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Abstract: Open-Source Software (OSS) is increasingly common in industry software and enables developers to build
better applications, at a higher pace, and with better security. These advantages also come with the cost of
including vulnerabilities through these third-party libraries. The largest publicly available database of easily
machine-readable vulnerabilities is the National Vulnerability Database (NVD). However, reporting to this
database is a human-dependent process, and it fails to provide an acceptable coverage of all open source
vulnerabilities. We propose the use of semi-supervised machine learning to classify issues as security-related
to provide additional vulnerabilities in an automated pipeline. Our models, based on a Hierarchical Attention
Network (HAN), outperform previously proposed models on our manually labelled test dataset, with an F1
score of 71%. Based on the results and the vast number of GitHub issues, our model potentially identifies
about 191 036 security-related issues with prediction power over 80%.

1 INTRODUCTION

In today’s competitive environment Open-Source
Software (OSS) enables organizations to leverage
technology to better meet customer needs. A report
from Synopsys found that 99% of codebases contain
open source, and 70% of each codebase was open
source (Synopsys, 2020). The increased exposure to
open source software is often regarded as an enabler
of higher productivity, but which may come at the cost
of higher susceptibility to attacks enabled through
vulnerabilities in OSS. To maintain control over the
security of the proprietary software, the maintainers
need to monitor vulnerabilities introduced through
external software. This is part of what is known as
Software Composition Analysis (SCA).

Vulnerabilities can be reported and be given a
Common Vulnerabilities and Exposures (CVE) iden-
tifier and can then be stored in databases such as the
National Vulnerability Database (NVD). This allows
for a centralized repository and collection of vulner-
abilities. However, not all vulnerabilities are given
a CVE identifier. Even if such vulnerabilities are
patched in the OSS component, it can be difficult for
end users to identify the need to update the compo-
nent to its most recent version. This will risk software
being exposed to attacks.

In OSS, contributors, users, and community mem-
bers often use issues to organize their work, specify
requirements, and report bugs in the software. These
issues may contain security-related information about
the OSS, such as bugs with security implications, vul-
nerability reports, or information on a security update.
Vulnerabilities reported as issues may sometimes not
find their way to a CVE. Being able to classify issues
as security-related is the first step towards assessing if
they describe a vulnerability.

In this paper, we use Natural Language Pro-
cessing (NLP) to automate the process of finding
such security-related issues. Our model leverages
unlabeled issues through Semi-Supervised Learning
(SSL) to increase the performance during inference.
SSL enables the model to better generalize to the task
and to better learn the underlying software-related se-
mantics in the issues. Our contributions are summa-
rized as follows:

• We analyze, through Term-Frequency Inverse
Document Frequency (TF-IDF) and truncated
Singular Value Decomposition (SVD), the use of
issue labels and CVE summaries as labeled train-
ing data, and show that such data should not be
used to train an issue classifier.

• We describe how to model the problem with a
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Hierarchical Attention Network (HAN) with Vir-
tual Adversarial Training (VAT) and show that this
model provides better results than previously pub-
lished models.

The result is a state-of-the-art classification of GitHub
issues into security and non-security related issues.
We also provide our manually labeled test dataset for
future comparison1.

The paper is outlined as follows. Section 2 pro-
vides some background on NLP, vulnerabilities, is-
sues, and our method of evaluation. In Section 3,
we describe and analyze the data that is used in our
model. Then, the model is detailed in Section 4, fol-
lowed by the results in Section 5. We compare our
approach and results to related works in Section 6,
before the paper is concluded in Section 7.

2 BACKGROUND

2.1 Natural Language Processing

NLP is the task to make computers understand lin-
guistics, usually with the support of machine learning.
Within NLP, tasks such as machine translation, doc-
ument classification, question answering systems, au-
tomatic summary generation, and speech recognition
are common (Khurana et al., 2017). One of the main
advantages of using machine learning for NLP is that
the algorithms may gain a contextual semantic under-
standing of text where classifications are not depen-
dent on a single word, but rather a complex sequence
of words that can completely alter the meaning of the
document. This is beneficial in the endeavor to find
vulnerabilities through a classification of issues, as
the context of single words in these documents may
matter.

