
Ontology-based Detection of Inconsistencies in UML/OCL Models

Shan Lu1, Alexey Tazin1, Yanji Chen1, Mieczyslaw M. Kokar1 and Jeff Smith2

1Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, U.S.A.
2Sierra Nevada Corporation, Sparks, Nevada 89434, U.S.A.

Keywords: UML/OCL Models, OCL Constraints, Consistency Checking, Ontology-based Method, State Machine
Diagrams.

Abstract: Consistency checking of UML/OCL models is a challenging issue in software development. In this paper,
we discuss an OWL/ontology-based method to detect the inconsistencies in the UML/OCL models as the first
step of requirement change management. Specifically, we map the UML/OCL models to OWL, so that the
consistency of the corresponding ontology can be checked by OWL reasoners automatically. We propose a set
of mapping rules to interpret the components of UML state machine diagrams, along with OCL constraints,
to OWL DL. Towards this objective, we demonstrate three consistency reasoning tasks over a state machine
diagram using OWL reasoners. In each case, the result of reasoning is accompanied by an explanation of the
logic behind the decision.

1 INTRODUCTION

There are two main advantages of using an ontology
in software engineering. First, ontologies provide
common vocabularies of given domains that can
be shared between software developers for different
software applications. Second, once the model of the
software and the user requirements are represented as
an ontology in OWL (WC3, 2004), the requirement
satisfaction can be verified automatically using an
inference engine.

In this paper, we are focusing on the latter issue.
However, instead of proving that user requirements
are satisfied, we will show some “reasonable
assurances” to the developer that the model is correct,
reserving full verification of requirement satisfaction
as future work.

2 PROBLEM STATEMENT

Unified Modeling Language (UML) is a widely used
industry standard language that provides graphical
notation for software design specification in the early
phases of software development. Systems Modeling
Language (SysML) is an extension of a subset of
the UML. However, UML/SysML models alone are
not expressive enough to represent constraints on
the modeling concepts. Object Constraint Language

(OCL) is used to express constraints in UML/SysML
models. Many UML/SysML tools support adding
OCL constraints in UML class diagrams and SysML
block diagrams. However, none of the tools supports
the semantics checking of the constraints. In other
words, the UML/SysML tools do not check if the
model is correct according to these constraints.

To support the software developers with
automated reasoning capabilities when developing
the model of the software, we use an ontology-
based method to reason about the correctness
of a UML/SysML model with OCL constraints.
Specifically, we map UML class diagrams (or
SysML block diagrams), state machine diagrams,
and OCL constraints to OWL (WC3, 2004), and
check the consistency of the corresponding ontology
by running an OWL inference engine. Although
significant amount of research on mapping UML
models to ontologies has been reported, almost all of
the researchers limit their scope of investigation to
class diagrams. There is a lack of widely accepted
mapping rules for the mapping of UML behavior
diagrams to OWL.

In this paper, we propose a set of mapping rules
to interpret the components of UML state machine
diagrams, along with OCL constraints, to OWL DL.
The novelty of our approach is the identification
and implementation of a more complete mapping
of UML/SysML to OWL, than what is included

194
Lu, S., Tazin, A., Chen, Y., Kokar, M. and Smith, J.
Ontology-based Detection of Inconsistencies in UML/OCL Models.
DOI: 10.5220/0010814500003119
In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2022), pages 194-202
ISBN: 978-989-758-550-0; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

with current CASE tools to support deeper model
verification. There are a few papers on the mapping
of the UML/SysML behavior diagrams to OWL
DL, however, they either use a non-OCL logic,
a restricted set of OCL operators and/or do not
support formal proof. Our mapping rules have
two advantages: (1) they show how to translate
both basic state machine elements (including states,
transitions, events, actions, guards, and triggers)
and OCL constraints in the state machine diagrams
(including the OCL invariants in states and guards)
to OWL, and (2) the OCL to OWL translation rules
cover relational operators (e.g equivalent, greater/less
than) between variables.

The existing research on consistency checking
of UML state machine diagrams focuses on the
contradictions between: (1) the UML metamodel and
state machine specifications, and (2) state machine
diagrams and other types of diagrams. Verification
that state machine diagrams are not contradictory
with the requirements expressed as OCL constraints is
also a very important issue in software development.
In this paper, we check for contradictions between
OCL constraints in state machine diagrams. We
demonstrate this capability on three exemplary
inference tasks.

