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Abstract: In this paper, a simple and effective filter pruning method is proposed to simplify the deep convolutional 
neural network (CNN) and accelerate learning. The proposed method selects the important filters and discards 
the unimportant ones based on filter dissimilarity analysis. The proposed method searches for filters with 
decent representative ability and less redundancy, discarding the others. The representative ability and 
redundancy contained in the filter is evaluated by its correlation with currently selected filters and left over 
unselected filters. Moreover, the proposed method uses an iterative procedure, so that less representative 
filters can be discarded evenly from the entire model. The experimental analysis confirmed that a simple filter 
pruning method can reduce floating point operations (FLOPs) of TernausNet by up to 89.65% on an INRIA 
Aerial Image Labeling dataset with an only marginal drop in the original accuracy. Furthermore, the proposed 
method shows promising results in comparison with other state-of-the-art methods. 

1 INTRODUCTION 

When deep CNN is adopted for computer vision 
tasks, the input image is convolved with many filters, 
extracting meaningful features from the input image. 
As the network grows deeper and wider, deep feature 
extraction plays a significant role in demonstrating 
excellent performance in the field of computer vision 
(Ahmadi et al. 2020; N. Liu et al. 2018; X. Liu et al. 
2017; Liao et al. 2020; Lunga et al. 2018; Xu et al. 
2018). However, the success of deep CNN comes 
with an over-parameterized model that hampers their 
applicability while deploying them on embedded 
devices due to difficulties, such as, large number of 
parameters, expensive computational cost, slow 
convergence and so on. Therefore, network pruning 
has become an essential process to compress the 
model and accelerate its training (C. T. Liu et al. 
2019; Torfi et al. 2018; Wang et al. 2019; Wen et al. 
2020). Network pruning can be performed by either 
weight pruning or filter pruning. Weight pruning 
removes unimportant connections (parameters) and 
results in an unstructured network (Han, Mao, and 
Dally 2016; Ma et al. 2021). This necessitates 
specialized software and hardware to recover the 
performance of damaged networks. Moreover, 

weight pruning offers only limited speedup, as most 
parameters of the model lie in fully connected layers 
and weight pruning simply reduces the number of 
parameters, but fails to reduce Floating Point 
Operations (FLOPs) significantly. For instance, the 
VGG16 network has 90% of its parameters in a fully 
connected layer, which account for 10% of 
computations, whereas the remaining 90% of 
computations is due to 10% of parameters in the 
convolutional layer. This has encouraged the research 
community to focus on exploring the filter pruning. 

Filter pruning cuts out unimportant filters entirely 
instead of connections, resulting in structured sparsity 
(Shi et al. 2021; Jang, Lee, and Kim 2021; Zuo et al. 
2020; Zeng et al. 2021). Here the idea is to rank the 
filters using a specific criteria and preserve only top 
ranked filters. In the past decade, numerous methods 
have been suggested to evaluate the filter importance, 
including, 𝑙ଵ norm, 𝑙ଶ norm, entropy measure, 
geometric mean, Taylor expansion and many more 
(Han et al. 2015; Luo and Wu 2017; He et al. 2019; 
Molchanov et al. 2017). These magnitude based 
pruning methods calculate the importance based on 
filter itself, but do not take filter correlation into 
account. Intuitively, the filters of the convolutional 
neural networks are not independent. Even though 

Erick, F., Sawant, S., Göb, S., Holzer, N., Lang, E. and Götz, T.
A Simple and Effective Convolutional Filter Pruning based on Filter Dissimilarity Analysis.
DOI: 10.5220/0010786400003116
In Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022) - Volume 3, pages 139-145
ISBN: 978-989-758-547-0; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

139



different filters try to learn different features, there 
exists potential similarity/correlation among them 
leading to performance degradation of deep CNN. 
Therefore, we believe that filters could be removed 
by taking correlation among them into account. 
Despite the success of the existing filter pruning 
approaches, we have identified a major shortcoming: 
filter importance is measured independently while 
totally ignoring the redundancy among filters. Any 
convolutional layer generally consists of many 
similar/redundant filters. From an information theory 
point of view, these correlated filters do not provide 
additional discriminant information. Instead, they 
increase the computational burden. Therefore, in this 
paper, we propose a simple and efficient approach to 
obtain compact deep CNNs by selecting important 
filters and eliminating the unimportant ones based on 
filter correlation analysis. The proposed method 
adopts a sequential search process to obtain the final 
subset of important filters. The major contributions of 
this work are as follows: 
1. A simple and efficient approach to simplify deep 

CNN architectures, which is based on filter 
dissimilarity analysis. 