Supervised classification methods require lots of
labeled training data. As in many real-world use cases
of machine learning, there is a limit to the amount
of available training data. In a semi-supervised ap-
proach, a more limited set of labeled training data can
be used together with a large set of unlabeled data.
There are multiple different techniques for leveraging
the unlabeled data during training. In our approach,
we use a technique called Virtual Adversarial Train-
ing (VAT), which helps the model generalize by al-
tering the input of labeled examples during training.
VAT was chosen as the SSL-method due to that it
is usable with already implemented neural networks,

1All data used for training, validation and tests will be
made publically available if the paper is accepted.

which makes it good to benchmark SSL vs non-SSL
methods.

2.2 Vulnerabilities and Security Related
Issues

Vulnerability data is to a large extent centralized
through CVE identifiers, maintained by Mitre. Each
vulnerability also comes with a very short summary,
describing e.g., the affected software, the nature of
the vulnerability, and the potential impact in plain
text. These vulnerabilities are collected in NVD,
which adds further information useful for better un-
derstanding and analyzing the vulnerabilities. This
includes a severity score and Common Platform Enu-
meration (CPE) identifiers that uniquely identify the
product and versions that are vulnerable. Some CVE
entries also relate the vulnerability to the underlying
weakness by providing a Common Weakness Enu-
meration (CWE) identifier. NVD currently collects
around 15k-20k data annually, and the database cur-
rently contains around 150k vulnerabilities.

GitHub is the world’s largest host of source code
and provides services such as source code manage-
ment, version control, issue tracking, and continuous
integration. Issues are used to track ideas, enhance-
ments, bugs, and tasks related to a repository. Issues
can be assigned metadata for categorizing it, e.g., bug,
feature, question, etc. In particular, the security label
can be used to mark that an issue is security-related.
However, it is at the user’s discretion to choose labels,
so this tag may or may not be accurate, depending on
the project and developers. For purposes of accessing
GitHub data, an API is provided that allows anyone
to fetch GitHub information without having to parse
web pages.

2.3 Evaluation in Machine Learning

Data is typically divided into three independent sets.
First, the training data is used to train the ML model.
Then, a validation dataset is used to monitor model
performance during development. Finally, a test set is
used to evaluate the performance of the model. In the
evaluation, standard tools and notions include preci-
sion, recall, F1, and receiver operating characteristic
- area under curve (ROC-AUC). Denote the number
of true positives as TP, false positives as FP, true neg-
atives as TN, and false negatives as FN. Fixing the
decision threshold for a classifier, the first three are
then defined by

precision =
T P

T P+FP
, recall =

T P
T P+FN

,
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and their harmonic mean F1

F1 = 2 · precision · recall
precision+ recall

.

Our algorithms will be optimized for F1 in order to
reduce the risk of building a trivial classifier.

ROC-AUC is derived from the integral of the
curve that is created from varying the classification
threshold for the true-positive rate (t pr) and the false-
positive rate ( f pr). These are derived from

tpr =
Positives correctly classified

Total positives
=

T P
T P+FN

,

and

fpr =
Negatives incorrectly classified

Total negatives
=

FP
FP+T N

.

3 UNDERSTANDING AND
EXPLORING THE DATA

As a first step, we need to have a good understand-
ing of the underlying data. We divide this process
into data acquisition, data cleaning, and exploratory
analysis. The results will be used when developing
the classification model.

3.1 Data Acquisition

Three different data-sources were used.

• Issues from GitHub, where over 7 000 000 is-
sues were acquired from the GitHub API, cover-
ing over 30 000 of the most popular repositories
according to the number of stars.

• CVEs from NVD, which can safely be considered
as security-related in their text-semantics.

• SecureReqNet (SRN) (Palacio et al., 2019),
where the authors provided a labeled open-source
dataset of security-related issues collected from
GitHub, NVD, and GitLab. The labels for this
dataset were automatically generated from issue-
labels, where 10% of the data has been sampled
for quality assurance.

GitHub issues include several data points, includ-
ing e.g., title, body, creation date, labels, closing date,
and references to commits and releases in which the
issue was closed. A CVE, as provided by NVD, con-
sists of e.g., the CVE id, when it was updated, a brief
summary of the vulnerability, a CWE identifier, links
to other resources, and a list of CPEs.

