
Integrating Security Protocols in Scenario-based Requirements
Specifications

Thorsten Koch1, Sascha Trippel2, Stefan Dziwok1 and Eric Bodden3

1Fraunhofer IEM, Germany
2Paderborn University, Germany

3Paderborn University & Fraunhofer IEM, Germany

Keywords: Scenario-based Requirements Engineering, Security Protocols, Simulative Validation.

Abstract: Software-intensive systems such as internet services, factories, or vehicles are characterized by complex func-
tionality and strong interconnection. This interconnection leads to a high risk of cyber-attacks. To reduce this
risk, software-intensive systems must fulfill various security requirements and integrate security mechanisms
such as security protocols. Security protocols ensure secure communication between and within software-
intensive systems. However, the application of security protocols could negatively impact other parts of the
systems (e.g., its communication behavior) since the protocols introduce further messages and computing-
intensive operations to the system’s behavior. Therefore, the development of software-intensive systems needs
to cover functional and security aspects. This paper presents a model- and scenario-based requirements engi-
neering approach to integrate security protocols in application-specific requirements specifications systemati-
cally. Thereby, requirements engineers with limited security knowledge can integrate established and validated
security protocols in their application to increase the security. In particular, our approach provides parameter-
izable templates for security protocols and references these templates in other specifications. Furthermore, it
provides the simulative validation of the requirements specification. We show that our approach is applicable
in practice through a case study involving application scenarios from the automotive domain and established
security protocols.

1 INTRODUCTION

Software-intensive systems have become prevalent
in our daily lives and are characterized by complex
functionality and strong interconnection. However,
the widespread use of software-intensive systems in-
creases the risk of cyber-attacks significantly. Thus,
security has become one of the most critical risks
for the world’s population (World Economic Forum,
2021) and one of the grand challenges in the field of
model-driven engineering (Bucchiarone et al., 2020).

Attacks on technical systems like industrial con-
trol systems or automotive systems pose a high
risk since malfunctions caused by security incidents
can lead to life-threatening accidents. For exam-
ple, (Miller and Valasek, 2015) conducted an attack
on the Jeep Cherokee and were able to remotely con-
trol the vehicle and manipulate the brakes and the mo-
tor control.

To cope with the complex requirements on func-
tionality and security, the development of software-

intensive systems requires rigorous requirement engi-
neering as detecting and fixing defects in subsequent
development phases causes costly iterations.

Scenario-based approaches enable requirements
engineers to specify what the system under devel-
opment may, must, or must not do during its ex-
ecution (Harel, 2001). The resulting requirements
specification provides an intuitive representation of
the system’s behavior (Hassine et al., 2010) and is
easy to understand for people with modeling experi-
ence (Abrahão et al., 2013). However, although secu-
rity is a significant concern in developing software-
intensive systems, scenario-based approaches cur-
rently only address functional and safety require-
ments. In addition, requirements engineers usu-
ally have limited security knowledge (Dziwok et al.,
2021), which can lead to severe vulnerabilities in the
system.

We presented a formal, model- and scenario-
based requirements engineering approach for the
specification and analysis of requirements on the

Koch, T., Trippel, S., Dziwok, S. and Bodden, E.
Integrating Security Protocols in Scenario-based Requirements Specifications.
DOI: 10.5220/0010783300003119
In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2022), pages 15-25
ISBN: 978-989-758-550-0; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

15

message-based communication behavior of software-
intensive systems using Modal Sequence Diagrams
(MSDs) (Holtmann et al., 2016).

Based on MSDs, we developed the Security Mod-
eling Profile enabling the specification of security
protocols in a scenario-based manner (Koch et al.,
2020). Security protocols are used to secure the
communication between two or more communication
partners (Schneier, 2015). However, security proto-
cols must be designed, implemented, and integrated
correctly in the application. Using the Security Mod-
eling Profile, security engineers can specify security
protocols and verify whether the security protocol ful-
fills the desired security requirements by means of a
security model checker. However, the specified and
verified security protocols were not integrated yet into
a requirements specification for an arbitrary applica-
tion; instead, requirements engineers have to model
the security protocols from scratch for each applica-
tion.

To address the problem, this paper presents an
approach to systematically integrate existing security
protocols specified by means of the Security Model-
ing Profile in a scenario-based requirements specifi-
cation. Therefore, we reduce the manual effort for
a requirements engineer to use established and vali-
dated security protocols in his application. Further-
more, requirements engineers with limited security
knowledge can use security protocols to increase the
security of their application. In particular, this ap-
proach encompasses the specification of parameteri-
zable templates for security protocols and referencing
templates in the scenario-based functional require-
ments specification. Furthermore, we extend the play-
out algorithm (Harel and Marelly, 2003), a simulative
validation technique for MSDs, to validate whether
the introduction of a security protocol causes any de-
fects in the other requirements.

To evaluate our approach, we conduct a case study
using two application scenarios from the automotive
domain. Furthermore, we use five different secu-
rity protocols from SPORE (the security protocols
open repository) (Clark and Jacob, 2002)—among
others—the Needham-Schroeder Public-Key proto-
col. Within our case study, we show that our approach
is applicable and useful in practice.

The remainder of the paper is structured as fol-
lows. In the next section, we introduce the fundamen-
tals of this paper. Section 3 presents our approach for
reusable security protocols. In Section 4, we conduct
a case study to evaluate our approach. Then, Section 5
covers related work. Finally, Section 6 concludes this
paper with a summary and an outlook on future work.

2 MODAL SEQUENCE
DIAGRAMS (MSDs)

This section presents the basic concepts of Modal Se-
quence Diagrams (MSDs) (Holtmann et al., 2016).
The presented concepts have been implemented in the
SCENARIOTOOLSMSD tool suite1. In Section 2.1,
we introduce the overall structure of an MSD specifi-
cation. Afterward, Section 2.2 presents the basics of
the MSD semantics. Then, Section 2.3 describes the
Play-out algorithm, an automatic validation technique
for MSDs. Finally, Section 2.4 explains the Security
Modeling Profile as an extension to MSDs that en-
ables the specification and analysis of security prop-
erties on the communication behavior.