The rest of this paper is organized as follows. In
Section 3, we review some of the existing literature
related to our work. In Section 4, we show the
OWL axiom usage in reasoning about SysML block
diagrams. In Section 5, we propose a set of mapping
rules to interpret the components of state machine
diagrams along with OCL constraints to OWL DL,
and demonstrate three reasoning tasks using OWL
reasoners. Finally, Section 6 summarizes our work.

3 RELATED WORK

We group our literature review into four categories.

Classification of Inconsistency in UML Models:
Consistency checking of UML/SysML models is an
important step in MBSE-based system development.
The appropriate definitions of types of consistency are
still an open research topic, c.f., Ahmad and Nadeem
(2010); Elaasar and Briand (2004); Usman et al.
(2008). One of the UML consistency classifications
is horizontal vs. vertical consistency. Horizontal
consistency, also called intra-model consistency,
means the lack of contradictions between different
diagrams at the same level of abstraction. Vertical
consistency, also called inter-model consistency,
means the lack of contradictions between different
diagrams at different levels of abstraction. Another

basic classification of consistency in UML is syntactic
vs. semantic consistency. Syntactic consistency refers
to the relation between UML diagram specifications
and a UML metamodel, whether the syntax of a given
diagram is compatible with the syntax prescribed by
the metamodel. Semantic consistency refers to the
meaning of UML diagrams, i.e., to the notion of
truth - whether any contradictions in the model do
not exist and whether a concept can be instantiated.
Other methods of consistency classification were also
discussed in the literature, e.g., static versus dynamic
consistency, multi-level consistency, and the nature of
errors.

In this paper, we focus on the consistency of UML
models that include requirements expressed in OCL.
Since the OCL constraints capture the semantics
of the domain, our approach falls in the semantic
validation category.
Consistency Checking Via Mapping to Formal
Languages: Many approaches rely on the mapping
UML/SysML models to a formal languages and
automatic proof engines that are used for reasoning
on these models. While many recent papers propose
mapping of UML to OWL, most of the papers
seem to ignore the fact that UML and OWL have
different semantics. This issue was first discussed
in (Baclawski et al., 2001), where the authors
identified similarities and differences between UML
and DAML (DARPA Agent Markup Language). To
close the gap between the two representations, the
authors proposed extending UML by adding two
metamodel elements called Property and Restriction,
where a property is a grouping of association ends
and a restriction is a classifier for objects. The
recommendation from the (Baclawski et al., 2001)
paper has not materialized primarily due to the fact
that UML has not been modified as suggested in the
paper. Moreover, DAML became OWL.

UML2Alloy (Anastasakis and Ray, 2010;
Przigoda and Drechsler, 2016) maps UML/OCL
models to Alloy notations, and then the Alloy model
is automatically analysed by the Alloy Analyzer.
Alloy is an object modeling language based on First
Order Logic (FOL), offering declaration syntax
compatible with graphical object oriented models,
and state-based formulas. However, Alloy models do
not provide semantic notations which are necessary
during the analysis phase of software development
(Dwivedi and Rath, 2018).

USE (Gogolla et al., 2008, 2007) includes an
interpreter for a subset of UML and OCL. It provides
its own UML/OCL user interface and lets one check
constraints (invariants and pre- and post-conditions).
That is, it checks model states (snapshots) making

Ontology-based Detection of Inconsistencies in UML/OCL Models

195

sure invariants are not contradictory. However, this
is not a formal system and it uses a custom UI that
does not support XMI import/export.

Rehman et al. (Latif et al., 2018, 2019) modeled
a smart parking and a sewage systems using UML
activity diagrams, translating them to automata-based
models, and then to temporal logic of actions. A
(TLA)-based formal method was utilized to validate
and verify system properties using the TLA+ toolbox
(Lamport, 2021). The toolbox includes a proof
system and a high level language to generate TLA
code. TLA+ is a good tool for verifying code
simulating state machines, it is not clear how it could
be used for model analysis, which was our objective.

Automated Reasoning on UML/OCL conceptual
Schemas (AuRUS) (Rull et al., 2013) is a standalone
application which allows verifying and validating
UML/OCL conceptual schemas specified in
ArgoUML. Verification consists in determining
whether the schema satisfies a set of well-known
desirable properties such as class liveliness or
non-redundancy of integrity constraints. However,
AuRUS only validates the structural part of a schema.
Validation of the behavioral part of a schema is not
supported.

