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Abstract: In medical imaging modality, such as X-ray computerized tomography, image reconstruction from projection 

is to produce the density distribution within the human body from estimates of its line integrals along a finite 

number of lines of known locations. Generalized Analytic Reconstruction from Discrete Samples (GARDS) 

can be derived by the Singular Value Decomposition analysis. In this paper, by discretizing the image 

reconstruction problem, we applied GARDS to the problem and evaluated the image quality. We have 

computed the condition number in the case of changing the views and the normalized mean square error in 

the case of changing the views and the number of the eigenvectors. We have showed that the error decreases 

with increasing the number of eigenvectors and the number of views. 

1 INTRODUCTION 

In medical imaging modality, such as X-ray 

computerized tomography (CT) and positron 

emission tomography (PET), image reconstruction 

from projection is to produce the density distribution 

within the human body from estimates of its line 

integrals along a finite number of lines of known 

locations (Herman, 2009; Kak et al., 1998; Imimya, 

1985). In mathematically the problem of image 

reconstruction can be formulated by the Fredholm 

integral equation of the first kind. Because of the ill-

posed nature, it is difficult to solve strictly this 

integral equation. Up to now many image 

reconstruction methods have been proposed by the 

research development regardless of imaging modality 

(Stark, 1987; Natterer and Wubbeling, 2001).  

It is necessary to seek the solution of linear 

inverse problems with discrete data. In general, to 

solve the problems, we have to deal with the normal 

solutions, least-squares solution, generalized 

inverses, pseudo inverse and Moore-Penrose 

generalized invers (Bertero et al., 1985; Bertero et al., 

1988; Andrews and Hunt, 1977). These methods 

depend on a general formulation by defining a 

mapping from an infinite dimensional function space 

into a finite dimensional vector space.  

Although observed data can be discretized 

experimentally, original object which we want to seek 

are modeled continuous object. This continuous-

discrete relation means that the object space is 

defined as continuous, while the observation space is 

discrete. So, this relation can be called a C-D 

mapping. In generalized model based on the C-D 

mapping, An analytical expression of object space by 

continuous base functions can be derived by the 

Singular Value Decomposition (SVD) analysis. This 

method is named a Generalized Analytic 

Reconstruction from Discrete Samples (GARDS) 

(Ohyama and Barrett, 1992). In reconstruction 

algorithm with GARDS, there is a paper which it 

could be analyzed with conjugate gradient algorithm 

by preconditioning the coefficient matrix using a 

polynomial function (Yamaya et al., 2000). But it is 

not to compute all eigen values and eigen vectors of 

the GARDS matrix directly. It is necessary to reveal 

the property of the GARDS matrix. It is more 

important mathematically to reveal the spectrum and 

the properties of bounded self-adjoint operator in 

Hilbert space (Reed and Simon, 1972; Kuroda, 1980).  

In this paper, by discretizing the image 

reconstruction problem, we applied GARDS to the 

problem and evaluated the image quality. To 

implement GARDS, it is necessary to compute all 

eigenvalues and eigenvectors of symmetric matrix. 

We computed these by the Jacobi method. Moreover, 

we computed the condition number of the matrix and 

the normalized mean square error (NMSE) in 

reconstructed image. We have showed that the error 
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decreases with increasing the number of eigenvectors 

and the number of views. 

2 REVIEW OF GARDS 

The observed data 𝑔𝑖  can be viewed as the 

components of a vector which will be called the data 

vector 𝒈 in the data space 𝑌 or the finite dimensional 

Hilbert space. The unknown characteristics of the 

sample, denoted by 𝒇 , will be called the obeect in 

continuous obeect space 𝑋 or the element in infinite 

dimensional Hilbert space. Then, the C-D mapping 

model can be defined by 

𝑔𝑖 = ∫ 𝐾𝑖(𝑥)𝑓(𝑥) 𝑑𝑥, 𝑖 = 1, … , 𝑁, (1) 

