
Efficient and Secure Encryption Adjustment for JSON Data

Maryam Almarwani, Boris Konev and Alexei Lisitsa
Department of Computer Science, University of Liverpool, Ashton Street, Liverpool, U.K.

Keywords: Onion Layers Encryption, Encryption Adjustment, Document-store, Communication Cost, Efficiency,
Security Trade-off.

Abstract: Querying over data protected by multi-layered encryption requires encryption level adjustments. Different
layers of encryption enable different sets of operations over encrypted data at the expense of possibly reducing
protection levels and releasing some information about the data. Trade-offs between functionality and data
security are non-trivial and have been addressed in previous work for various data models. In this paper, we
consider encryption level adjustments for JSON-formatted data and propose new adjustments methodologies,
based on sorted criteria and on update-aware principles. Sorted criteria are used to limit the number of
encryption layers adjusted, while update-aware adjustments limit the number of updated values. We report on
the empirical evaluation of the policies and show that they improve over previously proposed policies in terms
of communication costs, exposing information, and performance.

1 INTRODUCTION

Database encryption, which protects sensitive data
prior to storage, has been widely used to resolve mul-
tiple data security concerns. Query processing for en-
crypted data poses some challenges and trade-offs be-
tween functionality, security and performance, as it
is necessary for information to be revealed for the
required computations to be performed. Different
approaches to generating viable query systems have
been proposed to tackle these query processing is-
sues. One option is to decrypt data on the server or
client-side before executing a query, that requires a
transfer of encryption keys. Another option is query
processing over encrypted data that allows compu-
tations to be performed directly over encrypted data
at the server-side, avoiding transferring encryption
keys or downloading data. These encryption tech-
niques, however, may expose some information about
the data as they enable particular subsets of computa-
tions. Several encryption schemes (Boldyreva et al.,
2009) can be used for customized computation. Such
encryption schemes are used in the CryptDB system
(Popa et al., 2011), which uses onion encryption that
takes an advantage of various schemes, offering se-
curity guarantees for each item of data and requires
adjustment techniques (Popa et al., 2011; Aburawi
et al., 2018a; Almarwani et al., 2021), as different
queries may require adjustments to particular layers
supporting required operations. However, major chal-

lenges remain in the use of adjustment techniques,
such as revealing information, communication costs,
and scalability concerns due to increasing data sizes.
This paper’s main aim is to highlight the communica-
tion cost associated with revealed information during
the adjustment and provide ways to reduce it. To ad-
dress these challenges, this paper presents novel tech-
niques for controlling the number of values adjusted
while simultaneously limiting or avoiding data up-
dates on the database during processing adjustments.
These include the techniques based on: (i) Sorted
Criteria: To limit the number of values adjusted; (ii)
Update-Aware Adjustments: To decrease commu-
nication costs and exposed information as well as to
improve the trade-off between these factors, perfor-
mance and security.

The remainder of the paper is structured as fol-
lows. In the next section, preliminaries are presented.
In Section 3, issues with existing adjustment tech-
niques are outlined and solutions proposed. Section
4 provides a case study based on the proposed ap-
proach, while Section 5 presents the outcomes of
the empirical evaluation. Finally, in Section 6, an
overview of related work is presented to support a
summary of the conclusions in Section 7.

Almarwani, M., Konev, B. and Lisitsa, A.
Efficient and Secure Encryption Adjustment for JSON Data.
DOI: 10.5220/0010791300003120
In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 307-313
ISBN: 978-989-758-553-1; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

307

2 PRELIMINARIES

For this paper, we assume that the data is in a NoSQL
Document-Oriented Database (OrientDB). JSON data
are encrypted using onion layers encryption. To
execute a query over such encrypted data, an en-
cryption adjustment may be needed. Various poli-
cies for the adjustment have been proposed in the
previous research such as a Simple Encryption Ad-
justment (SEA) (Popa et al., 2011) for relational
data model, Traversal-Aware Encryption Adjustment
(TAEA) (Aburawi et al., 2018a) for graph data model,
and Release-Aware Encryption Adjustment (RAEA)
(Almarwani et al., 2020; Almarwani et al., 2021) for
document-based databases. The rest of this section
thus offers a concise outline discussing onion layers
encryption and RAEA in more detail.

