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Abstract PET image reconstruction largely relies on pre-reconstruction data correction, which may add noise and 
remove information. This loss is particularly notable when correcting for scattered coincidences, which are 
useful for image reconstruction, though algorithmic scatter reconstructions require a detector energy 
resolution that exceeds the current state-of-the-art. Preliminary research has demonstrated the feasibility of 
using convolutional neural networks (CNNs) to reconstruct images directly from sinogram data. We have 
extended this approach to reconstruct images from data containing scattered coincidences. Monte Carlo 
simulations were performed to simulate PET data from digital phantoms. Data were modeled using 15% 
FWHM energy resolution detectors. Energy-dependent sinograms (EDSs), containing true and scattered 
coincidences, were constructed from the data. After data augmentation, 210,000 sinograms were obtained. A 
CNN was trained on the EDS-activity pairs for image reconstruction. A second network was trained on 
sinograms containing only photopeak coincidences. Images were also reconstructed using FBP, and MLEM 
approaches. The EDS trained network outperformed the photopeak trained network, with a higher mean 
structural similarity index (0.69 ± .05 vs. 0.63 ± .05) and lower average mean square error (0.16 ± .04 vs. 0.20 
± .04). Our work demonstrates that CNNs have the potential to extract useful information from scattered 
coincidences, even for data containing significant energy uncertainties. 

1 INTRODUCTION 

Typical positron emission tomography (PET) image 
reconstruction techniques make corrections to the raw 
data prior to image reconstruction. These include 
corrections for dead time, attenuation, random and 
scattered coincidences, and normalization.  Such 
corrections are imperfect. As such, they introduce 
noise and can remove valuable data (Cherry, 2012; 
Bai & Asma, 2016). The former is evident from the 
decreased noise equivalent counting rate (NECR) that 
results from scatter and random correction (Cherry, 
2012, p. 340). Additionally, any alteration of the data 
destroys its Poisson nature (Bai & Asma, 2016, p. 
266). 

Scattered coincidences, in particular, contain 
information that is beneficial for image 
reconstruction. Such information may increase 
sensitivity due to a lower energy window threshold 
(Conti et al., 2012), and when used in image 
reconstruction, has been shown to improve contrast 

recovery and decrease noise (Sun & Pistorius, 2013a, 
2013b). Furthermore, scattered coincidences contain 
information about the electron density of the 
scattering medium, thereby allowing attenuation 
maps to be estimated from scatter data (Berker et al., 
2014; Brusaferri et al., 2020; Sun et al., 2015). 

To date, scatter reconstruction studies have 
primarily focused on iterative approaches. These take 
advantage of the physics of Compton scattering to 
constrain annihilation positions to within areas or 
volumes in a 2-D or 3-D image space. Both time-of-
flight (TOF) (Conti et al., 2012) and non-TOF (Conti 
et al., 2012; Sun, 2016; Sun et al., 2015; Sun & 
Pistorius, 2013a, 2013b) methods have been 
implemented. Though most approaches have focused 
on coincidences where only one photon is scattered, 
it has also been demonstrated that even when both 
photons are scattered, this is sufficient to constrain the 
annihilation position (Sun, 2016). 

In the absence of high-resolution TOF 
information, detector energy resolution must be 
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sufficient to extract useful spatial information (Conti 
et al., 2012). Given current detector energy 
resolutions, coincidence timing resolution (CTR) 
values must be significantly better than 58-80ps, 
which is challenging to achieve (Meikle et al., 2021, 
p. 22). 

1.1 Deep Learning in Image 
Reconstruction 

Deep-learning (DL) networks have been applied to 
PET imaging. To date, most published studies focus 
on networks working entirely in image-space, taking 
as an input an image, and producing another image as 
output. A common application is generating 
attenuation-corrected (AC) PET images from non-
attenuation corrected (NAC) PET images (Dong et 
al., 2019, 2020; Shiri et al., 2019). These approaches 
do not make use of scatter. Another PET image-space 
application is the so-called “super-resolution” 
problem, wherein a network attempts to derive a high-
resolution image from a low-resolution one. Song et 
al. (Song et al., 2020) provide a particularly thorough 
example of this technique. Lastly, CNNs have been 
employed to denoise images (Tian et al., 2019). A 
comprehensive list of PET image-space studies can 
be found in (Lee, 2021). 