The data from GitHub and SRN primarily consist
of community-generated data in a weakly controlled
environment with varying quality of each data point.
In contrast, CVE data stems from a more controlled
environment with higher data quality. While 150k
security-related texts (CVE summaries) appear to be
excellent candidates for training data, this fundamen-
tal difference requires careful analysis. Otherwise,
there is a risk that an NLP model would only learn
to differ between data sources. Issues can be linked to
CVEs by being listed as an external resource on NVD.
Such issues can safely be regarded as security-related.
This provided us with an additional 941 security-
related issues from GitHub, among which 847 are
used for training and 94 for validation.

Issues may be linked to labels in a zero-to-many
relationship. Labels can provide additional sig-
nal to the distinction between security-related and
non-security-related issues. Thus, another candidate
for training data are issues with an explicit, user-
generated, security label. These issues will also be
explored in more detail in order to determine their
suitability for training the classifier.

3.2 Data Cleaning

To prepare the data for further analysis and classifi-
cation we must clean noisy parts of the data that will
not contribute signal to the model. To properly work
with text, input documents are tokenized, i.e., split
into tokens, such as words and punctuation. To give
the model as useful tokens as possible, the following
cleaning measures were implemented:

• Non-English documents were removed.

• All emojis were removed.

• Everything within the HTML-tag code was re-
moved.

• All text was converted to lowercase.

• Special characters were removed and end of sen-
tences were replaced with a special tag.

• Very long (over 60,000 characters) and very short
(under 10 characters) documents were removed.

• Words were stemmed to their root word.

The reason to remove code from the documents
is that code and text are vastly different and would
require a separate model to accurately extract signals
from the code.

3.3 Exploratory Analysis

We start by exploring the labels. Since these are
user-generated, labels with different casing, wording
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and format may in fact be the same underlying la-
bel. To handle different variations of the same label,
all labels were clustered using character-level term
frequency–inverse document frequency (TF-IDF) and
K-means clustering, and similar labels were aggre-
gated to the resulting clusters. Each cluster name was
determined by the most common label in that par-
ticular cluster. The security-labeled issues represent
about 0.2% of all labels, while help wanted makes up
23%, bug makes up 13%, and enhancement makes up
9%. It is clear that the share of security-labeled is-
sues was very low, which suggests that labels should
not be included in the model. Furthermore, variations
within label groups were significant and may provide
too much noise to the model. This conclusion will
also be supported by the data visualization below.

To evaluate the potential use of CVE summaries as
training data for security-related text, we first extract
bigrams and trigrams from both GitHub issues and
CVEs. The ten most common bigrams/trigrams are
given in Table 1. Looking at these samples, there is no
apparent similarity between the two datasets in terms
of term frequency.

To verify this non-similarity further, we perform
a dimensionality reduction to visualize this. The
cleaned issues and CVE-summaries were fed into
a term frequency–inverse document frequency (TF-
IDF) model, which calculates the term importance of
each term in a document in relation to the full corpus.
The resulting high dimensional sparse matrix is a nu-
merical representation of the input documents. For
visualization, the dimensionality of the data was re-
duced with a truncated singular value decomposition
model (Truncated SVD) (Halko et al., 2011). Fig. 1
can be viewed as term-frequency-similarity between
different data labels. It is clear that there is a large dif-
ference in term-frequency distribution between CVE-
summaries and issues. There is also no meaningful
difference between security-related issues and non-
security related issues, which makes this a non-trivial
problem. In conclusion, this tells us that CVEs and
issues use vastly different words in their text docu-
ments, which may be expected as CVEs are formally
written by a very limited number of people, while is-
sues can be written by anyone. Moreover, since there
is no significant difference between the different la-
bels, and all labels use a significantly different lan-
guage than CVEs, the label information is not consid-
ered in our model.

From this analysis, we decided to exclude CVE-
summaries from the training phase of the model. If
such data would be included, the model would simply
become a classifier that determines the source of the
input data, rather than a classifier that determines the

security-relevance of the document.

0.0

0.5

1.0

Figure 1: TF-IDF and Truncated SVD over cleaned issues
and cleaned CVEs, where the distribution of the first feature
is visualized. The labels enhancement (13%), bug (10%),
and security (0.2%) were picked out from the issue dataset,
and all other issues are marked as other. 1000 data-points
were sampled from each class to visualize the distributions.

Since security-related and non-security related is-
sues are not linearly separable, to build an effective
model for a classifier, a non-linear model is required.
To further increase the performance we will explore
the option of using semi-supervised learning, which
uses unlabeled examples to help the model generalize
well.