2.1 Onion Layers Encryption

In onion layers encryption, each data object is en-
crypted in "onions," or at least one "onion". Each
onion is composed of layers of increasingly se-
cure types of encryption. Each onion layer sup-
ports/enables a different set of computation opera-
tions depending on the type of encryption used. RND
(Random) layer (Popa et al., 2011) provides the high-
est level of protection as it does not reveal any in-
formation about encrypted values, not even equality.
Deterministic encryption (DET)(Popa et al., 2011) or
Order-Preserving Encryption (OPE) (Boldyreva et al.,
2009) allow for more computation operations (equal-
ity and comparisons, respectively) at the cost of re-
duced security. Each encryption type releases some
information about encrypted values, and the informa-
tion inclusion induces generally a partial order on
the encryption types (Almarwani et al., 2020). For
the encryption types we use in this paper, this or-
der is RND� DET � OPE � PLAIN, where PLAIN
denotes “no encryption”. For this paper, we use
Ciphertext Policy Attribute-Based Encryption(CP-
ABE)(Bethencourt et al., 2007) which is public-key
encryption at the RND layer1 (Almarwani et al.,
2019a). The outer layers of onion layers encryption
provide higher level of protection, but limited or none
operations support (i.e. RND), while inner layers al-
low for more operations at the cost of reduced security
(i.e. DET,OPE). These arrangements lead to the ne-
cessity of the encryption level adjustments depending
on a query to be executed.

1CP-ABE encryption provides more functionality and
can be used for attribute-based access control, which is not
our concern in this paper

2.2 Conjunctive Queries

While the techniques proposed in this paper are ap-
plicable to the wider classes of queries, we limit our-
selves to conjunctive queries of the form “Find all
documents satisfying a conjunction of simple crite-
ria”. To unify the presentation, we use the notation
adopted in (Almarwani et al., 2021) which itself fol-
lows conventions of MongoDB API. So, for a query
Q we denote its conjunction of criteria by C(Q) =
$And{e1, . . . ,en}. Each ei is an expression of the form
f op v, where f , f1, f2 are fields names and v is a
value. op is one of the comparison operators from
{<,≤,>,≥,=}. For a comparison operator op we
denote by SLop the minimal wrt to � encryption level
of the arguments of op sufficient for evaluation of op
on these arguments. Thus we have SL= =DET , while
SL< = SL≤ = SL≥ = SL> = OPE. For an atomic ex-
pression e we denote by op(e) the operator occurring
in e and by f ield(e) the field name (“property”)) oc-
curring in e. For a query Q we denote by E(Q) the
set of all atomic expressions occurring in C(Q). For a
query Q and a field name f occurring in Q we define
SQ(f) = max{e∈E(Q)| f ield(e)= f}SLop(e). For a query Q
and a database instance (set of documents) I we de-
note by D(Q, I) a set of documents returned by the
execution of Q on I.

2.3 Release-Aware In-Out Encryption
Adjustment

Release-Aware In-Out Encryption Adjustment
(RAEA) (Almarwani et al., 2021) is a dynamic
adjustment policy that combines several simple but
powerful ideas. The main idea behind RAEA is
to query with the conjunction of criteria: 1) sort
atomic criteria according to the popularity of fields
in a database instance: from low to the high count
of fields; 2) proceed gradually with the execution of
sub-queries by adding one atomic condition at a time;
3) in between make inward adjustments sufficient
to proceed with the next sub-query; 4) once the
execution of the query is completed, make outward
adjustments to restore the protection levels.

3 EFFICIENCY AND SECURITY
TRADE-OFFS IN RAEA

It has been shown in (Almarwani et al., 2020) that
RAEA, as compared with SEA, reduces the number
of decryptions/re-encryptions, leading to better secu-
rity and reduced computational cost of adjustments.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

308

There are still some noticeable issues affecting per-
formance and security in RAEA. One is high commu-
nication cost incurred, as back and forth communica-
tion is required between the client and the server to
update the data. It is impacted by two factors: (i)
the place of the adjustment: whether it is done on
the client side or server side and with varying secu-
rity implications for each (see Subsection 3.1); and
(ii) the number of two-way communications required
(see Subsection 3.2). Secondly, RAEA has made sig-
nificant progress in reducing the amount of informa-
tion disclosed to the database, but there is still scope
for improvement.