2.1 Structure of MSD Specifications

An MSD specification is structured by means of MSD
use cases. Each use case encapsulates requirements
on the communication behavior to be provided by the
system under development. Therefore, an MSD use
case encompasses the participants involved in a self-
contained situation and a set of MSDs specifying the
requirements on the communication behavior.

To illustrate the concepts of MSDs, we use the
EBEAS (Holtmann et al., 2016), an advanced driver
assistance system from the automotive domain, as a
running example. EBEAS is supposed to reduce the
risk of rear-end collisions. Figure 1 depicts a self-
contained situation in which the vehicle leading de-
tects an obstacle in front and has to perform an emerg-
ing brake. To avoid a rear-end collision, leading in-
forms the vehicle ego about an emergency brake.

In an MSD specification, UML classes provide
reusable types for all MSD use cases. These types are
used to define the structure of the system under devel-
opment and its environment. Environment objects are
annotated with the stereotype «Environment» (e.g.,
Environment in Figure 1). Moreover, the UML classes
define operations used as message signatures and de-
fine which messages can be received by a participant
in an actual MSD. For example, the class diagram in
Figure 1 depicts the two classes Environment and Ve-
hicle. The class Environment encompasses the opera-
tion emcyBraking.

A UML collaboration (dashed ellipse in Figure 1)
specifies the roles participating in a particular use
case. The roles are typed by the UML classes and
used as lifelines in an MSD. For example, the collab-
oration in the middle of Figure 1 encompasses the role
ego that has an abstract syntax link type to the class
Vehicle.

1http://scenariotools.org/projects2/

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

16

EmergencyBraking

EmergencyBraking

class [Package] EmergencyBraking::Typesclass [Package] EmergencyBraking::Types

obstacle()
emcyBrakeWarning()
standstill()

Vehicle

obstacle()
emcyBrakeWarning()
standstill()

Vehicle

emcyBraking()

Environment

emcyBraking()

Environment

«Environment»
env: Environment
«Environment»

env: Environment leading: Vehicleleading: Vehicle ego: Vehicleego: Vehicle

type

msd EmcyBrakeTriggeringmsd EmcyBrakeTriggering

obstacle()

emcyBrakeWarning()

emcyBraking()

«Environment»

env: Environment
«Environment»

env: Environment
ego: Vehicleego: Vehicleleading: Vehicleleading: Vehicle

represents

signature

Figure 1: MSD Specification Excerpt for the Scenario
Emergency Braking of the EBEAS.

Based on the UML classes and the collaboration,
a set of MSDs specifies the requirements on the com-
munication behavior between the roles involved in the
MSD use case. For example, the bottom diagram
in Figure 1 depicts such an MSD. An MSD encom-
passes lifelines and MSD messages. These messages
are associated with a sending and a receiving lifeline
and an operation signature. For example, the MSD
message emcyBrakeWarning is associated with the
equally named operation signature of the class Vehicle
by means of the abstract syntax link signature. MSD
messages sent from environment objects are called
environment messages, whereas MSD messages sent
from system objects are called system messages.

2.2 MSD Semantics

An MSD progresses as message events occur in a
system at runtime or in an object system during the
simulative validation by means of the play-out algo-
rithm (Harel and Marelly, 2003).

A message event is unified with an MSD mes-
sage if the event name equals the message name and
if the sending and receiving lifelines of the message
are bound to the sending and receiving objects of the
message event.

When a message event occurs that is unifiable
with the first message in an MSD, an active MSD is
created. The active MSD progresses when other mes-
sage events occur that are unifiable with the subse-
quent MSD messages. This progress is captured by
the cut, which marks the locations of the passed MSD
messages for every lifeline. If the cut is in front of an

MSD message on its sending and receiving lifelines,
the MSD message is enabled. If the cut reaches the
end of an active MSD, the active MSD is terminated.

Each MSD message has a temperature and an ex-
ecution kind. The temperature of a message can be
hot or cold. The temperature is used to distinguish
between provisional (cold) and mandatory (hot) be-
havior depicted by blue and red arrows in Figure 1.
The semantics of a hot message is that other messages
specified by the MSD are not allowed to occur. For
example, the MSD messages emcyBrakeWarning and
emcyBraking in Figure 1 are hot, whereas the others
are cold. The execution kind of a message can ei-
ther be executed or monitored depicted by solid and
dashed arrows in Figure 1. An executed message indi-
cates that the message must eventually occur, whereas
a monitored message can but does not need to occur.
For example, the MSD message obstacle and stand-
still are monitored, whereas the others are executed.

A violation occurs in an MSD if a message event
occurs that is unifiable with a specified message but
not enabled in this MSD. If a violation occurs, the
active MSD is terminated. Based on the execution
kind and temperature of a cut, we can define different
types of violations.

• If a violation occurs in a cold cut (i.e., all enabled
messages are cold), it is a cold violation, which
does not violate the requirements.

• If a violation occurs in a hot cut (i.e., at least
one enabled message is hot), it is a hot violation,
which violates the requirements.

• If a violation occurs in an executed cut (i.e., at
least one enabled message is executed), it is a live-
ness violation, violating the requirements.

2.3 Play-out Algorithm

The play-out algorithm (Harel and Marelly, 2003) en-
ables the validation of an MSD specification. While
simulating selected execution paths of the system un-
der development, the play-out algorithm finds defects
regarding the consistency and correctness of the re-
quirements specification.

In the beginning, the system waits for environ-
ment events to occur. If an environment event occurs,
MSDs are activated whose initial event is unifiable
with the environment event. Next, the play-out al-
gorithm chooses non-deterministically one of the en-
abled system events and executes it if this does not
lead to a hot violation in another MSD. The process is
repeated until there are no active MSDs. The system
then waits for the next environment event. In case of
a hot violation, the algorithm terminates.