where 𝑥  denotes a space variable and the kernel 

𝐾𝑖(𝑥) describes the interaction between the incident 

radiation and the obeect. If 𝐾  is the bounded linear 

operator, the model can be defined by 

𝒈 = 𝐾𝒇, (2) 

that is, 𝐾: 𝑋 ∋ 𝒇 ↦ 𝒈 ∈ 𝑌 . Let us consider a back 

proeection operator 𝐾+ from the discrete observation 

space to the continuous obeect space, that is, 𝐾+: 𝑌 →
𝑋 . Because 𝐾𝐾+  be of a matrix of 𝑛 × 𝑛  elements, 

where 𝑛  is the number of observed data, we can 

obtain the set {𝜆𝑖
2, 𝒗𝑖}  by singular value 

decomposition. Here, 𝜆𝑖
2 are eigenvalues and {𝒗𝑖}𝑖=1

𝑛  

are the eigenvectors, which satisfy the equation, 

𝐾𝐾+𝒗𝑖 = 𝜆𝑖
2𝒗𝑖 . (3) 

The element of 𝐾𝐾+, 𝑘𝑖𝑗, is given by 

𝑘𝑖𝑗 = ∫ 𝐾𝑖(𝑥) 𝐾𝑗(𝑥)𝑑𝑥. (4) 

Therefore, 𝐾𝐾+ can be of a self-adeoint operator on a 

Hilbert space. Eigenvectors corresponding to distinct 

eigenvalues of 𝐾𝐾+ are orthogonal. The eigenvalues 

are real number. If 𝐾  has a bounded inverse, 𝐾−1 , 

from eq. (3) we can derive 

𝑢𝑖 =
1

𝜆𝑖
𝐾+𝑣𝑖 , (5) 

where {𝑢𝑖} is orthogonal base, which satisfies 

𝐾+𝐾𝑢𝑖 = 𝜆𝑖
2𝑢𝑖. (6) 

If eigenvalues are ordered in a descending order and 

the last number of non-zero eigenvalue is 𝑅, we can 

reconstruct the obeect 𝑓𝑟𝑒 as 

𝑓𝑟𝑒 = 𝐾+ (∑
〈𝑣𝑘, 𝑔〉

𝜆𝑖
2

𝑅

𝑖=1

𝑣𝑘), (7) 

where 〈∙,∙〉 is inner product in Hilbert space. This eq. 

(7) gives the Moore-Penrose type reconstruction by 

GARDS. 

3 COMPUTER SIMULATIONS 

To confirm the effectiveness of the method, computer 

simulations were carried out. First, the continuous 

object space and the data space are discretized in a 

reconstruction problem. A Cartesian grid of the 

square observation plane, called pixels, is introduced 

into the region of interest (ROI) so that it covers the 

whole observation plane that has to be reconstructed 

in infinite-dimensional Hilbert space. The pixels are 

numbered in some manner. We set the top left corner 

pixel 1and bottom right corner pixel M with Raster 

scanning. The obeect to be reconstructed is 

approximated by a constant uniform value 𝑓𝑗 

throughout the 𝑗-th pixel, for 𝑗 = 1,2, ⋯ , M. Thus, the 

vector 𝒇 = {𝑓𝑗}
𝑗=1

𝑀
 in ℝ𝑀 is the discretized version of 

the obeect (Censor et al., 2008). For our simulations 

we assumed the parallel beam scanning model for 

data correction in CT. In this mode an array of sources 

is arranged in a line. In opposite side over the ROI an 

array of detectors is arranged in a line. The set of one 

detector-source pair for which line integrals are 

estimated is divided into D elements at equidistant. 

We assumed proeection angle θ = [0, 𝜋[ , and the 

number of views is the number of the angle 

discretized at evenly space. The total number of all 

discretized line is 𝑁 = View×D.  

 

Figure 1: The discretized model of the image reconstruction 

problem. 