2. The importance of a filter is decided by 
measuring its distance with other selected and 
unselected filters. 

3. The selected filters show better representative 
ability and less redundancy. 

4. Experimental analysis on the TernausNet and U-
Net model trained with the INRIA dataset 
demonstrate the effectiveness of the proposed 
approach. 

The remaining sections of the paper are organized as 
follows: The proposed OSFP approach is introduced 
in Section 2. Section 3 discusses the experiments and 
presents the results. Finally, we conclude this paper 
in Section 4. 

2 PROPOSED FILTER PRUNING 
APPROACH 

The proposed method compresses the CNN model by 
selecting the important filters while discarding the 
remaining ones. The method starts with an empty set 
and adds a filter sequentially to it. A filter is added to 
the final set by determining its filter priority index 
(FPI) which indicates the contribution of the selected 
filter. The FPI of the filter is computed by measuring 
its representative ability and redundancy with other 
selected and unselected filters. The filter is said to be 
representative if it is highly correlated (similar) with 

other unselected filters of the CNN model, whereas 
the filter is said to be less redundant if it is only 
marginally correlated (dissimilar) with other selected 
filters.  

Let us consider a CNN model with L 
convolutional layers and each ith layer is denoted as 𝐿௜ . Each 𝐿௜  consists of N filters indicated as 𝐹௅೔ =ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, … , 𝑓ேሽ. The dissimilarity matrix D of the 
filters of 𝐹௅೔ can be expressed as: 

 

𝐷 = ⎣⎢⎢
⎡ 𝑑ଵ,ଵ 𝑑ଵ,ଶ𝑑ଶ,ଵ 𝑑ଶ,ଶ ⋯ 𝑑ଵ,ே𝑑ଶ,ே⋮ ⋱ ⋮𝑑ே,ଵ 𝑑ே,ଶ ⋯ 𝑑ே,ே⎦⎥⎥

⎤
   (1) 

 
Here, 𝑑௜,௝  is the dissimilarity between ith and jth 

filter. The value of 𝑑௜,௝ depends on the type of metric 
used for calculating the dissimilarity between two 
filters. For instance, in case of the Manhattan distance 
(𝑙ଵ norm), the smaller the value of 𝑑௜,௝, the higher the 
correlation is (two filters are similar to each other). 
Correspondingly, in case of the Pearson correlation 
coefficient (PCC), the larger the value of 𝑑௜,௝ , the 
higher the correlation is. Due to simplicity and ease 
of implementation, we will use Manhattan distance to 
compute the correlation between two filters. 
Moreover, it is less expensive in terms of 
computational costs than PCC as well as Euclidean 
distance (𝑙ଶ norm).  

The proposed method assigns FPI to each 
filter and selects the set of important filters, 
discarding the unimportant ones. The process selects 
one filter each time resulting in a sequential search. It 
starts with an empty subset 𝜑. To add the filter into 
the set, we need to evaluate its representative ability 
by measuring the relative correlation with remaining 
unselected filters and by measuring its redundancy. 
Let us assume, 𝜑ௌ and 𝜑௎ be the set of selected and 
unselected filters. Consider that we need to select 𝑚 
filters out of 𝑁 filters in total and have found 𝑛 filters ሺ𝑛 ∈ ሾ0,𝑚ሿሻ. To find the ሺ𝑛 + 1ሻ௧௛ filter, the relative 
correlation of 𝑓௜ can be evaluated as, 

 𝐼௎௜ = ଵேି௡ିଵ∑ 𝑑௜,௝௝∈ఝೆ    (2) 
 

Where, 𝐼௎௜  indicates the relative correlation of 𝑓௜ 
with respect to the remaining unselected filters. The 
smaller the value of 𝐼௎௜ , the more representative the 
filter is. The redundancy of 𝑓௜ can be calculated as, 