3.1 Adjustment Side

The encryption level adjustments involve data
decryption/re-encryption and it can be done either on
a server or a client side. The most significant differ-
ences between the two adjustment-side concerns are
:(i) Back and Forth Communication: Client-side
adjustment demands additional back and forth com-
munication than database server-side adjustments, in-
creasing communication costs; (ii) Data Download:
Client-side adjustment requires data downloads, a
process which may expose data to external attacks;
(iii) Transferring Encryption Keys: Server-side ad-
justment involves transferring encryption keys to sup-
port adjustment, which may expose internal databases
to attacks or abuse of these keys. In general, server-
side performance is better than client-side perfor-
mance, as the client-side communication costs are
higher. In terms of security, the client side often pro-
vides better protection due to its lack of key exchange.
However, this is not always the case; it is dependent
on the client’s security policies.

3.2 Proposed modifications of RAEA

In this paper, we propose the modification of the orig-
inal RAEA policy. Sorted Criteria and Update-Aware
Adjustments are used to facilitate an efficient trade-
off between disclosure of information, security, and
performance. The application of the modified RAEA
policy happens in stages which are described below.

• Stage A (Sorted Criteria): Three options for
sorting expressions of criteria based on the data
owner or user needs for security and performance
are offered. Option 1 is preferable where perfor-
mance is more important than security, whereas
option 2 prioritizes security above performance,
and option 3 is a trade-off between the two:
- Option 1 (Frequency Order (FO)) (C(Q≤))):
Option 1 is defined by RAEA (Almarwani et al.,

2021) to mean if the frequency properties is pro-
vided by DB features, the frequency in I of all
properties f occurring in C(Q) can be calculated.
The original query condition C(Q) is then re-
written by sorting the atomic expressions by fre-
quency, F such that C(Q≤) = $And{e1, . . . ,en},
where F(property(ei)I) ≤ F(property(ei+1)I),
i = 1, . . . ,n−1.
- Option 2 (Sensitivity Order (SO)) (C(Q!))):
The data owner determines the sensitivity level
of all properties. The original query con-
dition C(Q) is then re-written by sorting
atomic expressions according to this Sensitiv-
ity level, S, such that C(Q!) = $And{e1, . . . ,en},
where S(property(ei)I)≤ S(property(ei+1)I), i=
1, . . . ,n− 1. The focus is thus on the amount
of information exposed that represents sensitive
user data, irrespective of the number of values ad-
justed. Safety therefore takes priority here over
performance.
- Option 3 (Encryption Level Order (EO))
(C(Q×))): Encryption Level Order shows the
number of layers peeled away to reach a sup-
port level layer, thus reducing the number of val-
ues updated to a low-security level that disclosed
more information. The original query condition,
C(Q), is re-written by sorting the atomic expres-
sions according to the Support level , SLop(e), such
that C(Q×) = $And{e1, . . . ,en}, where SLop(ei) �
SLop(ei+1), i= 1, . . . ,n−1. Each group at the same
encryption level (i.e. support level) can then be
sorted according to frequency order to help to
minimise adjustment values based on accessing
the advantages of the frequency order.

• Stage B (Criteria Encryption): Query Q is en-
crypted to Q∗ by encrypting the constant value in
e to the level SQ(property(e)).

• Stage C (Update-Aware Adjustment): The
number of values decrypted in the inward ad-
justment phase is determined based on the sort-
ing stage options. However, the outward adjust-
ments reveal that the trade-off between security,
performance, and the disclosure of information to
the Database Management System (DBMS) is de-
pendent on the number of values updated on the
DBMS. As a result, three cases for updating val-
ues have been described:
- CASE 1 (Global Update (GU)): Case 1 is
proposed in original RAEA (Almarwani et al.,
2021) policy; while it reduces the number of up-
dates required as compared with SEA, it includes
a higher number of updated values as compared
with newly proposed CASE 2 and CASE 3 be-
low, particularly with regard to the first property

Efficient and Secure Encryption Adjustment for JSON Data

309

of the sorting criteria. This is happened by up-
dating all existing property(ei) values for doc-
uments returned during progressive execution of
the query D(Q∗i−1, Ii−2) to the encryption level
SLop(ei), regardless of whether or not they match
the current expression. Global Updated data is
generated in both the inward and outward Encryp-
tion (IEA,OEA) adjustment directions. This has
a significant impact on the amount of informa-
tion disclosed to the DB and high communication
costs, thus triggering greater outward adjustment
processing costs.
- CASE 2 (Necessary Update (NU)): This case
involves updating only property values for those
documents returned by progressively executing
the query, which refers to those matching the cur-
rent expression. This has a significant impact in
terms of reducing the amount of information dis-
closed to the DB as well as minimising communi-
cation costs, resulting in reduced outward adjust-
ment processing costs. Necessary Update is also
performed in both the inward and outward En-
cryption adjustment directions: (A) IEA: The fol-
lowing iterative steps are executed and Let I0 = I:
(i) All values of property(e1) in the whole I0 are
adjusted to the encryption support level SLop(e1)