We set the left detector element to 1 at θ = 0 and the 

right detector element to N at last View. In this setting 

𝑖  indicates any detector-source elements and 𝑖 =
1,2, ⋯ , 𝑁. Thus, the vector 𝒈 = {𝑔𝑖}𝑖=1

𝑁  in ℝ𝑁 is the 
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data vector. We denote the length of intersection of 

the 𝑖 -th line with the 𝑗 -th pixel by a𝑗
𝑖  , for all 𝑖 =

1,2, ⋯ , 𝑁, 𝑗 = 1,2, ⋯ , 𝑀, that is, 

𝐴 = {a𝑖𝑗}. (8) 

A can be of 𝑁 × 𝑀  matrix (Aoyagi et al., 2020). 

Figure 1 shows the discretized model of the image 

reconstruction problem. 

Our algorithm is following scheme. 

Step 1: Compute AA𝑡. 

Step 2: Compute all eigenvalues and 

eigenvectors of AA𝑡  by the Jacobi 

method. 

Step 3: For all 𝑘, compute the inner product of 

eigenvector 𝒗𝑘  and data vector 𝒈 , and 

divide it by corresponding eigenvalue 

𝜆𝑘. 

Step 4: Compute the linear combination of 

eigenvectors 𝒗𝑘  and corresponding 

coefficients which are computed by step 

3. 

Step 5: Operate A𝑡  on the vector which is 

computed by step 4. 

The transpose of 𝐴 is denoted by 𝐴𝑡. 

Figure 2 shows 6 original test images, discretized 

32×32 pixels and text based phantoms. Figure 3 

shows the proeection data by setting 32 views and 32 

detectors per view in parallel beam. Figure 4 shows 

the reconstructed images with our algorithm by using 

proeection data which are shown in Fig. 3. In this case 

we set 32 views with 32 line per view. The matrix size 

is 1024×1024. 

 

Figure 2: The original test images (32×32pixel, 8bit/pixel). 

 

Figure 3: The proeection data (Sinogram: 32 Detectors, 32 

Views and 8bit/pixel). 

 

Figure 4: The reconstructed images. 32 detectors and 32 

views. 

 

 

Figure 5: Plot of the Eigenvalues with decreasing order. 

 

Figure 6: Plot of Eigenvector for the largest eigenvalue. 

 

Figure 7: Plot of the condition number versus the number 

of views. 

We computed all eigenvalues and eigenvectors by 
the Jacobi method (Press et al, 1992). Figure 5 shows 
the eigenvalues with decreasing order. Figure 6 shows 
the eigenvector for the largest eigenvalue.  

The sensitivity of the solution to change the data 

vector, can be indicated by the condition number of 

the matrix AA𝑡 . Condition number (CN) can be 

introduced by defining 

𝐶𝑁(𝐿) = ‖𝐿−1‖ × ‖𝐿‖, (9) 

where 𝐿 is a bounded linear operator in Hilbert space. 

Therefore, in this case our condition number, as 
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shown in the Appendix, is defined by 

𝐶𝑁(𝐴𝐴𝑡) =
𝜆1

𝜆𝑛
, (10) 

where 𝜆1  is the largest eigenvalue and 𝜆𝑛  is the 

smallest eigenvalue. Figure 7 illustrates the plot of the 

condition number versus the number of views. From 

Fig. 7 we can see that the condition number increases 

with increasing the number of views.  

 

Figure 8: Plots of the normalized mean square error versus 

ratio. 

 

Figure 9: Plots of the normalized mean square error versus 

the number of views. 

If the condition number is large, then the generalized 

solution is affected by numerical instability. 

Figure 8 illustrates the plots of the normalized 

mean square error versus the ratio of number used in 

reconstruction to total number of eigenvectors. In this 

case, the total number of eigenvectors is 1024. 