A summary of the data used for training and val-
idation is given in Table 2. It is a mix between data
provided by SRN (Palacio et al., 2019) (their train-
ing and validation sets, unfortunately, they did not re-
lease their test set) and our own dataset collected from
GitHub. We split the datasets into four different sets
for clear validation. The labeled training set consists
of examples from the SRN training set, issues from
our GitHub dataset that are references in CVEs from
NVD, as well as unlabeled data from our own GitHub
dataset. The validation set consists of a hold-out sub-
set from the SRN training set. We test our final model
on the SRN Validation Dataset to enable a fair com-
parison of results. The User Labeled Test Dataset is
a separate test set consisting of sampled issues, uni-
formly sampled from our own GitHub dataset, that
has been manually labeled by us with the Annotation
Guidelines described in the Appendix .1. The User
Labeled Test Dataset gives us a gold standard to com-
pare the SRN datasets to, as these sets are automati-
cally generated as described in (Palacio et al., 2019).
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Table 1: The top 10 Bigrams and Trigrams from NVD CVE summaries and cleaned GitHub Issue bodies respectively. (There
is no relationship between bigrams and trigrams on the same line more than them having same ranking within their own
dataset.).

Bigram Trigram

NVD Summaries Github Issues NVD Summaries Github Issues

remote attackers step reproduc allows remote attackers unknown sourc java
allows remote java org cause denial service java desktop java
execute arbitrary expect behavior attackers execute arbitrary desktop java awt
denial service node modul remote attackers execute sourc java desktop
cause denial py line execute arbitrary code java awt eventdispatchthread
attackers execute unknown sourc cross site scripting java org apach
arbitrary code oper system attackers cause denial avail avail avail
via crafted java lang site scripting xss python site packag
cross site java android remote attackers cause java android view
attackers cause java awt arbitrary web script java awt eventqueu

Table 2: Summary of the data used in our training, evaluation, and testing. Note that only 3M of the available 7M of the
unlabeled GitHub issues were used for training. This was due to time-complexity and diminishing returns.

Dataset GitHub Gitlab Source
Train Dataset
non-security related 47095 460 SRN
security 3691 (2844, 847) 452 SRN + Author
unlabeled 3M 0 Author
Validation Dataset
non-security related 4683 66 SRN
security 453 (359, 94) 55 SRN + Author
SRN Validation Dataset (used as a test set)
non-security related 555 0 SRN
security 514 0 SRN
User Labeled Test Dataset
non-security related 835 0 Author
security 112 0 Author

4 MODELING

In this section, we describe the model used for our
classifier. The amount of labeled training data, in
particular security-related, is very limited, requiring
a semi-supervised model. We describe a Hierarchical
Attention Network, and then show how we combine
this with Virtual Adversarial Training in order to sup-
port a semi-supervised approach.

4.1 Hierarchical Attention Network

Hierarchical Attention Network (HAN) was intro-
duced in (Yang et al., 2016) to better model
full documents with an attention-based neural net-
work (Vaswani et al., 2017). It tries to mirror the input
document by having one attention-mechanism for the
word level, and one for the sentence level in a hier-
archical structure. This helps the model learn sparse

semantics in documents and creates a better contex-
tual representation of important terminology, attrac-
tive properties for our task.

The model takes the stemmed word sequences as
input wit , t ∈ [1,T ], for the i-th sentence and the t-th
word in the sequence length T . The text is converted
to a numerical representation through pre-trained em-
beddings provided by SRN (Palacio et al., 2019),
which is represented as matrix We. From the nu-
merical word vectors, seen as input in Fig. 2, a bi-
directional contextual word-encoding is derived from
two LSTM (Hochreiter and Schmidhuber, 1997) lay-
ers running in different directions on the input se-
quence. The outputs from the LSTM-cells are derived
as

xit =Wewit , t ∈ [1,T ], (1)
−→
hit =

−−−→
LST M(xit), t ∈ [1,T ], (2)

←−
hit =

←−−−
LST M(xit), t ∈ [T,1], (3)
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and the bi-directional results are concatenated as hit =

[
−→
hit ,
←−
hit ]. Then, hit is used as input to the word-level

attention layer, which directs the model’s attention
to more important words, e.g., buffer-overflow, XSS,
and injection. Such words contribute more signal to
positive security classification. The attention mecha-
nism is derived from

uit = tanh(Wwhit +bw), (4)

αit =
exp(uT

it uw)

∑t exp(uT
it uw)

, (5)

si = ∑
t

αithit , (6)

where uit is the output from the learned weights and
biases that transforms every single word. This output
is the prediction-power for the attention for that par-
ticular word. Then, Eq. (5) normalizes the attention
for sentence i and multiplies uit with a trainable con-
text vector uw to find the relevant words to give atten-
tion to. Eq. (6) multiplies each word with its attention
to either increase or decrease its relative importance.

