consideration.

Proposition 8. Let p∈ B be a non-simple border
(black) pixel in picture(Z2,8,4,B) that is matched by
template T4 (see Fig. 3). Then exactly one of the two
sets of pixels{q,w,x}∩B and{s, t,u}∩B is a subset
of all possible simplifier sets associated to p.

This simply follows from Theorem 1 and a careful
examination of templateT4.

Lastly an absolutely obvious statement is made:

Proposition 9. Let us assume that a (non-simple
black) pixel p (in an(8,4) picture) is matched by tem-
plate T5 (see Fig. 3). Then p is not a border pixel (i.e.,
it is an interior pixel).

4.1 Examining Algorithm SI

We are now ready to state the following theorem:

Theorem 4. AlgorithmSI is 1-attempt.

Proof. Without loss of generality, we can assume that
0-border pixels are examined for possible deletion in
the actual subiteration.

We need to verify that if a 0-border pixelp ∈ B
in picture(Z2,8,4,B) is non-SI-0-deletable in the ac-
tual subiteration, it remains non-SI-i-deletable in the
remaining thinning phases for anyi ∈ {0,1,2,3}.

Let us assume indirectly thatp is SI-i-deletable
for B\D for somei ∈ {0,1,2,3} and for some set of
deleted pixelsD⊆ B\ {p}.

Since pixelp is a non-SI-0-deletable (0-border)
pixel for B, at least one of the last two conditions of
Definition 3 is violated. Consequently,

• p is an endpixel of type 2 forB, or

• p is non-simple forB.
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a b c d
Figure 10: Configurations associated with Theorem 4 and
Theorem 5.

It is obvious that ifp is an endpixel of type 2 for
B (i.e., the first point holds),p remains an endpixel of
type 2 forB\D for anyD ⊆ B\ {p}. Thus only the
second point is to be examined (i.e.,p is non-simple
for B).

According to our assumption,p is deleted in a re-
maining thinning phase, thus it becomes simple for
B\D. It means thatN(p)∩D is a simplifier set of
deleted pixels.

Since p is a non-simple pixel forB, at least one
template shown in Fig. 3 matches it. By Proposition 7
and Proposition 9 we can ignore the five templatesT0,
T1, T2, T3, andT5. Thus templateT4 is the only one to
be investigated.

If p is matched byT4, by Proposition 8, ex-
actly one of the two sets of pixels{q,w,x} ∩B and
{s, t,u}∩B is a subset of all possible simplifier sets
associated top. Consequently, one of{q,w,x}∩Band
{s, t,u}∩B is to be completely deleted. Without loss
of generality, we can assume that({q,w,x}∩B)⊆ D.
It is known that black pixelx ∈ D (see Fig. 3), thus
the following four cases (shown in Fig. 10) are to be
checked:

• q 6∈D,w 6∈ D (see Fig. 10a):
In this case, by Lemma 2, pixelx cannot be
deleted. This is a contradiction asx∈ D.

• q 6∈D,w∈ D (see Fig. 10b):
Then the following points have to be checked:

– If x andw are deleted in different subiterations,
andx is deleted first, then, by Lemma 1, pixel
w cannot be deleted. This is a contradiction as
w∈D.

– If x andw are deleted in different subiterations,
andw is deleted first, then, by Lemma 2, pixel
x cannot be deleted. This is a contradiction as
x∈ D.

– If x andw are deleted simultaneously (i.e., in
the same subiteration), then

* w is not SI-0-deletable, since it is not a 0-
border pixel (i.e., pixelx is black);

* x is not SI-1-deletable, since it is not a 1-
border pixel (i.e., pixelp is black);

* x is not SI-2-deletable, since it is not a 2-
border pixel (i.e., pixelw is black).

Thus both pixelsx and w need to beSI-3-
deletable. Consequently, the two pixelse and
f are white. It can be readily seen by Theorem
1 that pixelx is simple iff pixeld is also white.
In this case,x is an endpixel of type 2. Thusx
is notSI-3-deletable, and we arrive at a contra-
diction.

• q∈ D,w 6∈ D (see Fig. 10c):
Similarly to the previous case, the following three
points are to be examined:

– If x andq are deleted in different subiterations,
andx is deleted first, then, by Lemma 1, pixel
q cannot be deleted. This is a contradiction as
q∈ D.

– If x andq are deleted in different subiterations,
andq is deleted first, then, by Lemma 2, pixel
x cannot be deleted. This is a contradiction as
x∈ D.