Integrating Security Protocols in Scenario-based Requirements Specifications

17

2.4 Security Modeling Profile

The Security Modeling Profile (Koch et al., 2020)
introduces an extension to the MSD profile to en-
able the specification of security requirements on the
communication behavior. Therefore, the profile pro-
vides stereotypes to specify various security primi-
tives (e.g., encryption or digital signatures).

Figure 2 depicts an excerpt of the MSD specifi-
cation for the Needham-Schroeder Public-Key proto-
col (Lowe, 1996). The security protocol enables mu-
tual authentication between two participants. For this
purpose, the security protocol relies on a trusted key
server, which stores and distributes the public keys of
all participants.

msd Needham-Schroeder Key Exchange & Authentificationmsd Needham-Schroeder Key Exchange & Authentification

client: Clientclient: Client
trustedServer:

TrustedThirdParty
trustedServer:

TrustedThirdParty
server: Serverserver: Server

sendPublicKey (
 pubKey = pubKeyS,
 reqId = “server“)

requestPublicKey (
 ownId = “client“,
 reqId = “server“) «asymmetric_encryption»

pubKey = pubKeyC
privKey = privKeyC

«asymmetric_encryption»
pubKey = pubKeyC
privKey = privKeyC

helloServer (
 nonce = “...“,
 ownId = “client“)

client: Client
trustedServer:

TrustedThirdParty
server: Server

sendPublicKey (
 pubKey = pubKeyS,
 reqId = “server“)

requestPublicKey (
 ownId = “client“,
 reqId = “server“) «asymmetric_encryption»

pubKey = pubKeyC
privKey = privKeyC

helloServer (
 nonce = “...“,
 ownId = “client“)

msd Needham-Schroeder Key Exchange & Authentification

client: Client
trustedServer:

TrustedThirdParty
server: Server

sendPublicKey (
 pubKey = pubKeyS,
 reqId = “server“)

requestPublicKey (
 ownId = “client“,
 reqId = “server“) «asymmetric_encryption»

pubKey = pubKeyC
privKey = privKeyC

helloServer (
 nonce = “...“,
 ownId = “client“)

Needham-Schroeder Participants

Needham-Schroeder Participants

client: Clientclient: Client
trustedServer:

TrustedThirdParty

trustedServer:

TrustedThirdParty
server: Serverserver: Server

Needham-Schroeder Participants

client: Client
trustedServer:

TrustedThirdParty
server: Server

class [Package] Needham-Schroeder::Typesclass [Package] Needham-Schroeder::Types

+ helloServer(
 nonce: String,
 ownId: String
)

- «privateKey»
 privKeyS: String
+ «publicKey»
 pubKeyS: String

Server

+ helloServer(
 nonce: String,
 ownId: String
)

- «privateKey»
 privKeyS: String
+ «publicKey»
 pubKeyS: String

Server

+ sendPublicKey(
 pubKey: String,
 reqId: String
)

- «privateKey»
 privKeyC: String
+ «publicKey»
 pubKeyC: String

Client

+ sendPublicKey(
 pubKey: String,
 reqId: String
)

- «privateKey»
 privKeyC: String
+ «publicKey»
 pubKeyC: String

Client

+ requestPublicKey(
 ownId: String,
 reqId: String
)

TrustedThirdParty

+ requestPublicKey(
 ownId: String,
 reqId: String
)

TrustedThirdParty

class [Package] Needham-Schroeder::Types

+ helloServer(
 nonce: String,
 ownId: String
)

- «privateKey»
 privKeyS: String
+ «publicKey»
 pubKeyS: String

Server

+ sendPublicKey(
 pubKey: String,
 reqId: String
)

- «privateKey»
 privKeyC: String
+ «publicKey»
 pubKeyC: String

Client

+ requestPublicKey(
 ownId: String,
 reqId: String
)

TrustedThirdParty

«asymmetric_encryption»
pubKey = pubKeyS
privKey = privKeyS

«asymmetric_encryption»
pubKey = pubKeyS
privKey = privKeyS

Figure 2: MSD Specification Excerpt for the Needham-
Schroeder Public-Key protocol (using the Security Model-
ing Profile).

The MSD for the Needham-Schroeder Public-Key
protocol, depicted at the bottom of Figure 2, contains
the three lifelines client: Client, trustedServer: Trust-
edThirdParty, and server: Server. The client: Client
sends the message requestPublicKey to the trusted-
Server: TrustedThirdParty to obtain the public key
of the server: Server. The trustedServer: Trust-
edThirdParty replies to the request and sends the cor-
responding public key to client: Client (cf. sendPub-
licKey in Figure 2). According to the protocol spec-
ification, this message must be asymmetrically en-

crypted. Therefore, we applied the stereotype «asym-
metric_encryption» to the message sendPublicKey.
The stereotype has the two properties pubKey and
privKey, which are necessary to express information
for the encryption and decryption of the message. In
the example depicted in Figure 2, the property pub-
Key is set to pubKeyC and the property privKey is set
to privKeyC of the class Client, respectively.

To enable the verification of security protocols
specified by the Security Modeling Profile, we con-
ceived a model transformation from the enriched
MSD specification into the security model checker
ProVerif (Blanchet, 2001). In addition, the transfor-
mation generates all relevant queries that the model
checker shall verify to decide whether the protocol is
secure w.r.t. confidentiality and authentication.

Furthermore, they extended the MSD semantics
such that the play-out algorithm can validate MSD
specifications using the Security Modeling Profile. In
particular, they extend the definition of message unifi-
cation (cf. Section 2.3) and validate whether the same
cryptographic primitives (e.g., stereotypes of the Se-
curity Modeling Profile) are applied to the message
event and the corresponding message. Furthermore,
the properties of the stereotypes of the message and
the message event must be the same. For example, a
message event that is unifiable with an enabled mes-
sage but does not have the same cryptographic primi-
tives leads to a violation.

3 INTEGRATION APPROACH

This section introduces our approach for integrating
security protocols into scenario-based requirements
specifications. First, we present our modeling ap-
proach to specify reusable security protocols and their
application in scenario-based requirements specifica-
tions. Second, we describe the adaptation of the play-
out algorithm to enable the simulative validation of
the resulting scenario-based requirements specifica-
tions.