There are many other methods surveyed in
(Ahmad and Nadeem, 2010; Usman et al., 2008)
that are based on a formal language. In particular,
the authors considered mapping UML models to
DL. None of the methods reviewed in that paper
check the consistency of the OCL constraints. Some
researchers pursue verification of consistency, e.g.,
Filipovikj (2019); Mahmud et al. (2016), but not of
UML/SysML models.
Ontology-based Consistency Checking: In
(Parreiras et al., 2007), the authors investigate the
method called TwoUse to integrate a UML model
and an OWL ontology. Since OWL classes can not
be exploited through OCL expressions, the authors
propose an extension to the OCL basic library, called
OCL-DL, to permit operations to call the OWL
reasoner. In OCL-DL, the authors propose new
operations which rely on reasoning engine services
to extend the boundaries of OCL towards OWL.
However, their method only focuses on UML class
diagrams.

In (Berardi et al., 2005), the authors represent
class diagram operations using three ways: (1)
FOL n-ary predicate that has to satisfy some FOL
assertions. (2) DLR-ifd (variation of DL) where the
operation is represented as an n-ary relation. (3)
ALCQI (variation of DL) where the approach is based
on reification and an operation is expressed as an
atomic concept - ALCQI roles. Our approach to class

diagram mapping is in line with (Berardi et al., 2005).
Mapping Behavior Models to OWL DL: The
method in (Van Der Straeten et al., 2002) translates
UML state machines and OCL constraints to DLR -
an expressive Description Logic (DL) that supports
n-ary relations. The basic idea is that the states and
transitions in a state diagram are mapped to primitive
concepts in DL. We have not found tool support for
the translation. Also, the translation of OCL to OWL
does not allow relational operators between variables.

In (Gröner and Staab, 2010), the authors describe
a transformation of UML statechart primitives to
OWL DL. In their transformation, a specific state
is defined by a class expression constrained by
transitions and state conditions. A specific transition
is defined by an intersecting class expression standing
for the source, target, event and guard of this
transition. However, this work does not support
translation of OCL constraints.

In (Khan and Porres, 2015; Khan et al., 2013), the
authors translate both the UML class and statechart
diagrams of a model to a single ontology, and analyze
the consistency and satisfiability of the model using
OWL reasoners. However, the authors do not provide
any translation of transitions in the statechart diagram.
Moreover, translation of OCL to OWL does not allow
relational operators between variables.

The method in (Belgueliel et al., 2014) represents
state machine using OWL individuals. It is difficult
to extend this method for OCL support, since the
mapping of OCL to OWL that we use is class-based.

The detailed comparison of theses mapping rules
is shown in Table 2.

4 OWL REASONING ABOUT
SysML BLOCK DIAGRAMS

An ontology is an explicit, formal specification of a
shared conceptualization (Gruber, 1993). Ontologies
include five basic components to represent the
knowledge of a domain: (1) Classes: groups of things
that share common characteristics; (2) Relations:
the ways in which classes can be related to one
another; (3) Constraints: determining which values
are allowed for relations; (4) Axioms: logical
statements or assertions about classes, relations,
and constraints; (5) Instances: the things that the
ontology describes. Web Ontology Language (OWL)
is a family of standardized ontology languages with
formal semantics to formalize ontologies. Protégé
(Stanford University, 2020) is a popular open-source
ontology editor and knowledge base framework. We
used Protégé to develop our ontologies.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

196

Figure 1: SysML Block Diagram of the CAB Model.

We used the Cameo Concept Modeler plugin
(NoMagic, 2021) for Cameo Enterprise Architecture
to translate SysML block diagrams to OWL. Then
we used rules to translate OCL contraints to OWL.
In this paper, we only consider a subset of OCL
constraints, namely OCL invariants. OCL invariants
were manually translated into OWL 2 DL axioms
based on (Parreiras et al., 2007) and (Fu et al., 2017).
Specifically, for a block diagram, the OCL invariants
of a block are translated into OWL object property
restrictions. OWL DL provides three types of class
axioms to construct a class description: SubclassOf,
EquivalentClasses, DisjointClasses that can be used
for checking consistency.