NMSE is defined by 

NMSE(𝑘) =
‖𝒇𝑘 − 𝒇‖2

2

‖𝒇‖2
2 , (11) 

where 𝒇𝑘  is the image which is reconstructed by 

using k eigenvectors and 𝒇 is the original image. ‖∙‖2 

indicates the ℓ2-norm. From Fig. 8 we can see that the 

error decreases with increasing the number of 

eigenvectors. 

To check the effect of the number of views in 

reconstructed image, we changed the number from 35 

to 60. If the number of views is 60 and the number of 

detectors per view is 32, the matrix size is 

1920×1920. The number of eigenvectors which was 

used in reconstruction process is 1024. Figure 9 

illustrates the plots of the normalized mean square 

error versus the number of views. From Fig. 9 we can 

see that the error decreases with increasing the 

number of views. 

4 CONCLUSIONS 

By discretizing the image reconstruction problem, we 

applied GARDS to the problem and evaluated the 

image quality. In GARDS, it is important 

mathematically to reveal the spectrum of bounded 

self-adjoint operator in Hilbert space. All eigenvalues 

and eigenvectors were computed by Jacobi method. 

We showed that the condition number increases with 

increasing the number of views.  In singular value 

decomposition, the condition number play an 

important role to solve linear systems. If the condition 

number was large, the accuracy of eigen values and 

eigen vectors was influenced by the matrix size. Also, 

we showed that the error decreases with increasing 

the number of eigenvectors and the number of views.  

There were many parameters, the number of 

views, detectors-source pair and the pixel size of 

reconstructed image. The matrix size was changed by 

these parameters. If the size was large, computation 

of our algorithm consumed time to large quantities. 

For a large size of the matrix, especially, it is difficult 

to calculate all eigenvalues and eigenvectors with 

enough accuracy. The image quality of reconstructed 

image in this method is affected by these. If the matrix 

size is larger, it is necessary to computer all eigen 

values and eigen vectors by the other method, for 

example, Lanczos method and so on. Many numerical 

methods for large eigen value problems of matrix 

have been proposed and reported. It is worth trying to 

use these methods. Another idea will be to try to use 

parallel matrix computations. These become the 

future problems. 
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APPENDIX 

Let 𝑇  be a bounded linear operator and 𝑥  be an 
element in Hilbert space. Operator norm can be 
introduced by defining 

‖𝑇‖ = sup
𝑥≠0

‖𝑇𝑥‖

‖𝑥‖
. (12) 

Let 𝑥𝑖  be an eigenvector and 𝜆𝑖  be a corresponding 
eigenvalue, 𝑖 = 1, ⋯ , 𝑛. Then, 𝑇, operate on a vector 
𝑥𝑖, can be to transform it into a scalar multiple of itself. 

𝑇𝑥𝑖 = 𝜆𝑖𝑥𝑖 . (13) 

We assume that eigenvalues are ordered in such a way 

as to form a decreasing sequence 

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛. (14) 

From eq. (12) and (13), we obtain 

‖𝑇‖ = sup
𝑥≠0

‖𝑇𝑥𝑖‖

‖𝑥𝑖‖
= sup

𝑥≠0

‖𝜆𝑖𝑥𝑖‖

‖𝑥𝑖‖
= 𝜆1. (15) 

From eq. (13), we obtain 

𝑇−1𝑇𝑥𝑖 = 𝜆𝑖𝑇
−1𝑥𝑖 . (16) 

𝑇−1𝑥𝑖 =
1

𝜆𝑖
𝑥𝑖 . (17) 

From eq. (12) and (17), we obtain 

‖𝑇−1‖ = sup
𝑥≠0

‖𝑇−1𝑥𝑖‖

‖𝑥𝑖‖
 

 

                            = sup
𝑥≠0

‖
𝑥𝑖

𝜆𝑖
‖ ‖

1

𝑥𝑖
‖ =

1

𝜆𝑛
. (18) 

Hence, from Eq. (15) and (18), we conclude 

‖𝑇−1‖ × ‖𝑇‖ =
𝜆1

𝜆𝑛
.  (19) 
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