After the word level attention, sentences are en-
coded to further propagate through the model. The
sentence encodings are then derived from another bi-
directional LSTM-layer as

−→
hi =

−−−−→
LSTM(si), s ∈ [1,L], (7)

←−
hi =

←−−−−
LSTM(si), s ∈ [L,1], (8)

and concatenated to hi = [
−→
hi ,
←−
hi ]. From this trans-

formation, hi becomes a contextual representation of
sentence i that considers the results from neighbor-
ing sentences. This is then passed on to a sentence-
level attention layer, derived in a similar manner as
word-level attention, but with variables trained with
sentence-level context. The output v (see Fig. 2) is
then used for further modeling. A visualization of
word- and sentence-layer attention is given in Fig. 3,
where high impact word and sentences are shown in
red.

4.2 Adversarial Training

Adversarial Training (Goodfellow et al., 2014) is a su-
pervised learning method based upon creating adver-
sarial examples. These are created by slightly modi-
fying existing examples, making the model misclas-
sify the adversarial example. The idea is to use ob-
servations that are very close in input space but are
very different in their output. For these, there ex-
ists a small variation to the input data, perturbations,
that will make the model misclassify that example by

adding the perturbation to the input data, which cre-
ates the adversarial examples. By training on these
adversarial examples, the model can regularize and
generalize better.

Adversarial Training modifies only the loss func-
tion and can thus be applied to already existing mod-
els. Denote x as the input, y as the label paired with
x, θ as the parameters of the model, θ̂ as the parame-
ters with a backpropagation stop, and r as a small uni-
formly sampled perturbation with the same dimension
as x. The adversarial loss Ladv is then given by

Ladv(θ) =− log p(y|x+ radv;θ), (9)

where

radv = arg min
r,||r||≤ε

log p(y|x+ r; θ̂). (10)

The ε is a hyperparameter that restricts the absolute
value of r. Stopping the backpropagation in θ̂ means
that the backpropagation algorithm should not be used
to propagate the gradients in the case of θ̂.

4.3 Virtual Adversarial Training

Virtual Adversarial Training (VAT) (Miyato et al.,
2015) is an extension of Adversarial Training, mak-
ing it accessible in a semi-supervised environment.
Instead of using the labels to determine the pertur-
bations, the direction of the gradient is followed us-
ing an approximation. This is done by calculating the
Kullback-Leibler divergence (DKL) between the input
probability distribution and the input probability dis-
tribution plus a small random perturbation.

The DKL between two discrete probability distri-
butions P and Q over the same probability space χ is
defined as

DKL[P||Q] = ∑
x∈χ

P(x) log
(

P(x)
Q(x)

)
. (11)

The VAT cost is given by

Lv-adv(θ) = DKL[p(·|x, θ̂)||p(·|x+ rv−adv;θ)], (12)

where

rv-adv = arg max
r,||r||≤ε

DKL[p(·|x; θ̂)||p(·|x+ r; θ̂)]. (13)

A classifier is trained to be smooth by minimiz-
ing Eq. (12), which can be seen as making the classi-
fier resilient to worst-case perturbation(Miyato et al.,
2015).
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Figure 2: The structure of HAN.

Figure 3: Example of attention mechanism both for word level and sentence level attention. The red word highlights indicates
relevance to the sentence. The red highlights to the left of each sentence shows the relevance of each sentence to the document.
Grey or non-highlighted words are deemed irrelevant to the core message of the document.

4.3.1 VAT in Text Classification

The original formulation of VAT, as described in Sec-
tion 4.3, does not consider sequential data with arbi-
trary length. Therefore, the technique needs to be re-
purposed for this case, as proposed in (Miyato et al.,
2017). Let s be a sequence containing word embed-
dings, s = [v̂1, v̂2, . . . , v̂T ] where v̂i is a normalized
word embedding derived as

v̂i =
vi−E(v)√

Var(v)
. (14)

By using a sequence of word embeddings as the in-
put instead of the sequence of the tokenized words,
applying the perturbations obtained from the VAT-
calculation directly on the embeddings will create
adversarial examples suitable for text, as shown in
Fig. 4.