– If x andq are deleted simultaneously (i.e., in the
same subiteration), then

* x is not SI-0-deletable, since it is not a 0-
border pixel (i.e., pixelq is black);

* x is not SI-1-deletable, since it is not a 1-
border pixel (i.e., pixelp is black);

* q is not SI-2-deletable, since it is not a 2-
border pixel (i.e., pixelx is black).

Thus both pixelsx and w need to beSI-3-
deletable. Consequently, the two pixelsd and
e are white. It can be readily seen by Theorem
1 that pixelx is simple iff pixel f is also white.
In this case,x is an endpixel of type 2. Thusx
is notSI-3-deletable, and we arrive at a contra-
diction.

• q∈ D,w∈ D (see Fig. 10d):
In this case, the following two points are to be
checked:

– Let us assume that the three pixelsq, x, andw
are deleted in different subiterations.

* If just one of the two pixelsq andw is deleted
first, then we get the previously examined
cases shown in Fig. 10b and Fig. 10c. Thus
we arrive at a contradiction.

* If pixel x is deleted first, then both pixelsq
andw cannot be deleted by Lemma 1. This is
a contradiction asq∈ D andw∈ D.

* If the two pixelsq andw are deleted first, then
we get the previously examined case shown in
Fig. 10a. Thus we arrive at a contradiction.

* If the two pixelsq andx are deleted first, then
w cannot be deleted by Lemma 1. This is a
contradiction asw∈D.
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* If the two pixelsx andw are deleted first, then
q cannot be deleted by Lemma 1. This is a
contradiction asq∈ D.

– Lastly, let us assume that the three pixelsq, x,
and w are deleted at a time (i.e., in the same
subiteration). In this case

* x is not SI-0-deletable, since it is not a 0-
border pixel (i.e., pixelq is black);

* x is not SI-1-deletable, since it is not a 1-
border pixel (i.e., pixelp is black);

* x is not SI-2-deletable, since it is not a 2-
border pixel (i.e., pixelw is black).

Thus all the three pixelsq, x, andw need to be
SI-3-deletable. Consequently, pixelsd, e, and
f are all white. It can be readily seen, by The-
orem 1, pixelq is simple iff all the three pixels
a, b, andc are also white. In this case,q is an
endpixel of type 2. Thusq is notSI-3-deletable,
and we arrive at a contradiction. (Similarly, by
Theorem 1, pixelw is simple iff all the three
pixels g, h, and i are also white. Sincew is
an endpixel of type 2, it is notSI-3-deletable.
Thus we arrive at a contradiction.)

Since a non-SI-0-deletable border pixel may not
be SI-i-deletable (i = 0,1,2,3) in the remaining
subiterations of the thinning process, this theorem
holds.

4.2 Examining Algorithm SF

Similarly to algorithmSI, we can state that algorithm
SF fulfills the 1-attempt property:

Theorem 5. AlgorithmSF is 1-attempt.

Proof. Without loss of generality, we can assume that
a border pixelp to be examined is inS0.

We need to verify that if p ∈ B in picture
(Z2,8,4,B) is non-SF-0-deletable in the actual subit-
eration, it remains non-SF-0-deletable.

Let us assume indirectly thatp is SF-0-deletable
for B\D, whereD⊆B\{p} is a set of deleted pixels.

Since pixelp is a non-SF-0-deletable border pixel
for B, at least one of the last two conditions of Defini-
tion 4 is violated. Consequently,

• p is an endpixel of type 1 forB, or

• p is non-simple forB.

It is obvious that ifp is an endpixel of type 1 for
B (i.e., the first point holds),p remains an endpixel of
type 1 forB\D for anyD ⊆ B\ {p}. Thus only the
second point is to be examined (i.e.,p is non-simple
for B).

According to our assumption,p is deleted in a re-
maining thinning phase, thus it becomes simple for

B\D. It means thatN(p)∩D is a simplifier set of
deleted pixels.

Sincep is a non-simple pixel forB, at least one
template shown in Fig. 3 matches it. By Proposition
7 and Proposition 9 we can ignore the five templates
T0, T1, T2, T3, andT5. ThusT4 is the only template to
be investigated.