Generalization associations between two blocks
are translated into SubclassOf axioms of the
corresponding OWL classes. Moreover, OCL
invariants of a block are translated into SubclassOf
axioms of the corresponding OWL class. In DL, we
represent this as C1 ⊑ C2. When such a subclass
axiom is part of an OWL model, for any individual
x of C1, the fact (x rdf:type C2) is inferred by an OWL
reasoner. If the class description of C1 has conflicts
with the class description of C2, the OWL reasoner
will detect this as an inconsistency.

Generalizations with the “Equivalent Class”
stereotype in SysML are translated into
EquivalentClass axioms of the corresponding
OWL classes. In DL, we represent this as C1 ≡C2. If
the class description of C1 has conflicts with the class
description of C2 (i.e., the sets of the individuals from
these two classes do not fully overlap), the OWL
reasoner will detect this as an inconsistency.

Dependencies with the “Disjoint With” stereotype
in SysML are translated into DisjointClasses axioms
of the corresponding OWL classes. In DL, we
represent this as C1 ≡ ¬C2. In such a case, if the
class description of C1 has any overlap with the class
description of C2, the OWL reasoner will detect this
as an inconsistency.

Here we consider an example based on the Cloud
Agility Baseline (CAB) (DARPA, 2021) that SNC
and Northeastern developed to provide an adaptable
framework which can be molded to meet typical
Logistics and Cloud applications and changes to those
requirements. Figure 1 shows the SysML block
diagram of the CAB model. The question we are
investigating in this paper is - how do we verify the
correctness of the CAB model, e.g., are the state
machines of the CAB correct?

Ontology-based Detection of Inconsistencies in UML/OCL Models

197

Figure 2: Main Structure of the CAB Ontology.

Table 1: Principles of mapping of OCL to OWL.

Invariant OWL DL
Context C1 : p →
f orAll(oclIsTypeO f (C2))

C1 ⊑ ∀p.C2

Context C1 : p →
exists(oclIsTypeO f (C2))

C1 ⊑ ∃p.C2

Context C1 : attr1 =C2 C1 ⊑ ∀p.C2
Context C1 : attr1! =C2 C1 ⊑ ¬∃p.C2

Cameo translates the six blocks in the CAB
SysML model and the associations between them
to the classes and properties in the CAB ontology.
Figure 2 shows the main structure of the CAB
ontology in Protégé. However, the Cameo mapping-
to-OWL capability is very limited and the automatic
translation lost some information in translation. We
extended the automatically generated CAB ontology
by mapping the OCL constraints in the Dispatcher
block and the Shipment block into OWL restrictions
for the corresponding classes manually (shown in
Figures 3 and 4). In this step, we followed the
mapping principles shown in Table 1. Finally, we
ran the OWL reasoner. It identified the semantic
inconsistency of the model: the Shipment block is
equivalent to Nothing, i.e., the OWL class is not
satisfiable (it cannot have any individuals).

5 MAPPING RULES

The main concepts of state machines are state,
transition, event, guard and action. These concepts
are mapped to OWL following the rules shown in
Table 2. A simple state is mapped to a class

expression in OWL. The classes are constrained by
transitions and state invariants expressed in OCL.
All the state classes are disjoint. In OWL, each
transition of a state machine diagram is represented
by an intersection of class expressions for the source
state, target state, event and guard of this transition.
In addition, our translation introduces relational
operators between variables.

Figure 3: OWL Restrictions for the Dispatcher Class.

Figure 4: OWL Restrictions for the Shipment Class.

5.1 A Mapping Example

The statechart diagram in Figure 5 describes the
behavior of the Dispatcher block from Figure 1. The
six states are mapped to six OWL classes. The OWL
DL representations of the OCL constraints on the
states are shown in the following DL expressions.

Allocating ≡Waiting⊔GettingTransporters
⊔MakingAssignment

(1)

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

198

Table 2: UML State Machine Diagram to OWL Mapping Rules Comparison.