In VAT for text classification, the approximated
virtual adversarial perturbation is calculated during
the training step as

Lv-adv(θ) =

1
N′

N′

∑
n′=1

DKL[p(·|sn′ ; θ̂)||p(·|sn′ + rv-adv,n′ ;θ)],
(15)

where
rv-adv = εg/||g||2, (16)

and

g = ∇s+dDKL[p(·|s; θ̂)||p(·|s+d; θ̂)]. (17)

N denotes the number of labeled examples and the
unlabeled examples are denoted as N′. The symbol ∇x
is the gradient using the observation x during back-
propagation.

4.4 Hierarchical Attention Virtual
Adversarial Network

The HAN architecture is also expanded with a VAT-
implementation. Hierarchical Attention Virtual Ad-
versarial Network (HAVAN) still retained the HAN-
layer structure, but with some extra SSL steps added
to it. The embeddings are normalized using Eq. (14).
The loss Lv-adv from Eq. (15) is then added to the loss

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

90



Figure 4: An overview of embeddings with HAN (left), and the perturbed embeddings with HAN (right). Dim is the output
dimension of each layer and y is the output of the network.

function as well as the option to perturb the embed-
dings of the model during a training step. In HAVAN,
both labeled and unlabeled data is used during train-
ing, making it an SSL-based approach. Labeled data
is used for the standard loss function, while both unla-
beled and labeled data are used for the VAT loss func-
tion.

Since we have a binary classification problem, the
Bernoulli distribution is used as the distributions in
Eq. (15). An overview of the model can be seen in
Fig. 5.

Figure 5: Overview of the layer structure of HAVAN (HAN
with VAT). Perturb is a perturbation that is added to the em-
beddings.

5 RESULTS AND DISCUSSION

5.1 Main Results

We evaluate four different models. A simple logis-
tic regression is used as a base model. The SRN from
(Palacio et al., 2019) was adapted for comparison with
the two models proposed in this paper, namely the
HAN and the HAVAN models as detailed in Section 4.
The SRN model was retrained on the same data with

configuration according to their GitHub Repository
(SEMERU-Lab, 2021), and optimized to equal extent
as other models. All models are evaluated against the
automatically generated SRN Validation Dataset and
our User Labeled Test Dataset. The results are pre-
sented in Table 3. The best performance in each se-
curity category is presented for each dataset with bold
numbers.

For the SRN Validation Dataset, it is clear that
the HAN-model outperforms the other models with a
macro average of 73% F1, and security classification
of 65% F1.

For this dataset, all models have very high preci-
sion scores and quite low recall, which may indicate
that the models are finding somewhat similar exam-
ples, but not other variants of security issues. This
is an indication of a skewed dataset, which is not un-
common when labels are automatically generated as
in the case of the SRN Validation Dataset. To further
analyze the skewness of the dataset, it would be in-
teresting to link the training and validation set-issues
to CWEs when applicable. CWE information could
indicate if we have higher or lower performance for
certain types of security weaknesses.

Looking at the User Labeled Test Dataset, one can
observe a significant decrease in performance in terms
of classifying as security-related, with the best per-
forming modeling being HAVAN at a macro F1 of
71%, and a security F1 of 48%. The most proba-
ble reason for the different levels of performance is
that the different testing sets draw data from different
distributions, as one is automatically generated and
one is manually labeled. It may be that the User La-
beled Test Dataset is more inclusive in its definition
of security-related issues, which can be analyzed in
the Annotations Guidelines in Appendix .1.

In Fig. 6, we can see the 95% confidence of the
models with error on the y-axis, and it is clear that
the variance is quite high for the User Labeled Test
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Dataset as it contains quite few examples. This makes
a good argument to try to label more data with high
confidence on its security relevance to further increase
the testing and training capabilities. A larger, less
skewed training set would also further increase gen-
eralization to the underlying challenge and real-world
performance of the model.