There is an alternative approach. So-called direct 
reconstruction approaches perform a domain 
transform to reconstruct images directly from binned 
data. These typically employ convolutional neural 
networks (CNNs). Compared to algorithmic or 
combined algorithmic/DL approaches, certain 
advantages are present. First, direct reconstruction is 
generally simpler. Second, DL approaches offer a 
possible solution to the ill-posedness of the PET 
inverse problem (Bai & Asma, 2016, p. 269). This 
solution takes the form of a non-linear filter that 
approximates regularization or image smoothing and 
is learned directly from the data. This may be thought 
of as similar to maximum a-posteriori (MAP) 
estimation where, from among images of similar 
likelihood values, one is chosen that is most probable 
given the prior (Bai & Asma, 2016, p. 270). As DL 
approaches are data-driven, the prior may be 
conceptualized as being learned implicitly from 
thousands of training examples. 

Another probable advantage of direct 
reconstruction is the implicit incorporation of point-
spread functions (PSFs). For iterative reconstruction 
methods, incorporating PSFs has been shown to 
improve image quality (Tong et al., 2010). A DL 
network may implicitly learn a spatially variant PSF 
from the data, thereby improving image quality. 

In earlier work on direct reconstruction 
(Häggström et al., 2019; Liu et al., 2019; Zhu et al., 
2018), scatter was not employed. In the present 
context, the primary advantage of using direct 
reconstruction is—as we demonstrate—the ability of 
CNNs to make use of low-energy resolution scatter 
data to improve image quality. 

2 METHODS 

2.1 Simulation Parameters 

Twelve XCAT digital phantoms (Segars et al., 2010) 
were obtained, ranging in sex, weight, race and age. 
Each phantom was modified ten times by varying the 
activity uptake ratios, organ scaling and rotation, 
yielding a total of 120 phantoms. From each phantom, 
250 transverse slices were obtained, spaced every 3 
mm. Thus, 30,000 2-D activity distributions (images) 
were generated. Slice dimensions were 40 x 40 cm 
(71 x 71 pixels). 

Monte Carlo simulations were performed on the 
XCAT phantoms. The Geant4 Application for 
Tomographic Emission (GATE) (Jan et al., 2004) was 
used to simulate positron emission and annihilation, 
photon propagation, and detection of coincidences. A 
three-dimensional cylindrical array of detectors was 
created around the phantoms. The dimensions of the 
crystal detectors were 3 mm x 3 mm x 20 mm. The 
height and radius of the cylinder were set to 750 mm 
and 150 mm, respectively, and the coincidence 
window was set to 10 ns.  

The GATE source code was modified so that 
annihilation and scattered photon propagation were 
constrained to within the transverse polar plane. As 
this study focused on 2-D image reconstruction, 
doing so reduced the number of photons that needed 
to be simulated and thus reduced computation time. 
Although the simulated acquisition was performed in 
3D mode, constraining the photons had the effect of 
simulating 2D acquisition. 

The detector energy resolution was set to 15% 
FWHM in order to represent realistic PET photon 
detectors. 

2.2 Data Acquisition 

Data were recorded in list mode. Approximately 106 
counts were recorded per slice. Scatter fractions ranged 
from 30% to 50%, depending upon the size of the slice 
(torso, head, etc.). Three bins were established 
according to photon energy: 456 – 506 keV (bin 1), 478 
– 528 keV (bin 2), and 486 – 536 keV (bin 3). Where, 
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for a single coincidence, both photon energies fell into 
bin 1, the coincidence was assigned to bin 1. Where 
one photon energy fell into bin 1, and the other fell into 
bin 2, the coincidence was assigned to bin 2. Similarly, 
where one photon energy fell into bin 1, and the other 
fell into bin 3, the coincidence was assigned to bin 3. 
Coincidences that could be placed into two bins, due to 
the overlapping energy ranges, were placed into both. 
Therefore, the binning of the data was accomplished 
via a sliding window. 

Coincidences in bin 1, centered about 511 keV, 
were more likely true coincidences, relative to those 
in bins 2 and 3. Coincidences in bin 2 were likely due 
to a singly scattered coincidence. The likely scattered 
photons in this bin had energies centered about 503 
keV, which corresponds to a 10-degree Compton 
scatter. Bin 3 had a central energy of 481 keV, which 
corresponds to a 20-degree Compton scatter. The 
binning of the data therefore structures it 
approximately according to scattering angle, binning 
coincidences mainly where only a single photon is 
scattered, which constitute most scattered 
coincidences (Conti et al., 2012). Due to the energy 
uncertainty of the detectors, however, some 
coincidences may have been improperly binned. 