State Machine
Component

Gröner and
Staab (2010)

Van
Der Straeten
et al. (2002)

Khan and
Porres (2015)

Belgueliel
et al. (2014)

Our Mapping
Rule

State

Simple
State

Class Class Subclass of
the class of
the object

Individual Class

Composite
State

Superclass
of substate
classes

Superclass
of substate
classes

Superclass
of substate
classes

Individual Superclass
of substate
classes

Initial
State

Class Class Class Individual Class

Final State Class Class Class Individual Class
OCL
invariants

None None OWL object
property
restrictions

None OWL object
property
restrictions

Transition Class Class None Individual Class
Event Class Class None Individual Class
Action None Class None Individual Class
Guard Class Class None Individual Class

Guard expressed
in OCL invariants

None None None None OWL object
property
restrictions

Figure 5: Dispatcher Statechart.

Allocating ⊑ ∃isRequestedBy.Shipment (2)

Complete ⊑ ∀isRequestedBy.1Shipment (3)

Waiting ⊑ ∀hasAssignment.0Assignment (4)

GettingTransporters ⊑ ∃hasAssignment.(
Assignment⊓ ≥ hasTransporter.1Transporter)

(5)

MakingAssignment ⊑ ∃hasAssignment.(
Assignment ⊓∀hasShipment.1Shipment⊓
∀hasTransporter.1Transporter)

(6)

The six transitions are also mapped to six
OWL classes. The transition from Waiting
to GettingTransporters is triggered by the
event shipRequest. So the transition class

Ontology-based Detection of Inconsistencies in UML/OCL Models

199

WaitingToGettingTrans is defined as:

WaitingToGettingTrans ≡
∃ f sm.triggeredBy.{shipRequest}

(7)

WaitingToGettingTrans ⊑ ∃ f sm.hasSource.Waiting
⊓∃ f sm.hasTarget.GettingTransporters0

(8)

GettingTransporters state has two outgoing
transitions. After the operation chooseTransporter of
the dispatcher is invoked, if the returned transporter
state is busy, the state stays at GettingTransporters.
Otherwise, the state transits to MakingAssignment.
So the two transition classes are defined as:

GettingTrans ≡
∃ f sm.triggeredBy.chooseTransporter
⊓∃(f sm.hasGuard. f sm.EvalCmp.EQ
⊓∃ f sm.hasLe f tExpr.{transporterState}
⊓∃ f sm.hasRightExpr.{busy})

(9)

GettingTrans ⊑
∃ f sm.hasSource.GettingTransporters
⊓∃ f sm.hasTarget.GettingTransporters

(10)

GettingTransToMakingAssignment ≡
∃ f sm.triggeredBy.chooseTransporter
⊓∃(f sm.hasGuard. f sm.EvalCmp.EQ
⊓∃ f sm.hasLe f tExpr.{transporterState}
⊓∃ f sm.hasRightExpr.{busy})

(11)

GettingTransToMakingAssignment ⊑
∃ f sm.hasSource.GettingTransporters
⊓∃ f sm.hasTarget.MakingAssignment

(12)

From the state MakingAssignment, after the
dispatcher invokes the operation assignShipment,
if the deliverShipment is true, then the state of the
dispatcher goes back to Waiting.

MakingAssignmentToWaiting ≡
∃ f sm.triggeredBy.assignShipment
⊓∃(f sm.hasGuard. f sm.EvalCmp.EQ
⊓∃ f sm.hasLe f tExpr.{deliverShipment}
⊓∃ f sm.hasRightExpr.{true})

(13)

MakingAssignmentToWaiting ⊑
∃ f sm.hasSource.MakingAssignment
⊓∃ f sm.hasTarget.Waiting

(14)

5.2 OWL Reasoning with State
Machine Diagrams

In order to check the consistency of the state machine
in Figure 5, we translate the state machine along with
OCL constraints to OWL (as shown in Section 5.1).
In order to show different types of inconsistencies of
constraints, we defined three reasoning tasks.

The first OWL reasoning task is to check if the
OCL invariants of all the states are consistent. The
state invariants that may cause the object violate
the constraints imposed on state diagrams in the
UML superstructure specification of state machine
are considered to be inconsistent invariants. For
example, for the composite state Allocating, the OCL
constraint of the state invariant is:

isRequestedBy−> size()> 0 (15)

which means the dispatcher is in Allocating state if
it is requested by at least one shipment (Figure 6).
The Waiting state is a substate of Allocating. The
substate should not have a conflicting invariant with
the composite state. Adding the following invariant
to the Waiting state:

isRequestedBy−> size() = 0 (16)

would imply being in the Waiting state even if there
was no request by any shipment (Figure 7). Thus,
such two OCL constraints are inconsistent, and thus
there can not be a state individual that can satisfy both
the constraints of Allocating and the constraints of
the Waiting states. When we run the OWL reasoner
in Protégé, it will identify the semantic inconsistency
of the OWL axioms in Allocating class and Waiting
class.