 𝐼௦௜ = ଵ௡ ∑ 𝑑௜,௝௝∈ఝೞ    (3) 
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Where, 𝐼ௌ௜  indicates the redundancy of 𝑓௜  with 
respect to currently selected filters. Clearly, the larger 
the value of 𝐼ௌ௜ , the lesser the redundancy is. Then, the 
priority index 𝐼௜of the filter 𝑓௜ can be computed as, 𝐼௜ = 𝐼௎௜𝐼௦௜  (4)

Once the priority index of all filters has been 
computed, the filter with maximum index will be 
selected and added to the set of important filters. This 
process is repeated until the desired set of filters is 
obtained. Algorithm 1 gives the overall procedure of 
the proposed method for representative filter 
selection and pruning of remaining (weak) filters. 

Algorithm 1: The proposed method for representative filter 
selection and pruning of weak filters. 

Input: Original model M, Set of filters of 𝐹௅೔ from  
each layer 𝐿௜, m number of  filters to be retained 
1. For i=1:L 
2.        Compute the dissimilarity matrix D. Set 𝜑ௌ =1, 𝜑௎ = 𝑁, n=1. 
3.         while 𝑛 < 𝑚 + 1 do 
4.         Compute priority index of each filter using 

equation (4). 
5.          Add the filter with the lowest value in 𝜑ௌ. 
6.          𝑛 ← 𝑛 + 1 
7.          end while 
8. End For 
9. Output: Compressed model M’ 

3 EXPERIMENTS 

To assess the effectiveness of the proposed approach, 
several tests were conducted on the INRIA Aerial 
Image Labeling dataset (Maggiori et al. 2017). The 
INRIA dataset consists of training images and test 
images. We have used two widely known deep CNN 
models for segmentation purposes, namely, 
TernausNet (Iglovikov and Shvets 2018) and a 
standard U-Net. All the experiments were performed 
on Intel Xeon CPU E5-2680 with four cores and 
NVIDIA P100 GPU. Both TernausNet and standard 
U-Net were trained using the deep learning 
framework Pytorch. The hyper-parameter setting 
used in the experiments is shown in Table 1. To get 
the baseline accuracies for each network, we train 
each model from scratch on INRIA dataset and follow 
the same data processing as TernausNet (Iglovikov 
and Shvets 2018). After the pruning stage, to recover 
the performance of the pruned model, fine-tuning is 
performed by training the pruned model for 15 
epochs.  We have used three metrics to evaluate the 

performance of the segmentation task, such as, 
validation accuracy (Val. Acc.), validation loss and 
Jaccard index (also known as Intersection over Union 
(IoU)). In order to assess the performance of the 
compressed model, the number of parameters and 
FLOPs are reported. We evaluated the proposed 
method on the INRIA dataset with TernausNet and U-
Net by varying pruning rates and results are discussed 
in following subsections.   

Table 1: Hyper-parameter setting re-training/ fine-tuning of 
pruned network. 

Hyper-parameter Value 
Number of epochs 15 

Optimizer Adam 
Optimizer learning rate 0.0001 

Optimizer betas (0.9, 0.999) 
Loss function Binary cross entropy

Batch size 64 

3.1 TernausNet on INRIA 

The experimental results for the TernausNet are 
reported in Table 2 and Table 3. Table 2 shows the 
overall performance of the proposed approach under 
different pruning ratios. As shown in Table 2, the 
baseline model achieved lowest Val. loss (0.1031), 
but had an enormous amount of memory (22.9 
Million parameters) and a slow inference speed (23.5 
Billion FLOPs). Note that the proposed approach 
demonstrated a significantly better performance than 
the unpruned model, even at higher pruning rates. 
Especially, at 70% pruning rate, the proposed method 
reduced the FLOPs by 69.75% with only 0.64% drop 
in the Val. Acc., which is quite negligible. As the 
pruning amount exceeded 70%, the performance 
started to degrade. TernausNet has many redundant 
filters. So, even when more filters were pruned, the 
performance degradation was still negligible in 
general. We can conclude that when a large amount 
of FLOPs and parameters are reduced, the proposed 
approach still achieves comparable performance. 
This means the proposed method effectively retains 
the filters, which exhibit great generalization ability. 