3.1 Modeling Approach

Security protocols can be used in different applica-
tions to ensure secure communication between the
participants involved in the application.

To avoid the redundant and error-prone task of
modeling the security protocol during the require-
ments engineering for a particular application, we
propose that the security protocol specification is sep-
arated from the scenario-based requirements specifi-
cation. Moreover, the scenario-based requirements

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

18

specification should reference the security protocol as
depicted in Figure 3.

On a technical level, although the scenario-based
requirements specification and the security protocol
are specified by means of MSDs, a scenario-based re-
quirements specification cannot reuse the behavior of
the security protocol since both specifications rely on
different types that are used as roles in the MSD use
case and define the message that can be exchanged
between the roles.

Thus, to overcome this problem, the types of the
system under development must be related to the
types of the security protocol. Thereby, the security
protocol is adapted to the application context of the
system under development, and the specified types
can adopt the behavior of the security protocol types.

In Figure 3, we illustrate the initial situation using
our running example. The application scenario Emer-
gency Braking of the EBEAS, depicted in the MSD
specification on the left side, is supposed to ensure
the encrypted communication between the two roles
leading: Vehicle and ego: Vehicle. Therefore, the re-
quirements engineer decides to execute the Needham-
Schroeder Public-Key protocol, depicted on the right
side. After the execution of the protocol, the two roles
know the public key of each other and can use it to se-
cure their communication (cf. emcyBrakeWarning in
Figure 3).

To adapt the security protocol to the application
context, the role leading: Vehicle has to substitute the
role client: Client; and the role ego: Vehicle has to
substitute the role server: Server (cf. arrows labeled
with represents in Figure 3). Furthermore, the prop-
erties that are used in the stereotypes to annotate that a
message is encrypted (e.g., in Figure 3) must also be
substituted by a property that exists in the scenario-
based requirements specification.

One possible idea to relate the different classes
is the concept of UML Inheritance. Therefore, the
UML classes used as types of the scenario-based re-
quirements specification extend the UML classes of
the security protocols. The scenario-based require-
ments specification types inherit the operations and
properties, which enable their representative roles to
participate in the security protocol.

However, this solution has several drawbacks.
First, as depicted in Figure 3, multiple roles in
a scenario-based requirements specification can be
typed by the same class. Thus, it would be unclear
which role of the scenario-based requirements speci-
fication takes which role in the security protocol. For
example, in Figure 3, the two roles leading and ego
are both typed by the class Vehicle. Second, if a role
of the scenario-based requirements specification ex-

ecutes the same security protocol with different par-
ticipants, it might happen that the same properties of
a type must be used in different contexts and, thus,
would be overwritten. Therefore, it is necessary to
define an explicit relationship for properties.

To address these drawbacks, we conceived a
template-based modeling approach to adapt a security
protocol to the application context of a scenario-based
requirements specification.

In the following, we present the extension to the
Security Modeling Profile to enable the specification
of security protocol templates. Afterward, we intro-
duce the approach to instantiate the templates within
a scenario-based requirements specification.

3.1.1 Defining Security Protocol Templates

Our template-based modeling approach relates struc-
tural elements of the scenario-based requirements
specification to structural elements of the security
protocol. Thereby, the security protocol is adapted to
the application context. As a consequence, we intro-
duce the concept of template parameter. A template
parameter is added to those elements of the security
protocol that may be substituted by elements of the
application. There are two types of template parame-
ters: RoleTemplate and PropertyTemplate.

RoleTemplate: A security protocol encompasses at
least two participants, the protocol initiator and
the protocol responder. For example, in the secu-
rity protocol depicted in Figure 3, the role client:
Client initiates the protocol, and server: Server
responds to the initiation. Furthermore, a secu-
rity protocol can encompass other roles, e.g., a
trusted third party as in the Needham-Schroeder-
Key-Protocol.
To enable the substitution of the security proto-
col’s roles, we use the stereotype RoleTemplate
that can be applied to the roles of the UML collab-
oration. For example, in the security protocol de-
picted in Figure 3, we have applied this stereotype
to the two roles client: Client and server: Server.

PropertyTemplate: In a security protocol, roles
have prior knowledge that exists before the initial
communication and is essential to the execution
of the protocol. For example, in the security pro-
tocol depicted in Figure 3, the class Client typing
the role client: Client has the two properties privK-
eyC and pubKeyC to represent the public/private
key pair.
To enable the substitution of the security pro-
tocol’s roles, we introduce a stereotype Proper-
tyTemplate that can be applied to the properties

Integrating Security Protocols in Scenario-based Requirements Specifications

19

MSD Specification using a security protocol template

class [Package] EmergencyBraking::Typesclass [Package] EmergencyBraking::Types

MSD Specification specifying a security protocol template

msd EmergencyBrakingmsd EmergencyBraking

msd Needham-Schroeder Key Exchange & Authentificationmsd Needham-Schroeder Key Exchange & Authentification

client: Clientclient: Client
trustedServer:

TrustedThirdParty
trustedServer:

TrustedThirdParty
server: Serverserver: Server

sendPublicKey (
 pubKey = pubKeyS,
 reqId = “server“)

requestPublicKey (
 ownId = “client“,
 reqId = “server“) «asymmetric_encryption»

pubKey = privKeyC
privKey = pubKeyC

«asymmetric_encryption»
pubKey = privKeyC
privKey = pubKeyC

client: Client
trustedServer:

TrustedThirdParty
server: Server

sendPublicKey (
 pubKey = pubKeyS,
 reqId = “server“)

requestPublicKey (
 ownId = “client“,
 reqId = “server“) «asymmetric_encryption»

pubKey = privKeyC
privKey = pubKeyC

msd Needham-Schroeder Key Exchange & Authentification

client: Client
trustedServer:

TrustedThirdParty
server: Server

sendPublicKey (
 pubKey = pubKeyS,
 reqId = “server“)

requestPublicKey (
 ownId = “client“,
 reqId = “server“) «asymmetric_encryption»

pubKey = privKeyC
privKey = pubKeyC

Needham-Schroeder Participants

Needham-Schroeder Participants

«RoleTemplate»
client: Client

«RoleTemplate»
client: Client

trustedServer:

TrustedThirdParty

trustedServer:

TrustedThirdParty

«RoleTemplate»

server: Server

«RoleTemplate»

server: Server

class [Package] Needham-Schroeder::Typesclass [Package] Needham-Schroeder::Types

+ helloServer(
 nonce: String,
 ownId: String
)

-«PropertyTemplate»
 «privateKey»
 privKeyS: String
+«PropertyTemplate»
 «publicKey»
 pubKeyS: String

Server

+ helloServer(
 nonce: String,
 ownId: String
)

-«PropertyTemplate»
 «privateKey»
 privKeyS: String
+«PropertyTemplate»
 «publicKey»
 pubKeyS: String

Server

+ sendPublicKey(
 pubKey: String,
 reqId: String
)

-«PropertyTemplate»
 «privateKey»
 privKeyC: String
+«PropertyTemplate»
 «publicKey»
 pubKeyC: String

Client

+ sendPublicKey(
 pubKey: String,
 reqId: String
)

-«PropertyTemplate»
 «privateKey»
 privKeyC: String
+«PropertyTemplate»
 «publicKey»
 pubKeyC: String

Client

+ requestPublicKey(
 ownId: String,
 reqId: String
)

TrustedThirdParty

+ requestPublicKey(
 ownId: String,
 reqId: String
)

TrustedThirdParty

obstacle()

emcyBrakeWarning()

emcyBraking()

standstill()

«Environment»

env: Environment
«Environment»

env: Environment
ego: Vehicleego: Vehicleleading: Vehicleleading: Vehicle

+ obstacle()
+ emcyBrakeWarning()
+ standstill()

- «privateKey»
 privKeyVe: String
+ «publicKey»
 pubKeyVe: String

Vehicle

+ obstacle()
+ emcyBrakeWarning()
+ standstill()

- «privateKey»
 privKeyVe: String
+ «publicKey»
 pubKeyVe: String

Vehicle

emcyBraking()

Environment

emcyBraking()

Environment

EmergencyBraking

EmergencyBraking

EmergencyBraking

«Environment»
env: Environment
«Environment»

env: Environment ego: Vehicleego: Vehicle leading: Vehicleleading: Vehicle

represents

represents

Needham-Schroeder Key

Exchange & Authentification

refref

«SecurityProtocolReference»

roleMap = {

 roleParameter = client: Client,
 roleArgument = leading: Vehicle
 propertyMap = {
 propertyParameter = privKeyC,
 propertyArgument = leading.privKeyVe
 }
}

«SecurityProtocolReference»

roleMap = {

 roleParameter = client: Client,
 roleArgument = leading: Vehicle
 propertyMap = {
 propertyParameter = privKeyC,
 propertyArgument = leading.privKeyVe
 }
}

«asymmetric_encryption»
pubKey = ego.pubKeyVe
privKey = ego.privKeyVe

«asymmetric_encryption»
pubKey = ego.pubKeyVe
privKey = ego.privKeyVe

«asymmetric_encryption»
pubKey = pubKeyS
privKey = privKeyS

«asymmetric_encryption»
pubKey = pubKeyS
privKey = privKeyS

Figure 3: The Scenario-based Requirements Specification for the Application Scenario Emergency Braking is supposed to
integrate the Needham-Schroeder Public-Key protocol specified in another specification. The SecurityProtocolReference in
the MSD EmergencyBraking depicts only an excerpt of the role and property mapping.

of the UML classes. For example, in the secu-
rity protocol depicted in Figure 3, we have applied
the stereotype to all properties of the two classes
Client and Server.

3.1.2 Referencing Security Protocol Templates

This section introduces our modeling approach for
referencing security protocol templates based on
UML InteractionUse (Object Management Group
(OMG), 2017, Clause 17). A UML InteractionUse
enables the reuse of existing interactions. However, a
UML InteractionUse does not allow to specify struc-
tural substitutions.

Thus, we extend the Security Modeling Profile
profile to specify the substitution of roles to roles and
properties to properties while specifying the Interac-
tionUse. Therefore, we create a new stereotype called
SecurityProtocolReference that extends the UML In-
teractionUse.

The stereotype SecurityProtocolReference inher-
its the property refersTo of type Interaction. This
property is used to specify the interaction that de-

fines the behavior of the security protocol. For exam-
ple, the SecurityProtocolReference in Figure 3 refers
to the MSD Needham-Schroeder Key Exchange & Au-
thentification.

In addition to the inherited properties, the
stereotype SecurityProtocolReference encompasses a
Role2RoleMap. The Role2RoleMap is a list of type
Role2RoleMapEntry mapping the roles from the se-
curity protocol template to roles in the referencing
MSD. The list has at least two elements, the ini-
tiator and the responder of the security protocol.
The concrete mapping is specified in the data type
Role2RoleMapEntry. Therefore, the data type has two
properties: roleParameter and roleArgument. While
the roleParameter corresponds to a role in the secu-
rity protocol, the roleArgument captures a role of the
application context.

Apart from the two properties used to define the
role mapping, the Role2RoleMapEntry encompasses
a property called Property2PropertyMap. It is used to
map properties from the security protocol template to
properties in the referencing security protocol.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

20

For example, in the security protocol depicted
in Figure 3, the stereotype SecurityProtocolReference
specifies an excerpt of the role and property mapping.
Here, the role client: Client of the security protocol is
substituted by the role leading: Vehicle. Furthermore,
the property privKeyC of the class Client is substituted
by the property privKeyVe of the class Vehicle.

3.2 Simulation Approach

We adapted the play-out algorithm of ScenarioTools
to support the modeling approach for the integration
of security protocols in scenario-based requirements
specification presented in the previous section.