If p is matched byT4, by Proposition 8, ex-
actly one of the two sets of pixels{q,w,x}∩B and
{s, t,u}∩B is a subset of all possible simplifier sets
associated top. Consequently, one of{q,w,x}∩B and
{s, t,u}∩B is to be completely deleted. Without loss
of generality, we can assume that({q,w,x}∩B)⊆ D.
It is known that black pixelx ∈ D (see Fig. 3), thus
the following four cases depicted in Fig. 10 are to be
checked:

• q 6∈ D,w 6∈ D (see Fig. 10a):
By Lemma 2, pixelx cannot be deleted. This is a
contradiction asx∈ D.

• q 6∈ D,w∈ D (see Fig. 10b):
By Proposition 2,x andw belong to different sub-
fields. Thus these two pixels cannot be deleted in
the same subiteration.

– If x is deleted first,w cannot be deleted by
Lemma 1. This is a contradiction asw∈D.

– If w is deleted first,x cannot be deleted by
Lemma 2. This is a contradiction asx∈ D.

• q∈ D,w 6∈ D (see Fig. 10c):
Similarly to the previous case, by Proposition 2,x
andq belong to different subfields. Thus these two
pixels cannot be deleted in the same subiteration.

– If x is deleted first,q cannot be deleted by
Lemma 1. This is a contradiction asq∈D.

– If q is deleted first,x cannot be deleted by
Lemma 2. This is a contradiction asx∈ D.

• q∈ D,w∈ D (see Fig. 10d):
By Proposition 2,x and q are in different sub-
fields, x and w are also in different subfields.
(Note thatq andw are in the same subfield, see
Fig. 1b.) Then the following points are to be
checked:

– If just one of the two pixelsq andw is deleted
first, then we get the previously examined cases
shown in Fig. 10b and Fig. 10c, respectively.
Thus we arrive at a contradiction.

– If x is deleted first, then both pixelsq and w
cannot be deleted by Lemma 1. This is a con-
tradiction asq∈ D andw∈ D.

Since a non-SF-0-deletable border pixel inS0 may
not beSF-i-deletable(i = 0,1,2,3) in the remaining
subiterations, the proof by contradiction is completed.
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Table 1: Speed upC/A for the five test images shown in
Fig. 4-8 concerning the two 1-attempt algorithms, where
C is the computation time (in sec.) at the ‘conventional’
scheme, andA is the required runing time according to the
advanced ‘1-attempt’ implementation.

Test image Speed-up

algorithmSI algorithmSF

1.305
0.046 = 28.37 0.468

0.037 = 12.65

0.720
0.036 = 20.00 0.264

0.032 = 8.25

0.182
0.011 = 16.55 0.067

0.010 = 6.70

0.374
0.038 = 9.84 0.166

0.037 = 4.49

0.403
0.067 = 6.01 0.208

0.061 = 3.41

5 USEFULNESS OF THE
1-ATTEMPT PROPERTY

A general and computationally efficient implementa-
tion scheme for parallel thinning algorithms was pro-
posed in (Palágyi, 2008). This ‘conventional’ scheme
takes advantage of the fact that all thinning algorithms
may delete only border pixels. Thus we do not have
to examine the deletability of interior pixels, and the
repeated scans of the entire array (that stores the ac-
tual finite picture) can be avoided by using a linked
list that stores the border pixels that are present in the
input picture of the actual thinning phase.

In our previous papers, we proposed ‘advanced’
implementation for 1-attempt thinning (Palágyi and
Németh, 2021a; Palágyi and Németh, 2021b), and we
gained remarkable speed up over the ‘conventional’
scheme.

The usefulness of the 1-attempt property of the
studied two 4-cycle algorithmsSI andSF is demon-
strated by Table 1.

Both implementation schemes under comparison
were run on a usual laptop (Asus VivoBook S14; 1.8
GHz Intel Core i7; Fedora 32 Cinnamon, 64-bit) and
written in C++. Note that just the iterative thinning
process itself was considered here; reading the input
image and writing the output image were not taken
into account.

We strongly emphasize that the attainable speed-
up is quite image-dependent. Notice that algorithmSI

Figure 11: Comparison of the behavior of the ‘conven-
tional’ and the ‘1-attempt’ implementations of algorithm
SI for the image of a spider (see Fig. 6). While the ‘con-
ventional’ scheme evaluates the same border pixel several
times, the ‘1-attempt’ approach investigates each pixel just
once.

results in a larger speed-up than the achievable speed-
up of algorithmSF. This is why a border pixel my
be a ‘morefold’ border pixel but each pixel is in just
one subfield. Figure 11 illustrates the differences be-
tween the ‘conventional’ and the ‘1-attempt’ imple-
mentations.
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