To validate the effectiveness of the proposed 
approach, the performance of the proposed approach 
is compared with two other state-of-the-art methods, 
such as, magnitude based filter pruning- 𝑙ଵ similarity 
(Li et al. 2017) and random pruning (Mittal et al. 
2019). 𝑙ଵ similarity based method removes the filters 
with smaller weight, whereas a random pruning 
method prunes the filters randomly. Furthermore, we 
have tested other dissimilarity metrics namely, PCC 
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and cosine dissimilarity. The performance in terms of 
Val. Acc. and Val. loss after fine-tuning is recorded 
in Fig. 1. All approaches have shown lower 
performance before fine-tuning. Therefore, accuracy 
is restored by fine-tuning the pruned model for 
several epochs. Though, random pruning shows 
almost equal performance, it is not a robust method in 
practice and may lead to unstable accuracies when 
applied to a larger model. Compared to state-of-the-
art methods, the proposed approach performs at a 
moderate level and shows acceptable error. 
Moreover, when PCC is used as a dissimilarity 
measure, it reduces the redundancy better and 
performs comparably better than state-of-the-art 
methods as well as other metrics. This analysis 
completely confirms effectiveness of different 
metrics in dissimilarity measures of convolutional 
filters and flexibility for filter pruning. 

Table 2: Overall Performance of our approach on 
TernausNet with different pruning rate. 

Pruning 
rate  
(%) 

Number 
of 

Param. 
(Million) 

FLOPs 
(Billion) 

Val. 
Acc. 
(%) 

Val. 
loss IoU 

Baseline 
(unpruned) 22.9 23.5 96.02 0.1031 0.4599

10 21.0 21.2 95.95 0.1069 0.4653
20 19.0 18.9 95.92 0.1075 0.4602
30 17.0 16.6 95.72 0.1109 0.4566
40 15.0 14.2 95.81 0.1089 0.4567
50 13.0 11.8 95.73 0.1109 0.4539
60 11.1 9.48 95.46 0.1173 0.4397
70 9.09 7.12 95.38 0.1193 0.4338
80 7.12 4.79 94.90 0.1314 0.4122
90 5.15 2.43 94.20 0.1465 0.3759

Table 3: Pruning statistics for TernausNet on Inria dataset 
under different pruning rates. 

Pruning rate 
(%) 

Reduction in 
number of Param.  

Reduction 
in FLOPs  

Change in 
Val. Acc.

Baseline 0% 0% --
10 8.57% 9.73% -0.06%
20 17.19% 19.75% -0.10%
30 25.77% 29.65% -0.30%
40 34.39% 39.66% -0.21%
50 43.15% 50.00% -0.29% 
60 51.73% 59.73% -0.57% 
70 60.34% 69.75% -0.64% 
80 68.93% 79.65% -1.13% 
90 77.54% 89.66% -1.82% 

 
(a) 

 
(b) 

Figure 1: Performance of different filter pruning 
approaches on TernausNet under different pruning rate. The 
model was trained, fine-tuned and validated on a cropped 
image of 256 ൈ 256 resolution. (a) Val. Acc. vs pruning 
rate (b) Val. loss vs. pruning rate. 

3.2 U-Net on INRIA 

Table 4 and 5 show the experimental results for a U-
Net. As shown in Table 4, the baseline model 
achieved lowest Val. loss (0.1054), but had an 
enormous amount of memory (31 Million 
parameters) and a slow inference speed (46 Billion 
FLOPs). At 70% pruning rate, the Val. Acc. of the 
proposed method was reduced by 0.95% in 
comparison with the baseline model, but the number 
of parameters was reduced by 63.62% and the 
necessary FLOPs were also significantly reduced by 
69.60%. In other words, the proposed method offers 
excellent performance in terms of Val. Acc., FLOPs 
and number of parameters over different pruning 
rates. This excellent performance is in line with the 
results of the TernausNet. We can conclude that when 
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a large amount of FLOPs and parameters are reduced, 
the proposed approach still obtains comparable 
performance. This means the proposed method 
effectively retains the filters which exhibit great 
generalization ability. Moreover, both the models are 
trained from scratch instead of using pre-trained 
weights and results show that the proposed approach 
is independent of the pre-trained model’s 
performance and helps filters to learn their 
responsibility. 