The adaptation is restricted to the evaluation of
the SecurityProtocolReference and the resolution of
its defined properties. Apart from that, the algorithm
behaves as described in Section 2.3.

If the cut of an active MSD is immediately be-
fore the SecurityProtocolReference, it is directly eval-
uated. Therefore, the play-out algorithm resolves the
substitutions specified by the SecurityProtocolRefer-
ence and adds the messages defined by the referenced
security protocol. The substitution process encom-
passes two steps. First, the play-out algorithm eval-
uates the role mapping and substitutes the role ac-
cordingly. For example, Figure 4, depicts the MSD
specification after resolving the SecurityProtocolRef-
erence. Here, the role leading: Vehicle substitutes the
client: Client and the role ego: Vehicle substitutes the
server: Server. Furthermore, the role trustedServer:
TrustedThirdParty is added to the resulting specifica-
tion since it is not part of any mapping. Note that it is
not relevant whether the lifelines of the security proto-
col template are part of the environment or the system.
Instead, the specification kind is taken from the refer-
encing lifelines. As a result of the substitution, the
roles of the requirements specification can now send
and receive the messages of the security protocol. Af-
terward, the play-out algorithm evaluates the property
mapping specified for each role mapping. All refer-
ences to this property in the security protocol specifi-
cation are searched for and replaced by the new refer-
ence. This applies to message parameters as well as
to the references in the individual stereotypes of the
Security Modeling Profile. After the two steps have
been completed, the play-out continues as described
in Section 2.3.

4 CASE STUDY

To evaluate the applicability and usefulness of our ap-
proach in practice, we conduct a case study based

msd EmergencyBraking With Security Protocolmsd EmergencyBraking With Security Protocol

obstacle()

emcyBrakeWarning()

emcyBraking()

«Environment»

env: Environment

«Environment»

env: Environment
ego: Vehicleego: Vehicleleading: Vehicleleading: Vehicle

refref

trustedServer:

TrustedThirdParty

trustedServer:

TrustedThirdParty

requestPublicKey (
 ownId = “client“,
 reqId = “server“)

Needham-Schroeder Key Exchange & Authentification

«asymmetric_encryption»
pubKey = leading.pubKeyVe
privKey = leading.privKeyVe

«asymmetric_encryption»
pubKey = leading.pubKeyVe
privKey = leading.privKeyVe

«asymmetric_encryption»
pubKey = ego.pubKeyVe
privKey = ego.privKeyVe

«asymmetric_encryption»
pubKey = ego.pubKeyVe
privKey = ego.privKeyVe

sendPublicKey (
 pubKey = ego.pubKeyVe,
 reqId = “server“)

Figure 4: MSD Specification after the Template Substitu-
tion.

on the guidelines by (Kitchenham et al., 1995) and
(Runeson, 2012).

4.1 Case Study Context

We examine three evaluation questions (EQ):

EQ1: Does our approach enable the specification of
security protocol templates for real-world security
protocols?

EQ2: Does our approach enable the use of security
protocol templates in a scenario-based require-
ments specification?

EQ3: Does our approach enable the analysis of
scenario-based requirements specifications that
include security protocol templates?

For this purpose, we use the Needham-Schroeder
Public-Key protocol from our running example and
selected four other security protocols from SPORE
(the security protocol open repository) (Clark and
Jacob, 2002). The five security protocols present
a broad range of possible security protocols since
they use different cryptographic primitives. For ex-
ample, the Needham-Schroeder Public-Key protocol
uses asymmetric encryption, while the Andrew Se-
cure RPC uses symmetric encryption.

Furthermore, we model two application scenarios
from the EBEAS (cf. Section 2.1) that shall integrate
the five selected security protocols. The first appli-
cation scenario is taken from the running example.
The second application scenario is similar but con-
tains two additional roles whose communication must
be encrypted.

The two application scenarios are sufficient to
evaluate our approach for the following two reasons.
First, the use of the SecurityProtocolReference is in-
dependent of the application scenario. Here, it is

Integrating Security Protocols in Scenario-based Requirements Specifications

21

only essential to use different security protocols and,
thereby, to specify various substitutions by means of
the SecurityProtocolReference. Second, the simula-
tion of a SecurityProtocolReference is also indepen-
dent of the application scenario. Here, it is essential to
use the same protocol multiple times but also to sim-
ulate different protocols at the same time. The second
application scenario covers both cases.

In preparation of the case study, we implemented
a prototype of our approach based on SCENARI-
OTOOLSMSD tool suite.

4.2 Research Hypotheses

Based on our objective and evaluation questions, we
define the following three evaluation hypotheses:

H1: The five security protocols selected from
SPORE can be specified as security protocol tem-
plates using our extensions to the Security Model-
ing Profile as presented in Section 3.1.1. We rate
the hypothesis as fulfilled if each security proto-
col can be specified as a security protocol tem-
plate using solely the approach presented in Sec-
tion 3.1.1.

H2: All security protocol templates can be refer-
enced in a scenario-based requirements specifica-
tion. Therefore, all parameters specified by the
template must be substituted by model elements
of the scenario-based requirements specification
using our approach presented in Section 3.1.2. We
consider H2 as fulfilled if all security protocol
templates can be used in the two scenario-based
requirements specification correctly using our ap-
proach presented in Section 3.1.2.

H3: The references to the five security protocol tem-
plates can be evaluated correctly according to the
runtime semantics defined in Section 3.2. We rate
H3 as fulfilled if the contents of the security pro-
tocol template are correctly inserted into the ref-
erencing scenario-based requirements specifica-
tions during the simulative validation by means of
the play-out algorithm.

4.3 Hypothesis Validation

To validate our hypotheses, we use the prototypical
implementation of our approach based on the Scenar-
ioTools MSD tool-suite. First, we model the MSD
specification for each security protocol template and
check whether our modeling profile is sufficiently ex-
pressive. Second, we use the two application sce-
narios as scenario-based requirements specifications
and refer to the resulting security protocol templates.