and then matched with e1; where a match is identi-
fied, this is updated in the DB Storage, resulting in
a database state I1; (ii) The values of property(e2)
occurring in documents D(Q1, I0) are adjusted to
SLop(e2) and then matched with e2 ;matches are
updated in the DB Storage, resulting in database
state I2;(iii) · · · ; (iv) The values of property(ei)
occurring in documents D(Qi−1, Ii−2) are adjusted
to SLop(ei) and then matched with ei; matches are
updated in the DB Storage, resulting in database
state Ii. (B) OEA: The following iterative steps
are executed:(i) All values of property(e1) across
I0 are restored and updated to the Outer Layer
in the DB Storage; matches with e1 result in
database state I1;(ii) All values of property(e2)
across I1 are restored and updated to the Outer
Layer in the DB Storage; matches with e2 re-
sult in database state I2;(iii) · · · ; (iv) All values of
property(ei) across Ii−1 are restored and updated
to the Outer Layer in the DB Storage; matches
with ei result in database state Ii;(v)· · · .
- CASE 3 (Zero-Update (ZU)): It is not neces-
sary to update values in this case. We assume that
the documents contain a unique value property uv,
whose values serve as indexes for the documents.
It means for different documents the values of uv
are different. Then Zero-Update policy is accom-
plished by comparing the current expression to

the documents returned. Where matches occur,
instead of the property values being updated in
the data storage, a copy of the index values of
the matching documents is obtained. The next
expression is then checked against the documents
with the indexes stored, and the list of indexes is
updated to refer to the documents matching the
criteria up the current in the progressive execution
of the query. The final list, the ultimate result of
a user query, is thus a set of documents referred
by this list. This case does not disclose any infor-
mation to the DB server and hence minimises the
communication costs. Zero-Update is only per-
formed in the inward adjustment direction, as no
re-encryption of values at the server side is re-
quired. Retrieval of the documents during ZU
processing is performed by the disjunctive queries
with C(U) = $Or{u1, . . . ,un}. Each ui is an ex-
pression of the form fu = v where U f is an field
that contains unique index value in the collection/
table. we denote by D(U) a set of documents re-
turned by the execution of C(U). (A)IEA: The
following iterative steps are executed : (i) All val-
ues of property(e1) in the whole I are adjusted
to the encryption support level SLop(e1) without
any updates to the DB Storage; these are then
matched with e1 and where matches occur, U val-
ues are stored, resulting in U1;(ii) The values of
property(e2) occurring in documents D(U1) are
adjusted to SLop(e2) without any updates to the
DB Storage; these are then matched with e2 and
where matches occur, U values are used to up-
date , resulting in U2; (iii)· · · ; (iv) The values of
property(ei) occurring in documents D(Ui−1) are
adjusted to SLop(ei) without any updates to the DB
Storage; these are then matched with ei and where
matches occur, U values are used to update , re-
sulting in Ui.

4 CASE STUDY

A case study was conducted to verify the effective
capabilities of the various proposed RAEA policies.
This was based on a sample dataset with 15 doc-
uments, with four properties offering a total of 52
values (see Fig. 1(a)). Query 1 was then executed
using SEA and the various proposed variants of
RAEA (see Fig. 1(C to L)).
FirstName="Erica" AND LastName="Murt"
AND Salary>5000 AND Salary<7000 AND
Department="Engineering"; Q1

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

310

Figure 1: Case Study.

Figure 2: Analysis Results.

Table 1: Case study Results.