To validate the effectiveness of the proposed 
approach, the performance of the proposed approach 
is compared with two other state-of-the-art methods, 
such as, magnitude based filter pruning- 𝑙ଵ similarity 
and random pruning. Furthermore, we have tested 
other dissimilarity metrics namely, PCC and cosine 
dissimilarity. The performance in terms of Val. Acc. 
and Val. loss after fine-tuning is recorded in Fig. 2. 
All approaches have shown lower performance 
before fine-tuning. Therefore, accuracy is restored by 
fine-tuning the pruned model for several epochs. 
Random pruning method has achieved lowest Val. 
Acc. at all pruning rates among all methods. 
Compared to state-of-the-art methods, the proposed 
approach performs at a moderate level and shows 
acceptable error. Moreover, when PCC is used as a 
dissimilarity measure, it reduces the redundancy 
better and performs comparably better than state-of-
the-art methods as well as other metrics. This analysis 
completely confirms effectiveness of different 
metrics in dissimilarity measures of convolutional 
filters and flexibility for filter pruning. 

Table 4: Overall Performance of our approach on U-Net 
with different pruning rate. 

Pruning 
rate 
(%) 

Number 
of Param. 
(Million) 

FLOPs 
(Billion) 

Val. 
Acc. 
(%) 

Val. 
loss IoU 

Baseline 31.0 46.0 96.13 0.1054 0.4714
10 28.2 41.6 96.04 0.1043 0.4647
20 25.4 37.0 95.98 0.1056 0.4633
30 22.6 32.3 95.98 0.1065 0.4648
40 19.8 27.8 95.87 0.1088 0.4541
50 16.9 23.0 95.64 0.1142 0.4486
60 14.1 18.6 95.39 0.1212 0.4361
70 11.3 14.0 95.27 0.1217 0.4292
80 8.47 9.32 94.82 0.1337 0.4144
90 5.65 4.75 92.97 0.1721 0.3203

 
 

Table 5: Pruning statistics for U-Net on Inria dataset under 
different pruning rates. 

Pruning 
rate 
(%) 

Reduction in 
number of 

Param.  

Reduction in 
FLOPs  

Change in 
Val. Acc.

Baseline 0% 0% -- 
10 9.03% 9.66% -0.09% 
20 18.03% 19.58% -0.15% 
30 27.10% 29.86% -0.15% 
40 36.13% 39.63% -0.26% 
50 45.48% 50.05% -0.49% 
60 54.52% 59.61% -0.74% 
70 63.55% 69.60% -0.86% 
80 72.68% 79.76% -1.31% 
90 81.77% 89.68% -3.16% 

 
(a) 

 
(b) 

Figure 2: Performance of different filter pruning 
approaches on U-Net under different pruning rate. The 
model was trained, fine-tuned and validated on a cropped 
image of 256 ൈ 256 resolution. (a) Val. Acc. vs pruning 
rate (b) Val. loss vs. pruning rate. 
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4 CONCLUSION AND FUTURE 
WORK 

In this paper, a simple and effective filter pruning 
method based on filter correlation analysis is 
proposed. The new method searches for a subset of 
filters that can reliably and adequately represent the 
structure of the original model. The proposed method 
iteratively adds filters with better representative 
ability and less redundancy into the final set of 
retained filters, discarding the others. Unlike the 
existing norm based criterion, the proposed method 
explicitly considers the correlation among filters. The 
pruned model with the proposed method learns 
effectively with few filters. Thus, when pruning a 
TernausNet trained on the INRIA dataset by the 
proposed method, FLOPs reduction rates are as high 
as 89.65% accompanied by a negligible drop in the 
Val. Acc. (< 2% ). The experimental analysis on 
TernausNet and U-Net confirms the robustness of the 
proposed approach. However, iterative searching for 
the representative filters takes some good amount of 
time. Therefore, it will be our future work to explore 
a way to render the method faster. 
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