Figure 6: Allocating. Figure 7: Waiting.

The second OWL reasoning task is to check
whether only one transition can be taken out of a
state, i.e., whether the state machine is deterministic.
For a state with more than one possible outgoing
transition, e.g., GettingTransporters, the state that
has two outgoing transitions GettingTrans and
GettingTransToMakingAssignment, adding the guard:

assigns.transporterState = busy (17)

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

200

to both transitions, would make the choice of a
transition not unique. In OWL, two outgoing
transitions are represented by two disjoint
transition classes and should have disjoint guards.
Otherwise, the OWL reasoner will identify semantic
inconsistency because an individual can not belong
to both a type and its complement. The inconsistent
result is shown in red in Figures 8 and 9.

Figure 8: Outgoing Transition1.

Figure 9: Outgoing Transition2.

The third OWL reasoning task is to check if
the state machine contains deadlocks. A deadlock
happens when two or more processes have conflicting
resource needs. In this paper, we consider a simple
deadlock case: for a state with only one outgoing
transition, the guards on this outgoing transition of
a state are mutually exclusive. In other words, if the
guards on the only outgoing transition of a state can
not be satisfied at the same time, the state machine for
the object will be stuck in this state. For example, for
the transition from MakingAssignment to Waiting, if
we add the guards as follows:

assigns.deliverShipment = true,
assigns.deliverShipment = f alse

(18)

once the state machine of the dispatcher object gets
into MakingAssignment, it will not be able to get
out of this state because the deliverShipment attribute
can not be both true and false at the same time.
When we run the OWL reasoner, it will identify the
semantic inconsistency of the OWL axioms in the

MakingAssignmentToWaiting class that represents the
transition, as shown in red in Figure 10.

Figure 10: MakingAssignmentToWaiting Transition.

6 CONCLUSIONS

In this paper, we discuss an ontology-based method to
reason about the correctness of UML/SysML models
that include OCL constraints on state machines.
Specifically, we map the UML/SysML models with
OCL constraints to OWL and check the consistency
of the corresponding ontology by running an OWL
inference engine. We propose a set of rules
for mapping components of UML state machine
diagrams along with OCL constraints to OWL DL.
We also demonstrate three examples of reasoning
tasks in which OWL axioms are used for consistency
checking of state machine diagrams. Our work is
aimed at providing the software developer with some
reasonable assurances about the correctness of the
model in the system modeling stage of software
development. This is the first step of requirement
change management. In the future, we plan to
extend the scope of our approach to a more complete
and automatic verification of UML state machine
specifications with OCL constraints as well as both
theoretical analysis and experimental validation of the
correctness of the mapping rules.

ACKNOWLEDGEMENTS

This research was supported by a grant from
the Defense Advanced Research Projects Agency
(DARPA). The views, opinions and/or findings
expressed are those of the authors and should not
be interpreted as representing the official views or
policies of the Department of Defense or the US
Government. The authors wish to acknowledge
contributions from the whole IDAS team, and in
particular James Hove and Everett Pompeii of SNC.

Ontology-based Detection of Inconsistencies in UML/OCL Models

201

REFERENCES

Ahmad, M. A. and Nadeem, A. (2010). Consistency
checking of UML models using Description Logics:
A critical review. In 2010 6th International
Conference on Emerging Technologies (ICET), pages
310–315. IEEE.

Anastasakis, Bordbar, G. and Ray (2010). On challenges of
model transformation from UML to Alloy. Software
and Systems Modeling, 9(69).

Baclawski, K., Kokar, M. K., Kogut, P. A., Hart, L.,
Smith, J., Holmes, W. S., Letkowski, J., and Aronson,
M. L. (2001). Extending UML to support ontology
engineering for the semantic web. In International
Conference on the Unified Modeling Language, pages
342–360. Springer.

Belgueliel, Y., Bourahla, M., and Brik, M. (2014). Towards
an ontology for UML state machines. Lecture Notes
on Software Engineering, 2(1):116.