SEA GU NU ZU
NO-
GU

FO-
GU

EO-
GU

NO-
NU

FO-
NU

EO-
NU

NO-
ZU

FO-
ZU

EO-
ZU

IEA 52 21 17 19 21 17 19 21 17 19
UA 52 21 17 19 7 8 5 0 0 0

OEA 52 21 17 19 7 8 5 0 0 0
RND 0 31 35 33 54 44 46 52 52 52
DET 42 20 7 18 6 4 4 0 0 0
OPE 10 1 10 1 1 4 1 0 0 0

aa

The amount of information revealed to DBMS
relies on the number of RND, DET, and OPE val-
ues to be updated for all encrypted data queries, as
shown in Figure 1. The case study findings are
shown in Table 1. There are two main findings: ef-
ficiency and security. The efficiency evaluation in-
cluded three components: decryption, communica-
tion, and re-encryption costs. Decryption costs de-
pend on Inward-Adjustment. In order to lower such

costs, it is necessary to decrease the number of de-
crypted values. The numbers of values decrypted by
SEA and RAEA are shown in Figure 2(A). As with
other RAEA variants, SEA requires more decrypting
values. The total number of decrypted values is the
same for all RAEA variants that are sorted in the same
way, and the frequency order is the smallest of the
three. Communication costs were reduced by decreas-
ing the number of values updated. Figure 2(B) shows
the greatest update values for SAE, highlighting that
the update values on the GU were larger than those
in NU but less than in SEA. The lowest update value,
however, was 0, for ZU. Re-encryption costs are pro-
cessed through outward adjustment. Charts B and C
in Figure 2 show that the number of outward adjust-
ment values was related to the number of values up-
dated. Security was assessed using the amount of in-

Efficient and Secure Encryption Adjustment for JSON Data

311

formation revealed to DBMS. The cases NU and ZU
were very simple and straightforward, offering only
the information necessary for a query to be executed
and results generated. Thus, the control of DB up-
dates helps to maintain the RND layer values, which
do not expose any information (see Fig 2(D-F)). ZU
raised all RND values to 100 % , while NU is less
than ZU, it increased RND more than GU on the DB.
In all cases, the most obvious level of security hap-
pens in the ZU scenario.

5 EXPERIMENT & EVALUATION

The inward-adjustment time, outward-adjustment
time, and communication time on both the client-
side and server-side adjustments will be measured as
data size increases. Data encryption was performed
in three layers, in the following order: CP−ABE �
DET � OPE � PLAIN. The testing datasets are se-
lected based on the number of documents: (i) 1,000
documents with 6,500 values; (ii) 2,000 documents
with 13,000 values; (iii) 5,000 documents with 32,500
values; and (iv) 10,000 documents with 65,000 val-
ues. SELECT,UPDATE,DELETE were all evaluated
using the same criteria as in Q1. It was tested 20
times. The prototype was written in Java and stored in
a local database (OrientDB). The machine utilised for
testing has 8 GB RAM and an i7-8565U CPU (1.99
GHz).

5.1 Performance Evaluation

Figure 3a illustrates the time required for inward ad-
justment execution, which rises linearly as the num-
ber of documents increases. However, the execution
time is equal for all cases. Figure 3b illustrates the
Outward-Adjustment execution time, with ZU out-
performing all other cases and GU taking the longest
time of them. Figure 3c illustrates the time required to
communicate with and retrieve data from a database.
GU communicated slowly and was the least effec-
tive of the three cases, while the ZU outward adjust-
ment outperformed the other two. Overall, in all three
cases, server-side adjustment outperforms client-side
adjustment.

6 RELATED WORK

The majority of research has focused on unmodified-
based DBMS for querying encrypted data. (Popa
et al., 2011; Waage and Wiese, 2017; Aburawi

et al., 2018b; Almarwani et al., 2019b) encrypt
data using multiple layers of encryption; thus, they
need adjustment techniques that enable more com-
puting classes. In a previous study, three types of
adjustment techniques were identified: SEA (Popa
et al., 2011), TAEA (Aburawi et al., 2018a), and
RAEA(Almarwani et al., 2020; Almarwani et al.,
2021). SEA performs adjustments prior to query ex-
ecution by adjusting all values of columns occurring
in query criteria to the encryption level based on the
class of computation contained in the expression col-
umn. CryptDB was the first to offer an adjustment
technique (SEA) for SQL, whereas CryptGraph (Abu-
rawi et al., 2018b) and SDDB (Almarwani et al.,
2019b; Almarwani et al., 2019a), respectively, ap-
ply the CryptDB transfer concept to graph databases
(Neo4j database) and document databases (Mon-
goDB). As SEA discloses more information than nec-
essary, Aburawi et al. (Aburawi et al., 2018a) pro-
posed TAEA for traversal queries for graph databases.
TAEA processes adjustments during query execu-
tion to limit the quantity of information required as
much as possible; this execution happens dynamically
based on node-to-node relationships. However, the
Document-Database lacks document-to-document re-
lationships, thus, TAEA is useless in such scenarios.
Almarwani et al (Almarwani et al., 2019b; Almarwani
et al., 2019a) suggested RAEA for conjunctive condi-
tions, as unlike TAEA, RAEA is concerned with lim-
iting the amount of information disclosed after query
conduction, a process based on restoring maximum
security levels. TAEA and RAEA both offer better
protection than SEA, but they create additional obsta-
cles, such as communication costs or disruptions to
adjustments in some cases; determining how to han-
dle these while enabling an appropriate trade-off be-
tween security, effectiveness, and amount of revealed
data is thus important.