Finally, we validate the scenario-based requirements
specifications, including the security protocol refer-
ence, through the play-out algorithm.

4.4 Analyzing the Results

The results of the case study are depicted in Table 1.
Using the extensions to the Security Modeling

Profile, we were able to model all relevant informa-
tion for specifying the five security protocols as se-
curity protocol templates. Thus, we consider H1 as
fulfilled.

Furthermore, we specified the two exemplary
scenario-based requirements specifications. To ref-
erence the different security protocol templates, we,
first, added the necessary properties to the specifica-
tion. Second, we added the SecurityProtocolRefer-
ence and defined the substitution following the ap-
proach presented in Section 3.2. For both specifica-
tions, we were able to add new properties to the dif-
ferent types and, afterward, defined the substitution
for all parameters of the referenced security protocol
template. Thus, we consider H2 as fulfilled.

Finally, we executed the MSD specification that
references the security protocol template using our
adapted play-out algorithm. During the execution,
the SecurityProtocolReference was evaluated. Sub-
sequently, we observed that for each security proto-
col and simulation run the contents of the security
protocol template were inserted correctly in the ac-
tive MSD. Moreover, all messages were in the correct
order and were sent between the lifelines specified
as arguments to their original sending and receiving
lifelines. Furthermore, the properties were correctly
substituted and referenced where necessary. Thus, we
consider H3 as fulfilled.

To conclude the case study, the fulfilled hypothe-
ses indicate that our approach to specification, usage,
and analysis of security protocol templates is applica-
ble and useful in practice.

4.5 Threats to Validity

The following facts threaten the validity of the case
study. First, we only modeled a selection of possi-
ble security protocols as security protocol templates.
So, we cannot generalize our results for all possible
security protocols. However, this threat is mitigated
because the selected security protocols are typical ex-
amples of a security protocol covering all aspects rel-
evant to security protocol templates. Second, the se-
curity protocol templates are only used by two exem-
plary scenario-based MSD specifications. This threat
is mitigated because the evaluation of a security pro-

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

22

Table 1: Results of the Case Study.

Security Protocol H1 H2 H3
Modeling as Security

Protocol Template

Integration in

Application Scenarios

Validation of the

Resulting Specification

Andrew Secure RPC ✓ ✓ ✓
Denning-Sacco Shared Key ✓ ✓ ✓
Diffie-Hellman Key Exchange ✓ ✓ ✓
Needham-Schroeder Public-Key ✓ ✓ ✓
Needham-Schroeder Symmetric-Key ✓ ✓ ✓

tocol template reference is independent of other parts
of the MSD specification (cf. Section 3.1.2). Finally,
the case study was performed by the same authors that
developed the approach. Since the researchers might
be biased toward the developed approach, the case
study would be more significant if other security ex-
perts had modeled the security protocol templates and
if requirements engineers had modeled the scenario-
based specifications.

5 RELATED WORK

Some approaches consider the specification of secu-
rity mechanisms and their reuse in an application’s
requirements and design phase.

(Mouheb et al., 2009) propose an aspect-oriented
modeling approach to integrate security mechanisms
(e.g., security protocols like TLS) into software de-
sign models (e.g., UML Interactions). Therefore,
the authors present a UML profile to specify secu-
rity mechanisms. This profile introduces a transpar-
ent and automatic approach that weaves the security
mechanism into the design models. The approach is
similar to ours since the authors present an approach
to reuse security mechanisms that people with limited
security knowledge can use. However, while the au-
thors only consider the behavior of a security mecha-
nism, we also consider structural properties. Thereby,
we can better adapt the security mechanisms to the
context of the application. Furthermore, we provide a
simulative validation of the resulting specification.

(Ray et al., 2004) present an approach to incorpo-
rate role-based access control (RBAC) policies into
the design of applications. The RBAC policies are
defined independently of the application that has to
implement the policies. To bridge the gap between
the policy definition and the application design, Ray
et al. specify policies by means of UML diagram tem-
plates. These UML diagram templates can be used
to integrate application-specific policies into the de-
sign of the application. The approach is similar to
our approach since the authors present an approach

to reuse security mechanisms. Furthermore, both ap-
proaches enable the validation of the resulting specifi-
cations. However, in contrast to our approach, Ray et
al. consider role-based access control and only con-
sider the specification and analysis of structural mod-
els like UML class and object diagrams.

Furthermore, many approaches consider the mod-
eling of system and software security using UML
and SysML. For example, (Jürjens, 2002) propose
UMLSec as an model-driven approach for integrating
security-related information in UML specifications.
UMLSec encompasses a UML profile for express-
ing security mechanisms, including secure informa-
tion flow, confidentiality, and access control.

(Lodderstedt et al., 2002) present SecureUML, a
UML-based modeling language for model-driven se-
curity. The approach enables the design and analysis
of secure, distributed systems by adding mechanisms
to model role-based access control. Furthermore, they
provide an automatic generation of access control in-
frastructures based on the specified models.

(Roudier and Apvrille, 2015) present SysML-Sec,
a modeling approach based on SysML to enable the
specification of security aspects for embedded sys-
tems. They enhance SysML block and state machine
diagrams to capture security-related features. In con-
trast to the other two approaches, SysML-Sec also
covers safety-related features.

However, all these approaches mainly focus on ex-
tending the UML/SysML notations to reflect security
concerns better. In contrast, our approach addresses
the systematic reuse of existing security mechanisms.
Thereby, our approach separates the specification and
application of security mechanisms and allows people
with limited knowledge to rely on these mechanisms
to secure their applications.

6 CONCLUSION

This paper presents an approach for the systematic in-
tegration of security protocols templates in scenario-
based requirements specifications. Therefore, we

Integrating Security Protocols in Scenario-based Requirements Specifications

23

contribute three building blocks. First, we extend the
UML-based Security Modeling Profile with language
constructs enabling the specification of security pro-
tocol templates. Second, we introduce an approach to
refer to such a security protocol template in scenario-
based requirements specification based on the UML-
based scenario formalism MSD. Third, we extend the
simulative validation technique play-out to support
the security protocol templates.