Berardi, D., Calvanese, D., and De Giacomo, G. (2005).
Reasoning on UML class diagrams. Artificial
intelligence, 168(1-2):70–118.

DARPA (2021). Intent-Defined Adaptive Software (IDAS).
https://www.darpa.mil/program/intent-defined-
adaptive-software; Accessed: 2021-08-30.

Dwivedi, A. K. and Rath, S. K. (2018). Transformation
of Alloy Notation into a Semantic Notation. ACM
SIGSOFT Software Engineering Notes, 43(1):1–6.

Elaasar, M. and Briand, L. (2004). An overview of
UML consistency management. Carleton University,
Canada, Technical Report SCE-04-18.

Filipovikj, P. (2019). Automated Approaches for Formal
Verification of Embedded Systems Artifacts. PhD
thesis, Mälardalen University.

Fu, C., Yang, D., Zhang, X., and Hu, H. (2017). An
approach to translating ocl invariants into owl 2
dl axioms for checking inconsistency. Automated
Software Engineering, 24(2):295–339.

Gogolla, M., Bttner, F., and Kuhlmann, M. (2008). System
modeling with USE (UML-based specification
environment).

Gogolla, M., Büttner, F., and Richters, M. (2007). Use: A
UML-based specification environment for validating
UML and OCL. Science of Computer Programming,
69(1-3):27–34.

Gröner, G. and Staab, S. (2010). Specialization and
validation of statecharts in OWL. In International
Conference on Knowledge Engineering and
Knowledge Management, pages 360–370. Springer.

Gruber, T. R. (1993). A translation approach to portable
ontology specifications. Knowledge acquisition,
5(2):199–220.

Khan, A. H. and Porres, I. (2015). Consistency of UML
class, object and statechart diagrams using ontology
reasoners. Journal of Visual Languages & Computing,
26:42–65.

Khan, A. H., Rauf, I., and Porres, I. (2013). Consistency
of UML class and statechart diagrams with state
invariants. In MODELSWARD, pages 14–24.

Lamport, L. (2021). The tla+ toolbox. https://lamport.
azurewebsites.net/tla/toolbox.html; Accessed: 2021-
01-04.

Latif, S., Rehman, A., and Zafar, N. A. (2018). Modeling
of Sewerage System Linking UML, Automata and
TLA+. In 2018 International Conference on
Computing, Electronic and Electrical Engineering
(ICE Cube), pages 1–6.

Latif, S., Rehman, A., and Zafar, N. A. (2019). NFA
Based Formal Modeling of Smart Parking System
Using TLA +. In 2019 International Conference on
Information Science and Communication Technology
(ICISCT), pages 1–6.

Mahmud, N., Seceleanu, C., and Ljungkrantz, O. (2016).
ReSA Tool: Structured Requirements Specification
and SAT-based Consistency-checking. In Proceedings
of the Federated Conference on Computer Science and
Information Systems, pages 1737 – 1746. IEEE.

NoMagic (2021). Cameo concept modeler 2021x
plugin documentation. https://docs.nomagic.com/;
Accessed: 2021-09-09.

Parreiras, F. S., Staab, S., and Winter, A. (2007). TwoUse:
Integrating UML models and OWL ontologies.
Citeseer.

Przigoda, Soeken, W. and Drechsler (2016). Verifying the
structure and behavior in UML/OCL models using
satisfiability solvers. IET Cyber-Physical Systems:
Theory and Applications, 1:49–59.

Rull, G., Farré, C., Queralt, A., Teniente, E., and Urpı́,
T. (2013). Aurus: explaining the validation of
UML/OCL conceptual schemas. Software & Systems
Modeling, 14.

Stanford University (2020). Protégé. http://protege.
stanford.edu/; Accessed: 2021-08-30.

Usman, M., Nadeem, A., Kim, T.-h., and Cho, E.-s. (2008).
A survey of consistency checking techniques for UML
models. In 2008 Advanced Software Engineering and
Its Applications, pages 57–62. IEEE.

Van Der Straeten, R., Van, R., and Straeten, D. (2002).
Using Description Logic in Object-Oriented Software
Development.

WC3 (2004). OWL Web Ontology Language: Overview.
https://www.w3.org/TR/owl-features/; Accessed:
2021-08-30.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

202