7 CONCLUSION

This paper presented an overview of the RAEA ad-
justment techniques used to query encrypted data us-
ing Onion Layers Encryption. The main goal was
to identify the approach that best met the following
requirements: the approach had to (i) permit adjust-
ment at a lower cost of decryption/encryption; (ii)
permit adjustment with limited data updates; (iii) re-
duce communication costs; (iv) provide better secu-
rity by revealing only the required information to the
DBMS for each query; and (v) provide better perfor-
mance concerning query execution speed. This pa-
per thus presented both Sorted Criteria and Update-

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

312

(a) Execution Time of IEA (b) Execution Time of OEA (c) Execution Time of compunction

Figure 3: Execution Time of Queries.

Aware Adjustments to RAEA. The sorting approach
provides three options, depending on the priorities
given to performance and security, facilitating a trade-
off between the two. Update-Aware Adjustments, on
the other hand, give three cases based on Outward
Adjustment costs and the predetermined trade-off be-
tween three requirements of communication cost, per-
formance, and security. In the document-database ex-
periment, the improved Update-Aware Adjustments
yielded lower communication costs and increased se-
curity. More experiments on these Sorted Criteria
and Update-Aware Adjustments will be conducted in
future work to assess their applicability for various
database types, such as SQL, and to assess their effi-
cacy with regard to big data more formally.

REFERENCES

Aburawi, N., Coenen, F., and Lisitsa, A. (2018a). Traversal-
aware encryption adjustment for graph databases.
In Proceedings of the 7th International Confer-
ence on Data Science, Technology and Applications.
SCITEPRESS-Science and Technology Publications.

Aburawi, N., Lisitsa, A., and Coenen, F. (2018b). Querying
encrypted graph databases. In Proceedings of the 4th
International Conference on Information Systems Se-
curity and Privacy. SCITEPRESS-Science and Tech-
nology Publications.

Almarwani, M., Konev, B., and Lisitsa, A. (2019a). Fine-
grained access control for querying over encrypted
document-oriented database. In International Con-
ference on Information Systems Security and Privacy,
pages 403–425. Springer.

Almarwani, M., Konev, B., and Lisitsa, A. (2019b). Flex-
ible access control and confidentiality over encrypted
data for document-based database. In ICISSP, pages
606–614.

Almarwani, M., Konev, B., and Lisitsa, A. (2020). Release-
aware encryption adjustment query processing for
document database. In Proceedings of the 2020 4th In-
ternational Conference on Cloud and Big Data Com-
puting, pages 48–51.

Almarwani, M., Konev, B., and Lisitsa, A. (2021). Release-

aware in-out encryption adjustment in mongodb query
processing. In ICISSP, pages 714–722.

Bethencourt, J., Sahai, A., and Waters, B. (2007).
Ciphertext-policy attribute-based encryption. In Secu-
rity and Privacy, 2007. SP’07. IEEE Symposium on,
pages 321–334. IEEE.

Boldyreva, A., Chenette, N., Lee, Y., and O’neill, A. (2009).
Order-preserving symmetric encryption. In Annual
International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 224–241.
Springer.

Popa, R. A., Redfield, C., Zeldovich, N., and Balakrish-
nan, H. (2011). Cryptdb: protecting confidentiality
with encrypted query processing. In Proceedings of
the Twenty-Third ACM Symposium on Operating Sys-
tems Principles, pages 85–100. ACM.

Waage, T. and Wiese, L. (2017). Property preserving en-
cryption in nosql wide column stores. In OTM Con-
federated International Conferences" On the Move to
Meaningful Internet Systems", pages 3–21. Springer.

Efficient and Secure Encryption Adjustment for JSON Data

313