Looking at the AUC in Table 5, we observe
that the models achieve a much higher score on the
SRN Validation Dataset than the User Labeled Test
Dataset. This is because the training set draws from
the same, possibly skewed, distribution as the SRN
Validation Dataset. The Logistic Regression outper-
forms the other models in AUC, which means that
there is a more distinct separation of the distributions
of security and non-security. This may be an attrac-
tive property if the predictions are used as a ”priori-
tized list” to pop for further analysis, which may be a
valid use-case.

5.2 Findings from Predictions

Perhaps against intuition, the closing rate of security-
related issues is lower than the global closing rate. In
our results, we found that issues with security predic-
tion power over 80% had a closing rate of 80.54%,
and the global closing rate is 81.45%. This is also
visible in the longevity of issues, as it takes on av-
erage 11.6% longer to close a security issue in com-
parison to a non-security related issue. On average, it
takes 119 days to close an issue with security predic-
tion power above 80%, in comparison to 107 days for
issues with a security prediction power ≤ 50%. In to-
tal, with predictions on 7M issues, we found 497 019
(7%) issues with a prediction power over 50%, and
191 036 (2.7%) with over 80%. These numbers can
be compared to the existing 158 000 vulnerabilities on
NVD, indicating that our approach could potentially
be used to additionally identify and enumerate a large
number of new vulnerabilities. Centralizing all vul-
nerabilities allows more efficient processes to iden-
tify, evaluate and prioritize vulnerabilities in software,
and subsequently to apply adequate remediation. As
of now, there are over 72M issues on GitHub, which
could result in about 2M security-related issues with
a prediction power of over 80%, assuming the distri-
bution is representative.

6 RELATED WORK

In (Palacio et al., 2019), Palacio et. al implemented a
model to perform the same task, but with a different
model architecture and a supervised approach. They

released an open-source version of their model and
data called SecureReqNet (SRN). They use a convo-
lutional neural network (CNN) with a strong analogy
to N-gram features in the documents and achieve a
performance of 98.6% AUC, but evaluate on a differ-
ent dataset than our experiments as their test set is not
publicly available. Their dataset was automatically
derived from CVE-references and validate by experts
through random-sampling. This process opens up the
model to bias towards security issues with strong link
to NVD, and may not be a fit representation of secu-
rity related issues in a broader sense, and thus not an
accurate representation of the reality. In this paper, we
derived our final testing set from completely random-
sampled issues, with no prior bias, to get a better rep-
resentation of the real underlying dataset. We call
this the User Labeled Test Dataset, and a substantial
difference in performance is presented in Table 3 be-
tween our model and the model presented in (Palacio
et al., 2019).

In (Chen et al., 2020) the authors are using a
SSL to find vulnerability candidates from commit-
messages, issues, pull requests, and patches, with a
high F1-measure of 70.5% (72% recall, 69% preci-
sion). Their approach uses self-learning (Nigam and
Ghani, 2000) as their SSL-approach, which may treat
predictions on unlabeled examples as labels on suc-
ceeding training iterations. This SSL-approach drasti-
cally improves their performance, which also implies
the hypothesis that unlabeled data should be used
to increase performance for this task. This work is
based on work from some of the same authors where
they conduct similar research without SSL (Zhou and
Sharma, 2017).

The authors of (Zou et al., 2018) present a solution
to distinguish security related bug reports and non-
security related bug reports. The model was trained
with a supervised approach with textual and meta-
features extracted from 23 608 reports from Bugzilla
with bugs in Firefox, Seamonkey, and Thunderbird.
For this, more narrow approach, they achieved the
strong F1 of 88.6% (79.9% recall, 99.4% precision).

7 CONCLUSION

We propose the use of a Hierarchical Attention Net-
work (HAN) to classify GitHub issues as security re-
lated. To increase the amount of training data, we also
propose to use Virtual Adversarial Training (VAT).
The models are compared to the previously proposed
SRN model using both the automatically labeled SRN
validation set as testset and a manually labelled test-
set provided in this paper. Comparing the models, the
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Table 3: The best results for each model over the different test sets. Bold entries shows the best result for security classification
in each column.