2.3 Sinogram Construction 

Two categories of sinograms were constructed from 
the binned data: energy-dependent sinograms (EDSs) 
and photopeak sinograms. Photopeak sinograms were 
created from bin 1 data only. To construct the EDSs, 
individual sinograms were created from the data in 
each bin and then combined into a single 3-D array 
with dimensions s , ɸ and bin number, where s and ɸ  
are the polar coordinates of a 2-D sinogram.  

An attenuation correction that assumed that the 
simulated phantoms were composed entirely of water 
was performed for both types of sinograms. The 
average total distance travelled in matter for the 
photons in each scattered coincidence was calculated 
for all possible singly scattered travel paths. Only the 
section of each path which intersected with the 
volume of the phantom counted towards the average. 
This average distance, together with the Compton 
cross-section for water, was used to calculate the 
average attenuation coefficient for each scattered 
coincidence. Future studies will take an attenuation 
map as an additional input to the network to account 
for variations in electron density.  

As doubly scattered photons were confined to the 
transaxial plane by the alteration to the GATE source 
code, an attenuated coincidence (that is, one in which 
more than one scatter event occurred) could still be 

binned, so long as the scattered photon energy was 
not below 456 keV (the threshold for bin 3). While 
the coincidence would then effectively be counted 
twice, we relied on the network to learn corrections 
for this. However, it would also be possible to employ 
a more sophisticated energy-dependent attenuation 
correction factor, which depends on a restricted 
Compton cross-section, to deal with this complication 
(Sun, 2016, p. 58). 

No dead time, random, arc, or normalization 
corrections were performed; we relied on the network 
to learn these. 

Data augmentation was performed to efficiently 
increase the number of training examples. Each 2-D 
activity image was randomly flipped and rotated, with 
the corresponding sinograms modified appropriately. 
This was done six times for every image-sinogram 
pair, yielding a total of 210,000 image-sinogram pairs. 

2.4 Network and Training 

A detailed representation of the network we 
employed is depicted in Fig. 1. Similar to (Häggström 
et al., 2019), we implemented an encoder-decoder 
architecture, but as in (Whiteley et al., 2020) we used 
fully connected (dense) layers in the center of the 
network. These ensured that each pixel in the image 
space had as its receptive field the entire input 
sinogram, which was desirable due to the presence of 
scatter in the data. 

Two different networks (which employed the 
same network architecture) were trained on the two 
different types of sinograms and are referred to as the 
EDS network and the photopeak network. Therefore, 
the dimensions of the input data—and thus also the 
dimensions of the first set of filters—varied 
depending upon the sinogram type. EDSs were of size 
101 x 180 x 3 (the last digit comes from the three 
energy bins), whereas photopeak sinograms were of 
size 101 x 180 x 1. 
The encoding portion of the network began with a 
convolutional layer followed by a ReLu activation. 
Next, a max-pooling layer contracted the data. This 
was followed by two more convolutional + ReLu 
layers. The data were then reshaped (flattened), 
passed through two dense layers, and then was 
reshaped into an 83 x 83 array. Lastly, the decoding 
portion of the network was composed of four 
convolutional + ReLu layers and one convolutional + 
softmax layer. The output was an image of size 71 x 
71 pixels. Due to the final layer of the network being 
a softmax layer, each 2D activity image in the training 
and test sets was normalized so that the total activity 
per slice equaled 1. 
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Figure 1: The network takes either energy-dependent sinograms (EDSs) or photopeak sinograms as input. The photopeak 
sinograms are 2-D arrays composed of 101 x 108 elements. By contrast, the EDSs have a 3rd dimension which contains the 
scattered coincidences, arranged according to the energy of the scattered component. Thus, the filter size of the first layer is 
different depending upon the input type. Multiple convolutional layers, as well as dense layers in the middle of the network, 
ensure that the receptive field for every pixel in the output image comprises the entire input sinogram. This guarantees that 
the full scatter data is utilized. 

For each 2-D activity image, two sinograms were 
created: one energy-dependent, and one photopeak. 
From the 210,000 image-sinogram pairs, 180,000 
photopeak sinograms and their corresponding activity 
distributions were used to train the photopeak 
network. The same number of energy-dependent 
sinograms (with the same 2-D activity distributions) 
were used to train the EDS network. In each case, this 
left 30,000 sinogram-image pairs for use as a 
validation set. As the validation sets were not used to 
tune network parameters, they also functioned as test 
sets. 