Our approach enables requirements engineers to
adapt existing security protocols to their context and,
thus, integrate them systematically into their applica-
tion to increase security. In addition, the integration
makes the protocols accessible to people with little
security knowledge. Finally, the simulative valida-
tion enables requirements engineers to check whether
introducing security protocols has violated other re-
quirements.

Future work encompasses three aspects. First, we
plan to conduct a user study to evaluate whether our
modeling language is intuitive and easy to use for se-
curity engineers and requirements engineers. Second,
we want to collect typical security protocol templates
in a library. Requirements engineers could search
this library and select the protocol that best suits their
needs. Third, we want to improve the security model-
ing abilities of our methodology. Therefore, we want
to introduce the concept of misuse cases and make
them analyzable by means of the play-out algorithm.

ACKNOWLEDGEMENTS

This research has been partly sponsored by the project
"AppSecure.nrw - Security-by-Design of Java-based
Applications" funded by the European Regional De-
velopment Fund (ERDF-0801379).

REFERENCES

Abrahão, S., Gravino, C., Insfran, E., Scanniello, G., and
Tortora, G. (2013). Assessing the effectiveness of se-
quence diagrams in the comprehension of functional
requirements: Results from a family of five experi-
ments. IEEE Transactions on Software Engineering,
39(3):327–342.

Blanchet, B. (11-13 June 2001). An efficient crypto-
graphic protocol verifier based on prolog rules. In
Proceedings. 14th IEEE Computer Security Founda-
tions Workshop, 2001, pages 82–96. IEEE.

Bucchiarone, A., Cabot, J., Paige, R. F., and Pierantonio, A.
(2020). Grand challenges in model-driven engineer-
ing: an analysis of the state of the research. Software
and Systems Modeling, 19(1):5–13.

Clark, J. and Jacob, J. (2002). Security protocols open
repository.

Dziwok, S., Koch, T., Merschjohann, S., Budweg, B., and
Leuer, S. (2021). AppSecure.nrw Software Security
Study. https://arxiv.org/abs/2108.11752.

Harel, D. (2001). From play-in scenarios to code: an
achievable dream. Computer, 34(5):53–60.

Harel, D. and Marelly, R. (2003). Come, Let’s Play:
Scenario-Based Programming Using LSCs and the
Play-Engine. Springer.

Hassine, J., Rilling, J., and Dssouli, R. (2010). An evalu-
ation of timed scenario notations. Journal of Systems
and Software, 83(2):326–350.

Holtmann, J., Fockel, M., Koch, T., Schmelter, D., Bren-
ner, C., Bernijazov, R., and Sander, M. (2016).
The MechatronicUML Requirements Engineering
Method: Process and Language. Technical Report tr-
ri-16-351, Software Engineering Department, Fraun-
hofer IEM / Software Engineering Group, Heinz Nix-
dorf Institute.

Jürjens, J. (2002). UMLsec: Extending UML for Secure
Systems Development. In Jézéquel, J.-M., editor, The
unified modeling language, volume 2460 of Lecture
Notes in Computer Science, pages 412–425. Springer,
Berlin [u.a.].

Kitchenham, B., Pickard, L. M., and Pfleeger, S. L. (1995).
Case studies for method and tool evaluation. IEEE
Software, 12(4):52–62.

Koch, T., Dziwok, S., Holtmann, J., and Bodden, E.
(2020). Scenario-Based Specification of Security Pro-
tocols and Transformation to Security Model Check-
ers. In Proceedings of the 23rd ACM/IEEE Interna-
tional Conference on Model Driven Engineering Lan-
guages and Systems, MODELS ’20, page 343–353,
New York, NY, USA. Association for Computing Ma-
chinery.

Lodderstedt, T., Basin, D., and Doser, J. (2002). Se-
cureUML: A UML-Based Modeling Language for
Model-Driven Security. In Jézéquel, J.-M., Huss-
mann, H., and Cook, S., editors, ≪UML≫ 2002
— The Unified Modeling Language, pages 426–441,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Lowe, G. (1996). Breaking and fixing the needham-
schroeder public-key protocol using fdr. In Goos, G.,
Hartmanis, J., Leeuwen, J., Margaria, T., and Steffen,
B., editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 1055 of Lecture
Notes in Computer Science, pages 147–166. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Miller, C. and Valasek, C. (2015). Remote exploitation of
an unaltered passenger vehicle. Black Hat USA.

Mouheb, D., Talhi, C., Lima, V., Debbabi, M., Wang, L.,
and Pourzandi, M. (2009). Weaving Security Aspects
into UML 2.0 Design Models. In Proceedings of the
13th Workshop on Aspect-Oriented Modeling, AOM
’09, page 7–12, New York, NY, USA. Association for
Computing Machinery.

Object Management Group (OMG) (2017). OMG Unified
Modeling Language (OMG UML) – Version 2.5.1.
OMG Document Number: formal/2017-12-05.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

24

Ray, I., Li, N., France, R., and Kim, D.-K. (2004). Us-
ing Uml to Visualize Role-Based Access Control Con-
straints. In Proceedings of the Ninth ACM Symposium
on Access Control Models and Technologies, SAC-
MAT ’04, page 115–124, New York, NY, USA. As-
sociation for Computing Machinery.

Roudier, Y. and Apvrille, L. (2015). SysML-Sec: A
model driven approach for designing safe and se-
cure systems. In 2015 3rd International Conference
on Model-Driven Engineering and Software Develop-
ment (MODELSWARD), pages 655–664.

Runeson, P., editor (2012). Case study research in software
engineering: Guidelines and examples. Wiley, Hobo-
ken, N.J, 1st ed. edition.

Schneier, B. (2015). Applied Cryptography: Protocols, Al-
gorithms and Source Code in C. John Wiley & Sons
Incorporated, New York.

World Economic Forum (2021). Global risks 2021: Insight
report. World Economic Forum, Geneva, 16th edition
edition.

Integrating Security Protocols in Scenario-based Requirements Specifications

25