SRN Validation Dataset User Labeled Test Dataset
Precision Recall F1 score Precision Recall F1 score

Logistic Regression
non-security related 65% 99% 79% 92% 92% 92%
security 99% 42% 59% 40% 39% 40%

macro average 81% 72% 69% 66% 66% 66%
SRN
non-security related 66% 99% 79% 91% 89% 90%
security 97% 44% 61% 30% 36% 33%

macro average 81% 71% 70% 61% 62% 61%
HAN
non-security related 68% 99% 80% 91% 97% 94%
security 97% 49% 65% 57% 33% 42%

macro average 82% 74% 73% 74% 65% 68%
HAVAN (HAN w/ VAT)
non-security related 66% 99% 79% 92% 98% 95%
security 97% 44% 61% 75% 35% 48%

macro average 82% 72% 70% 83% 67% 71%

Figure 6: The average error on security related data with its 95% confidence interval for the shows the SRN Validation Dataset
(a) and the User Labeled Test Dataset (b). The y-axes represent the average error. Note that the scales in the two graphs are
different.

Table 4: The Area Under Curve (AUC) score for each model and test set.

Logistic Regression HAN
SRN Validation Dataset 0.962 SRN Validation Dataset 0.932
User Labeled Test Dataset 0.729 User Labeled Test Dataset 0.666
SRN HAVAN (HAN w/ VAT)
SRN Validation Dataset 0.955 SRN Validation Dataset 0.939
User Labeled Test Dataset 0.634 User Labeled Test Dataset 0.707

HAN model outperforms the other models on the au-
tomatically generated test data, though the differences
are not dramatic for any of the macro average scores.
For the manually labeled dataset, the HAVAN model
gives the best results, with precision being particu-
larly strong. At the same time, SRN has the worst
performance for this dataset.

It seems clear that there are performance advan-
tages to use a model tailored to full document classi-
fication, the HAN-model, for classifying issues. The
attention mechanisms could also enable deeper anal-
ysis of important parts of each document, and even
potentially UX-capabilities with short summaries of
each document where the sentence with the most at-
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Table 5: The AUC score for each model using the SRN Val-
idation Dataset (SRN) and our User Labeled Test Dataset
(UL).

SRN UL
Logistic Regression 0.962 0.729
SRN 0.955 0.634
HAN 0.932 0.666
HAVAN (HAN w/ VAT) 0.939 0.707

tention could be presented to a user. It also seems ad-
vantageous to leverage the vast number of unlabeled
examples with semi-supervised learning to classify is-
sues as security-related. Still, for our approach, it is
important to note that the number of labeled relevant
security examples is relatively few in comparison to
the full unlabeled dataset. To enable the use of more
aggressive SSL-methods, there is a need to acquire
more labeled examples.
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APPENDIX

A Annotation Guidelines

An annotation policy was established in order to make
the annotation process more efficient and to favor re-
peatability and reproducibility. All data in the User
Labeled Test Dataset was annotated by one of the au-
thors with knowledge in the field of cybersecurity, a
condition that must be met in order to adequately label
data as relating to cybersecurity. Some data was an-
notated by multiple parties and compared in the cases
of mismatch to ensure the annotations were similar.

Many issues were ambiguous and unclear, making
it important to create a policy. The annotation guide-
line was used to establish a unified labeling method.
It was updated regularly during the annotation phase
whenever a new kind of case arose. The categories
do not discriminate between questions, warnings, or
other discussions about a certain topic. The text is
annotated as the most severe category that accurately
describes it. The priority goes from Vuln being high-
est to Safe being lowest.
Vuln: Presence of known exploits, user-reported vul-
nerabilities.
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Risk: Commonly exploited methods such as
unrestricted user input, memory leaks, unex-
pected/unintended r/w/e os/database access, over-
flows, user-reported potential risk, segmentation fault,
access violation.
Caution: Breaking changes, breaking dependencies,
breaking compilation, breaking updates, installation
issues, authentication problems, port or socket mal-
functioning, firewall issues service unavailable, site
down, failed tests, out of memory, crash due to in-
stabilities, unexpected/unintended r/w/e os/database
deny, broken links, unknown CPU usage (mostly high
usage with no obvious reason for it), incorrect mathe-
matical calculations (with potential side effects), run-
time errors, unknown memory issues, configuration
problems of server, error-flags concerning security,
talks about computer security in some way.
Unsure: Unexpected behavior, minor breaking
changes (e.g., new functionality that has not been
used in production in a previous version), lack of con-
fidence in its safety, UI bugs, development mode only
issues
Safe: Text does not cover topics concerning the cate-
gories above, such as issues asking for help with po-
tential programming mistakes.

During the evaluation, the issues labeled with
Vuln, Risk, and Caution were considered security-
related in our binary classification. Unsure and Safe
was considered not security-related.
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