Each network was trained for 150 epochs. During 
each epoch, the loss function of the training set and 
validation set were computed (Fig 2). Three loss 
functions were investigated for network training: 
Kullback-Leibler (KL), mean squared error (MSE), 
and Poisson. KL was chosen due to the superiority of 
images generated; these had less noise than those 
generated by a network trained with MSE and had 
higher contrast. 

Network weights were optimized with an Adam 
optimizer using a learning rate equal to 10-5. Training 
was implemented within Python using the 
TensorFlow library. 

2.4.1 Transfer Learning 

Monte Carlo simulations limit the practical size of 
training sets. We, therefore, investigated transfer 

learning as a possible method to train the network 
more thoroughly. 

We began by training a network with sinograms 
calculated analytically from the activity distributions 
and subsequently corrupted by Poisson noise. The 
first 8 layers of the model were then frozen, and the 
remainder trained on Monte Carlo-derived data sets. 
However, this network underperformed relative to 
networks trained only on Monte Carlo data sets, even 
though the latter had relatively few training examples. 
The authors hypothesize that, as the analytic 
sinograms did not include energy-dependent 
components, initial network layers did not learn to 
take full advantage of the sinogram data and 
discarded the scattered components. If transfer 
 

 
Figure 2: Training and validation losses for the EDS and 
photopeak networks. 
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learning were to be performed in future efforts, the 
3rd dimension of the analytically computed 
sinograms should represent the energy-dependent 
scatter component more accurately. 

3 RESULTS 

3.1 Network Performance 

Once training of the EDS and photopeak networks 
was completed, these were tested with separate sets 
of 30,000 sinogram-image pairs. For comparison 
purposes, reconstructions of the photopeak sinograms 
were made using filtered back projection (FBP) and 
maximum likelihood expectation maximization 
(MLEM). The latter was terminated at 13 iterations. 
No additional scatter corrections were performed on 
the data before reconstruction. These, therefore, are 
illustrative and should not be taken as examples of the 
best possible analytic or algorithmic reconstructions. 
Rather, the most relevant comparison is between the 
EDS network and the photopeak network. Sample 
image reconstructions using all four methods may be 
found in Fig. 3. 

 
Figure 3: Images for each reconstruction method are shown; 
note that the cold artifacts in images reconstructed from 
photopeak sinograms are absent or attenuated in the images 
reconstructed from EDSs. 

The average mean squared error (MSE) and 
structural similarity (SSIM) (Zhou Wang et al., 2004) 
were determined from the validation set for each 
reconstruction method, relative to the ground truth 
images. Contrast values were also determined for all 
four methods relative to the EDS-network. This was 

done by averaging the intensity of a region of interest 
of a hot spot feature (Ih), as well as the background 
area (Ib). The contrast for a single image is then given 
by: (I-Ib)/Ib. 

The average contrast value was computed for a 
10-image subset for each reconstruction method. 
Then the relative contrast values for the photopeak 
network, MLEM and FBP were determined relative 
to the EDS network. Figure 4 shows the image quality 
metrics for each reconstruction method. 

The computation times for each reconstruction 
method were also determined. The CNN 
reconstruction times were approximately 3 and 92 
times faster than FBP and MLEM methods, 
respectively. 

 
Figure 4: Evaluation metrics are shown for the four 
reconstruction methods employed. Of particular interest are 
the metrics for the two CNNs. The network trained on 
energy-dependent sinograms (EDSs) outperforms the 
network trained on photopeak sinograms, as evidenced by 
the structural similarity index metric (SSIM) and mean 
square error (MSE). However, for both SSIM and MSE, the 
difference between the metrics is less than the standard 
deviation of the metric values for images generated by each 
network; this is apparent from the error bars in the figure. 

3.2 Discussion 

For each image metric, the mean performance of the 
EDS network exceeded that of the photopeak 
network, though the difference was within the 
uncertainty for all metrics. However, the uncertainties 
are given by the standard deviation of the metric 
values, and as each metric value depends on the 
particular image considered, comparing differences 
in the mean metric values with their uncertainties has 
limited utility. For example, it may be possible that 
every EDS network image has a higher SSIM than the 
equivalent photopeak network image, and yet the 
uncertainties may overlap. A more thorough analysis, 
to be undertaken in future work, will examine this 
problem in greater detail. 

Differences in the quality of the reconstructed 
images can also be observed by visual inspection. 
Figure 3 depicts reconstructions of four different 2-D 
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activity distributions using the four reconstruction 
methods. The photopeak network generates distinct 
cold artifacts that are less visible or absent in the EDS 
network images. Noise within constant-activity areas 
is also higher in the photopeak network generated 
images. Lastly, the contrast between proximal areas 
with different activity levels appears higher in the 
EDS network generated images. Both CNN-
reconstructed images share broad agreement with 
images reconstructed via FBP and MLEM. 

Learning curves for the two CNNs are displayed 
in Fig. 3. The training and validation loss of the 
photopeak network shows slight overfitting, whereas 
the energy-dependent network does not. This may be 
due to the training set for the EDS network containing 
three times the amount of data as the training set for 
the photopeak network, whereas the number of 
weights—except for the first layer—was equal. This 
indicates that the EDS network was appropriately 
sized, given the size of its training set. 

4 APPLICATIONS AND 
IMPROVEMENTS 

4.1 3D and Total-body PET 

Improved image metrics demonstrate that including 
the information contained in the scatter has the 
potential to increase image quality, even with 15% 
FWHM energy resolution detectors. Given this, 
image reconstruction with data containing higher 
scatter fractions, such as occurs with 3-D acquisition 
or with large patients, is likely to benefit most. 
However, 3-D PET rebinning approaches, such as the 
Fourier rebinning algorithm (Defrise et al., 1997), 
typically only consider true coincidences. To make 
full use of scatter data, either fully 3-D reconstruction 
must be pursued, or else rebinning algorithms must be 
developed which accurately rebin scattered 
coincidences. The former approach will require a 
much larger CNN with many more weights, which 
will require many more training examples. The 
computational requirements for such an approach are 
likely to be prohibitive. The authors believe the latter 
approach to be more reasonable. 

The highest scatter fractions occur with total-
body PET (TB-PET). Due to the increased sensitivity 
possible with TB-PET, reducing injected activity by 
a factor of 20 or more is attainable. However, if a CT 
scan must be performed for the purpose of attenuation 
correction, this offsets the benefit. Attenuation 
corrected emission maps may be constructed with 

deep learning methods, even in the absence of CT, 
though this may be difficult using the sparse data 
from low-dose scans (Meikle et al., 2021, p. 25). In 
such cases, using scattered data for attenuation 
correction and/or activity estimation looks promising, 
especially as scatter fractions—and thus the 
information contained in the scatter—are increased 
for total-body PET. 

4.2 Additional Data Types 

If attenuation maps are available, these have the 
potential to increase the utility of scatter imaging. 
Photons are more likely to be scattered in volumes 
with high electron density. Therefore, attenuation 
maps contain statistical information about likely 
scattering locations. The use of attenuation maps as 
prior information for determining scatter locations 
may therefore increase the available spatial 
information scatter coincidences provide for 
determining annihilation positions.  Similarly, TOF 
information also increases the spatial information that 
can be gleaned from scattered coincidences, as 
demonstrated by Conti et al. (Conti et al., 2012). 
Therefore, networks that use attenuation or TOF data, 
together with scatter data, seem promising. 

4.3 Future Work 

The current study focused on a single network. Future 
work will explore various network configurations, 
including CycleGan, which often outperforms Unet-
type architectures. In this network type, a cycle-
consistent loss is added, which penalizes projection 
functions for not being injective (Wang et al., 2020). 
Different binning schemes may also be compared. 
Lastly, verification of the reconstruction method 
using physical phantoms is necessary to guarantee 
that the improvements seen in simulations translate to 
real-world applications. 

5 CONCLUSION 

Two convolutional neural networks sharing the same 
network architecture were trained and tested with two 
different sets of data: one with coincidences where 
both photons fell within a 511(±25) keV photopeak 
window, and one which also included coincidences 
where one of the photons had a lower detected 
energy. The network trained with the energy-
dependent scatter sinograms was observed to have a 
lower mean-square-error and larger structural 
similarity index than the network trained with only 
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the photopeak sinograms. Images generated by the 
photopeak network also contained more severe 
artifacts. 

These results suggest that including scattered 
coincidences in the data has the potential to increase 
image quality. The authors hypothesize that by 
utilizing coincidences outside the photopeak energy 
bin, the patient dose may be lowered while 
maintaining the same image quality, thus improving 
patient care. 
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